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Introduction

Let X1,X2, ....,Xn, .... be a sequence of independent
and identically distributed (iid) observations from a continuous
distribution F with median �∞ < θ < ∞.
We are interested in testing H0 : θ = 0 vs Ha : θ 6= 0 via a nonparametric
sequential procedure. Suppose that we want to be sure that at most N
observations will be needed to reach a decision.
Assuming that σ2 = Var(X1) < ∞, Sen (1981 and 1985) developed a
a repeated signi�cance test (RST) via the following Donsker�s invariance
theorem.
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Introduction

Let fX ,Xigi�1 be i.i.d random variables, EX = µ, VarX = σ2 and
Sn = X1 + X2 + ...+ Xn. A Functional Central Limit Theorem
(Donsker�s Theorem, see Billingsley (1995, p. 520)) implies
that if Sn(t) is the linear interpolation between points�

0, 0
�
,
�1
n
,
S1 � µ

σ
p
n

�
, ...,

�
1,
Sn � nµ

σ
p
n

�
then

Sn(t) �!d W

in the sense C[0, 1] with uniform metric ρ where W is standard Brownian
motion on [0, 1].
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A Robust Nonparametric RST

Let X ,X1,X2, ....,Xn, .... be a sequence of iid observations from a
continuous symmetric distribution F with median �∞ < θ < ∞. For F in
the class of heavy tail distributions with an in�nite variance and possibly
no mean, Glaz and Pozdnyakov (2005) derived a repeated signi�cance test
testing H0 : θ = 0 vs Ha : θ 6= 0. This repeated signi�cance test is
constructed as follows. Let fbngn�1 be an increasing sequence of positive
numbers such that

nP
�
jX j > bn

�
� γn % ∞.

Denote by S�n

S�n =
n

∑
i=1
Xi I(jXi j�bn), (1)

the partial sums of a truncated sequence of observations and let
Bn = Var(S�n ).
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A Robust Nonparametric RST

Let
τ = min

n
n0 � n � N; jS�n j � bn

p
An
o

be a stopping time, where

An =
n

∑
i=1
X 2i IjXi j�bn �

S�2n
∑n
i=1 IjXi j�bn

, (2)

is a sequence of sample estimators of Bn, n0 and N are the initial and the
target sample size, respectively. The repeated signi�cance test stops and
rejects H0 if and only if τ � N. The power function of this test is given by

β (θ) = Pθ (τ � N) = 1� Pθ (τ > N)

= 1� Pθ

�
jS�n j < bn

p
An; n0 � n � N

�
. (3)

Department of Statistics (Institute) Repeated Signi�cance Tests 06/09 7 / 35



A Robust Nonparametric RST

Since the sequence of partial sums of truncated random variables, S�n , is
not a process with independent increments, the classical Donsker
functional central limit theorem cannot be used. However, in the case of
symmetric distributions, fS�n g is a martingale. The following analog of
Donsker�s theorem plays an important role in the implementation of the
repeated signi�cance test given above.
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A Robust Nonparametric RST

Theorem (Pozdnyakov 2003) If the random variable X belongs to the
Feller class:

lim sup
t!∞

t2P(jX j > t)
E
�
X 2IjX j�t

� < ∞,

the average number of the excluded observations

nP
�
jX j > bn

�
� γn % ∞,

and Bn/Bn+1 ! 1 then S�n (t) �!d W in the sense (C[0, 1], ρ), where
S�n (t) is the linear interpolation between points�

0, 0
�
,
�B1
Bn
,
S�1p
Bn

�
, ...,

�
1,

S�np
Bn

�
.
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A Robust Nonparametric RST

Glaz and Pozdnyakov (2005) show that for the problem at hand

An
Bn
! 1 a.s..

Therefore, under H0 if Bn0/BN ! t0 and N ! ∞, then

max
� jSn jp

An
; n0 � n � N

�
d! sup

�
W (t)p
t
; t0 � t � 1

�
and consequently,

β (0) = P0

�
max

n0�n�N

� jS�n jp
An

�
� bn

�
! α,

where the constant bn = bn(α) is the critical value that determines the
continuation region of the repeated signi�cance test.
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A Robust Nonparametric RST

Glaz and Pozdnyakov (2005) derived an approximation for bn(α) for the
class of symmetric stable continuous distributions with exponent
0 < γ < 2, i.e.

E
�
X 2I(jX j�t)

�
� t2�γL(t),

where L(t) is a slowly varying function. Feller (1971, p. 313) shows that
the above condition is equivalent to

lim
t!∞

t2P(jX j > t)
E
�
X 2I(jX j�t)

� = 2� γ

γ
.

Based on the invariance principle in Pozdnyakov (2003), it follows that for
bn = bnδ, 0 < γ < 2, 0 < δ < 1/2, n0,N ! ∞ and n0/N ! c ,
0 < c < 1

max
� jS�n jp

An
; n0 � n � N

�
d! sup
[c1+(2�γ)δ,1]

jW (t)jp
t
. (4)

Department of Statistics (Institute) Repeated Signi�cance Tests 06/09 11 / 35



A Robust Nonparametric RST

The constant bn(α) can be approximated by bt0(α) by solving

P

 
sup

[c1+(2�γ)δ,1]

� jW (t)jp
t

�
� bt0(α)

!
= α, (5)

using the approach in De Long (1981). Numerical results in Glaz and
Pozdnyakov (2005) show that the approximations for the critical value
bn(α) are good.
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Approximation for the critical value

We now present numerical results for evaluating the
approximation for the critical value bn(α) for data
from a Cauchy distribution. Let us assume that X has the Cauchy
distribution, i.e. γ = 1. We consider the truncation level bn = n1/4,
i.e. δ = 1/4. In Table 1 simulation results are presented.
For each case the number of simulations performed
is 10,000. The theoretical critical values and the
corresponding signi�cance levels are taken from De Long (1981).
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Table 1

n0 N t0 bt0(α) theoretical α simulated α

100 303 1/4 2.7 .0503 .0541

100 303 1/4 3.3 .0098 .0094

100 754 1/12.5 2.6 .0989 .1012

30 91 1/4 2.7 .0503 .0638

30 91 1/4 3.3 .0098 .0167

30 226 1/12.5 2.6 .0989 .1119

Table 1. Simulation Results for Probability of Type I Error
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Approximation the power function of RST

Let X ,X1,X2, ....,Xn, .... be a sequence of independent and identically
distributed observations from a continuous distribution F symmetric
about the median �∞ < θ < ∞ and E

�
X 2
�
= ∞. The power function

of the RST is given by:

β (θ) = Pθ (τ � N) = 1� Pθ (τ > N)

= 1� Pθ

�
jS�n j < bn

p
An; n0 � n � N

�
.

To approximate the power function an additional assumption has to be
made:

E
�
X 2I(jX j�t)

�
s Kt2�γ,

where the constants K > 0 and 0 < γ < 2 are known.
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Approximation the power function

One can show that the power function of the RST can be
approximated by

1� P
 �����W (t) + θ

N [1�δ(2�γ)]/2

K 1/2b(2�γ)/2
t1/[1+δ(2�γ)]

����� < bt0(α)pt, t0 � t � 1
!
.

The power computation boils down to computing:

P
�
jW (t) + ctρj < b

p
t for all t 2 [t0, 1]

�
,

where 1/2 < ρ < 1. See Glaz and Pozdnyakov (2005).
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Approximation the power function

Since

P
�
�b
p
t � ctρ < W (t) < b

p
t � ctρ for all t 2 [t0, 1]

�
=
Z b

p
t0�ctρ

0

�b
p
t0�ctρ

0

P
�
�b
p
t � ctρ < W (t) < b

p
t � ctρ, t 2 [t0, 1]

���W (t0) = x�
� P

�
W (t0) 2 dx

�
,

computing the power function is equivalent to solving
the following problem.
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Approximation the power function

Consider the domain

D =
�
(x , y) : �t0 � y � 1� t0,�b

p
t0 + y � c(t0 + y)ρ < x

< b
p
t0 + y � c(t0 + y)ρ

	
.

Let τD (x , y) be the �rst time when the �degenerated�
two-dimensional di¤usion (xt , yt ) = (x +W (t), y + t) exits
from the domain D, where (x , y) belongs to the interior of the domain D.
What is the probability that a Brownian motion starting at
point x and at time y will stay inside the curved boundaries, i.e.

P
�
yτD (x ,y ) = 1� t0

�
?
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Approximation for the power function

The generating operator of the di¤usion (xt , yt ) is given by

1
2

∂2

∂x2
+

∂

∂y
.

By Venttsel (1996, p. 333) the function

v(x , y) = P
�
yτD (x ,y ) = 1� t0

�
is the unique solution of the PDE

1
2

∂2v
∂x2

(x , y) +
∂v
∂y
(x , y) = 0 (x , y) 2 D,

that satis�es the following boundary conditions:
1. v(�b(t0 + y)1/2 � c(t0 + y)ρ, y) � 0,
2. v(x , 1� t0) � 1.
We can solve this parabolic equation numerically which in turn will yield
an approximation for the power function of the RST.
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Approximation for the power function

In Table 2 we present approximations for the power
function of the RST for the Cauchy distribution for various
choices of µ computed via the Brownian motion
approximation and by simulations .The initial sample size
n is 100. The target sample size N0 is 303. These choices
correspond to the �rst row of Table 1. However, in this case
we choose a higher truncating level bn = bnδ = 5n

1/4
.

The multiplier b = 5 is taken in order to get a good
approximation by the Brownian motion with the nonlinear
drift. Note that the multiplier b does not have an e¤ect on
the approximation for the probability of type I error .
For the Cauchy distribution K = 2/π and γ = 1.
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Approximation for the power function

I

µ BM approximation BM approximation Simulation
(4 re�nements) (5 re�nements) (1000 simulations)

0 .0508 .0505 .044 (.0503)
.25 .1918 .1913 .183
.5 .5958 .5962 .557
.75 .9185 .9186 .907
1 .9948 .9948 .991

Table 2. Approximations for the Power Function .
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A RST with a Random Stopping Time

Let X ,X1,X2, ....,Xn, .... be a sequence of iid observations from a
continuous symmetric distribution F in the class of heavy tail distributions
with an in�nite variance and possibly no mean. Let �∞ < θ < ∞, be the
median F . For testing H0 : θ = 0 vs Ha : θ 6= 0, Pozdnyakov and Glaz
(2007) derived a repeated signi�cance test with random target sample
size. Let An be a sample variance of S�n , given in (2) and (1), respectively.
De�ne a stopping time N by

N = inffk � n0 :
Ak
An0

� 1
t0
g, (6)

where 0 < t0 < 1 is a design parameter. A repeated signi�cance test with
random target sample size is de�ned as follows.
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A RST with a Random Stopping Time

Let
τ = inf

n
k � n0 : jS�k j � b

p
Ak
o

be a stopping time, where n0 is the initial sample size, and N is the
random target sample size de�ned in (6). The repeated signi�cance test
stops and rejects H0 if and only if τ � N . Therefore, τ ^N is the
stopping time associated with this test. The following plays a key role in
implementing the repeated signi�cance test with random target sample
size.
Theorem (Pozdnyakov and Glaz 2007). Assume that the functional
central limit theorem for the sequence fS�n g holds, and the sequence of
Bn = Var(S�n ) satis�es: Bn % ∞ and Bn/Bn�1 ! 1, as n% ∞. If

An
Bn
! 1 a.s., (7)

then

P
�
max

n0�k�N

���� S�kpAk
���� > b� �! α(t0, b) as n0 ! ∞. (8)

Department of Statistics (Institute) Repeated Signi�cance Tests 06/09 23 / 35



A RST with a Random Stopping Time

For observations modeled by a distribution in the Feller class, such as the
Cauchy distribution, Theorem 1 implies that a functional central limit
theorem holds and the repeated signi�cance test presented above can be
carried out. Pozdnyakov and Glaz (2007) present numerical results
indicating that this sequential test performs well. The advantage of using
the repeated signi�cance test with random target sample size over the one
investigated in Glaz and Pozdnyakov (2005) is that for the design of the
test we do not need to specify the asymptotic tail behavior of the heavy
tail distribution. For power calculations one still needs to specify the
asymptotic tail behavior.

Department of Statistics (Institute) Repeated Signi�cance Tests 06/09 24 / 35



A RST with a Random Stopping Time

We say that a random variable X has a Cauchyp distribution i¤

X =d sign(Y )jY jp ,

where p > 0 and Y has a standard Cauchy distribution. If X has a
Cauchyp distribution, then it is symmetric and belongs to the Feller class
for any p > 0. Moreover, E (jX jq) < ∞, if q < 1/p.
To evaluate the performance of the proposed repeated signi�cance test, we
consider the following four distributions: Normal, Cauchy1/2, Cauchy, and
Cauchy2. These distributions have very di¤erent tail behaviors and it is
impossible to specify a deterministic target sample size in the repeated
signi�cance test based on the truncated sums S̃n, discussed in Glaz and
Pozdnyakov (2004), that guarantees a correct signi�cance level α for all
four distributions.
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A RST with a Random Stopping Time

Numerical results presented in Table 1 show that the introduction of an
adaptive target sample size successfully addresses this problem. The
truncation level dn = n1/4 was used. The design parameters corresponding
to targeted values of α = .01 and .05 were evaluated from the tables in De
Long (1981). The simulated signi�cance level is presented as the top value
in the table. The simulated values of E (τ ^N ) and Var(τ ^N ), rounded
to whole numbers, are presented as the bottom values in the table (in form
E (τ ^N )�

p
Var(τ ^N )). A simulation of 10,000 trials was employed.
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A RST with a Random Stopping Time

Table 1. Simulated Signi�cance Levels and Expected Stopping Times,
n0 = 100, dn = n1/4

t�10 b Normal Cauchy1/2 Cauchy Cauchy2

4 3.3 .010 .010 .009 .008
391� 52 319� 38 276� 36 260� 42

2.7 .051 .047 .047 .046
382� 69 313� 49 272� 43 256� 48

7.5 3.4 .010 .012 .010 .009
729� 104 544� 70 439� 62 397� 69

2.8 .051 .048 .048 .045
711� 141 533� 92 429� 77 391� 79
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A comparison between RST�s

In this section we present a comparison between a repeated signi�cance
test with adaptive target sample size, a classical repeated signi�cance test
that is based on the Donsker�s Theorem (Billingsley 1995, p. 520) and a
Cauchy score repeated signi�cance test. If the distribution of X has a
�nite second moment, then the functional central limit theorem of
Donsker is valid. Therefore, one can construct a repeated signi�cance test
with a �nite target sample size (classical repeated signi�cance test) based
on a functional central limit theorem for the partial sums
Sn = X1 + ...+ Xn. In Table 2, we present simulated values for the power
function, π̂(θ), for the classical repeated signi�cance test (CRST) and the
repeated signi�cance test with adaptive target sample size (ARST),
derived in Section 3. Simulation results are presented for the standard
normal and Cauchy distributions and are based on 10000 trials. The
design parameters n0 = 100,N = 750, t�10 = 7.5 and b = 2.8 were used to
achieve a targeted signi�cance level of α = .0513. For the adaptive
repeated signi�cance test a truncation level of dn = n.25 was employed.
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A comparison between RST�s

For normal data, this truncation has almost no e¤ect. As a consequence,
our sequential procedure does not lose any power in comparison with the
classical repeated signi�cance test.
If the distribution of the observed data is not normal and has heavy tails,
for example assume it is Cauchy, then the adaptive repeated signi�cance
test outperforms the classical repeated signi�cance test. In this case
Donsker�s theorem is not valid and the process associated with the
self-normalized sums does not converge to the standard Brownian motion.
As a result, the simulated probability of Type I error, bα = π̂(0), is far from
the targeted one. Moreover, the power values show that the CRST fails to
detect a deviation of the parameter θ from 0 at all. In contrast, our
adaptive repeated signi�cance test achieves a correct probability of Type I
error, and the power function increases sharply with θ.
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A comparison between RST�s

Table 2. Simulated Signi�cance Levels and Power,
n0 = 100, 1/t0 = 7.5, b = 2.8, α = .0513 and dn = n1/4 (for ARST)

Normal Cauchy
θ CRST ARST CRST ARST
0 .0521 .0531 .0069 .0473
.05 .1872 .1885 .0082 .0751
.10 .6306 .6283 .0099 .1531
.15 .9445 .9357 .0111 .2847
.20 .9981 .9968 .0176 .4769
.25 1.0 .9999 .0204 .6682
.30 1.0 1.0 .0339 .8196
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Summary and conclusions

Based on a functional central limit theorem for partial sums of truncated
random variables and Theorem (Pozdnyakov and Glaz 2007), a
nonparametric repeated signi�cance test with an adaptive target sample
size has been derived. Numerical results for the shift model indicate that
this test performs quite well. Theorem (Pozdnyakov and Glaz 2007) is
quite general. Its use is not limited to a sequence of partial sums of
truncated observations. To employ it in constructing repeated signi�cance
tests based on a sequence of statistics fTn, ; n � 1g , a functional central
limit theorem for fTn, ; n � 1g has to be valid.
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Summary and conclusions

Recently, Guerriero, Pozdnyakov, Glaz and Willett (2009) derived a
repeated signi�cance test with a random target sample size that is
controlled by the total available resources to carry out the sequential
testing procedure. This test was applied to a decentralized sequential
detection problem in a sensor communication network with communication
constraints.
Glaz and Kenyon (1985) presented an approach used in developing median
unbiased con�dence intervals after the completion of a sequential testing
procedure. It will be of interest to develop the algorithms needed to
implement this methodology to repeated signi�cance tests with random
target sample size.
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