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1. Introduction

The central object of interest of the paper is the waiting time till a member of

a finite collection of patterns is observed in a stochastic sequence of letters from a

finite alphabet. The distribution of the waiting time is a key to many real-world

questions in various fields: quality control, hypothesis testing, molecular biology,

DNA sequencing and others. Because of the practical importance the occurrence of

patterns has been studied extensively by many different techniques. Here is a list

of some recent works in the area: Antzoulakos (2001), Chang (2005), Fu (2001),

Fu and Chang (2002), Fu and Lou (2006), Hirano and Aki (2003), Pozdnyakov et.

al. (2005), Rukhin (2002) and Stefanov (2000, 2003). Useful reviews of different
1
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approaches can be found in two recent books: Balakrishnan and Koutras (2002)

and Fu and Lou (2003).

We will demonstrate how the occurrence of patterns in Markov chains can be

treated with help of the martingale methods which were introduced by Li (1980)

and Li and Gerber (1981) in their investigation of independent sequences. Their key

observation was that information on the waiting time can be obtained from values

assumed by a specially constructed martingale at a relevant stopping time. The

common perception is that the martingale technique is not suitable for the situation

of Markov dependent trials. But as we have shown in our recent paper that is not

exactly true. More specifically, in Glaz et al. (2006) the martingale technique was

developed to treat occurrence of patterns in two-state Markov chains. Here we

present another algorithm based on the method of gambling teams that works for

multi-state Markov chains as well. Some ideas and devices in this article are similar

to those in Glaz et al. (2006) but the overall technique is substantially different

even when it is applied to two-state Markov chains.

This shows, contrary to common thinking, that the elegant martingale approach

developed by Li (1980) and Gerber and Li (1981) for the occurrence of patterns in

the case of independent trials can be, in fact, extended to treat the Markov chain

case. The most important benefit of the new technique is that the higher moments

computed directly—not via differentiation of the generating function.

2. Problem Statement and Assumptions

Let {Zn, n ≥ 1} be a finite homogeneous Markov chain with a state space Ω =

{1, 2, ...,K}. We suppose the chain has the initial distribution P(Z1 = k) = pk,
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1 ≤ k ≤ K and the transition matrix P = {pij}1≤i,j≤K where

pij = P(Zn+1 = j|Zn = i).

Let us consider a finite collection C of finite ordered sequences (patterns)

Ai, 1 ≤ i ≤ M,

over the alphabet Ω. Let τAi
denote the first time until the pattern Ai has been

observed in the series Z1, Z2, .... The random variable of main interest here is

τ = min{τA1 , ..., τAM },

the first time when we observe a pattern from C.

Let us list our assumptions.

(1) No pattern of C contains another pattern from C as a subpattern.

The longer pattern cannot occur before the shorter one, so the longer pat-

tern can be deleted from our list without loss of generality.

(2) P(τ = τAi) > 0 for all 1 ≤ i ≤ M .

If P(τ = τAi) = 0 for some i then we do not need to have Ai in our list.

Note that in the case of independent trials this assumption is a consequence

of the first one. However, in the case of Markov dependent trials there are

other possibilities. For example, if pattern Ai contains subpattern km and

pkm = 0 then Ai can not happen as a run of {Zn, n ≥ 1}.

(3) P(τ < ∞) = 1.

This excludes, for instance, a situation when all patterns from C can only

occur while the Markov chain is in the set of transient states. In such a

case, it is possible that the system will go to a close irreducible set without
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hitting C first. (The question of expected value is trivial in this case, it is

the infinity.) But there is another benefit of this assumption. Since we deal

here with a finite Markov chain one can easily show that P(τ < ∞) = 1, in

fact, implies E[τ ] < ∞. This will be useful when later we will employ the

optional stopping theorem for martingales.

Our goal is to find the first and second moments of τ and its generating function.

3. Expected Waiting Time

Here we derive a formula for the expected value of τ . Following Li (1980) we

describe our construction as a gambling system. First we decompose the occurrence

of a single pattern Ai into a list of 1 + K + K2 (recall K = |Ω|) possible ending

scenarios:

(1) Ai occurs as an initial segment of the sequence {Zn, n ≥ 1},

(2) kAi (1 ≤ k ≤ K) occurs as an initial segment of the sequence {Zn, n ≥ 1},

(3) kmAi (1 ≤ k,m ≤ K) occurs.

The first 1+K ending scenarios are called initial scenarios, and the last K2 scenarios

are called later scenarios. Thus we have (1 + K + K2)M scenarios to begin with.

For every later scenario associated with the pattern kmAi we introduce a kmAi-

gambling team of gamblers. Imagine that a casino produces the Markov chain

{Zn, n ≥ 1}. Gambler n + 1 from the kmAi-gambling team arrives before round

n+1 to observe the result of nth trial, Zn. Then he starts his betting. If Zn = k he

bets a certain amount of money (the same for all gamblers from the kmAi-gambling

team) on pattern mAi. If Zn 6= k he bets on Ai.

Let us explain what we mean by “betting $1 on pattern Q = q1q2 · · · ql′”, when

Zn = q0. After observing Zn the gambler bets a dollar that the next trial yields q1.
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If Zn+1 6= q1 he loses his dollar and leaves the game. If Zn+1 = q1, he gets 1/pq0q1 .

Note that the expected return of one-dollar bet is $1, i.e., the betting is fair. If he is

lucky he continues his betting. Now he bets his entire capital that the n + 2 round

yields q2. If it is q2 he increases his capital by factor 1/pq1q2 , otherwise he leaves

the game with nothing. He continues in the same fashion till either pattern Q is

exhausted (and the happy gambler goes home with his winning) or the gambler is

broke (and the casino is happy to have gambler’s dollar).

Now, note that not every ending scenario can occur before the waiting time τ .

Also some scenarios are impossible simply because some new patterns associated

with some ending scenarios cannot be observed at all in the Markov chain.

Thus from our original list of ending scenarios we need to eliminate those that

cannot occur at all and those that can occur only after the time τ . Let K ′ denote

the number of initial scenarios, and let N ′ denote the number of later scenarios

that are still in our list after the elimination. For every jth later scenario in the

new list we introduce the corresponding gambling team, and we assume that the

initial amount with which the gamblers of the jth teams start their betting is yj .

The values of yj will be specified a bit later.

Let yjWij , 1 ≤ i ≤ K ′ + N ′, 1 ≤ j ≤ N ′ be the amount of money that the jth

team wins in the ith ending scenario. Let Xn denote the casino’s net gain from all

teams at the conclusion of the nth round. The main property of sequence {Xn} is

that it forms a martingale with respect to the filtration generated by the Markov

chain {Zn, n ≥ 1}. Indeed, for every gambler in the game the bet size at a current

round is fully determined by previous rounds, and odds—as we have seen—are fair.

Now let us look at the stopped martingale Xτ . It is easy to see that we have the
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following expression for Xτ :

Xτ =
N ′∑

j=1

yj(τ − 1)−
K′∑

i=1

N ′∑

j=1

Wijyj1Ei −
K′+N ′∑

i=K′+1

N ′∑

j=1

Wijyj1Ei ,

where Ei is the event that the ith scenario occurs.

Now, note that Wij is not a random variable. It depends only on overlapping

of the pattern associated with the ith scenario and the pattern associated with the

jth gambling team. Indeed, let us consider kmA-gambling team, where

A = a1a2 · · · al.

Suppose that the game was ended by a scenario associated with pattern

Q = q1q2 · · · ql′ .

First, we introduce the following two measures of overlapping of a prefix of kmA

with a suffix of Q:

δt(Q, kmA) =





1
pkmpma1 · · · pat−2at−1

, if ql′−t = k, ql′−t+1 = m, ql′−t+2 = a1, ...

..., ql′ = at−1

0, otherwise,

and

δ′t(Q, kmA) =





1
pql′−ta1pa1a2 · · · pat−1at

, if ql′−t 6= k, ql′−t+1 = a1, ql′−t+2 = a2, ...

..., ql′ = at

0, otherwise.

Now, it is easy to see that if the game ends by the scenario associated with pattern

Q, then the kmA-gambling team wins (if they bet $1)

min(l′−1,l+1)∑
t=1

δt(Q, kmA) + δ′t(Q, kmA).
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The idea of gambling teams method is simple and somewhat similar to hedging

in finance. In nutshell, we try to choose the free parameters (y1, y2, ..., yN ′) in such

a way that the total winnings of the all the teams is $1 regardless how the game

ended. More specifically, assume that we can find yj such that

N ′∑

j=1

Wijyj = 1, for all K ′ + 1 ≤ i ≤ K ′ + N ′, (1)

then

Xτ =
N ′∑

j=1

yj(τ − 1)−
K′∑

i=1

N ′∑

j=1

Wijyj1Ei
−

K′+N ′∑

i=K′+1

1Ei
.

Since {Xn}n≥1 has bounded increments and E[τ ] < ∞, the optional stopping theo-

rem (for instance, Williams (1991, p. 100)) tells us that 0 = E[X1] = E[Xτ ]. That

gives us

0 = E[Xτ ] =
N ′∑

j=1

yj(E[τ ]− 1)−
K′∑

i=1

N ′∑

j=1

Wijyjπi − (1−
K′∑

i=1

πi),

where πi is the probability that the ith initial scenario occurs. Solving the equation

with respect to E[τ ] we obtain the following result.

Theorem 1. If (y1, y2, ..., yN ′) solves the linear system (1), then

E[τ ] = 1 +
(1−∑K′

i=1 πi) +
∑K′

i=1 πi

∑N ′

j=1 yjWij∑N ′
j=1 yj

. (2)

Example 1. Let Ω = {1, 2, 3} and C = {323, 313, 33}. Suppose now that

p1 = 1/3, p2 = 1/3, p3 = 1/3, (3)

and the transition matrix P is given by

P =




3/4 0 1/4

0 3/4 1/4

1/4 1/4 1/2




. (4)
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After the eliminating impossible scenarios we get 9 initial scenarios:

323 · · · , 313 · · · , 33 · · · , 1323 · · · , 2323 · · · , 1313 · · · , 2313 · · · , 133 · · · , 233 · · ·

and only 6 later scenarios (because transitions 1 → 2 and 2 → 1 are impossible):

· · · 11323, · · · 22323, · · · 11313, · · · 22313, · · · 1133, · · · 2233.

Let us give some entries of matrix W . For instance, the 11323-gambling team in

the initial scenario 323 · · · wins 1/p23 = 4. The same team in the later scenario

· · · 11323 wins 1/(p11p13p32p23)+1/p23 = 268/3, and in the later scenario · · · 22323

it wins 1/(p23p32p23) + 1/p23 = 68. The entries of matrix W that correspond to

the later scenarios (those are needed for linear system (1)) are



268/3 64 4 0 4 0

68 256/3 4 0 4 0

0 4 256/3 68 0 4

0 4 64 268/3 0 4

2 2 2 2 38/3 10

2 2 2 2 10 38/3




.

Using formula (2) we obtain

E[τ ] = 8
7
15

.

4. Second (and Higher) Moments

To derive a formula for the second moment of τ we will work with the same

numbers of ending scenarios and gambling teams. But now the gambler from the

jth team that places his bet the first time in the nth round will start his betting

with yj + zjn dollars. The weights yj and zj will be chosen later.
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Now, let

Wijyj + τWijzj + Nijzj

denote the winnings of jth team in the ith ending scenario. Here Wij is as before,

and Nij is a new quantity. But the key observation, as earlier, is that Nij is not

random. More specifically, suppose that the ith scenario is associated with pattern

Q = q1q2 · · · ql′ , and the jth gambling team—with pattern kmA = kma1a2 · · · al.

Then one can find that

Nij =
min(l′−1,l+1)∑

t=1

(δt(Q, kmA) + δ′t(Q, kmA))(1− t).

Next, we obtain the following expression for the casino net gain at moment τ .

Xτ = (τ − 1)
N ′∑

j=1

yj + (2 + 3 + ... + τ)
N ′∑

j=1

zj

−
K′∑

i=1

1Ei

N ′∑

j=1

[Wijyj + τWijzj + Nijzj ]

−
K′+N ′∑

i=K′+1

1Ei

N ′∑

j=1

[Wijyj + τWijzj + Nijzj ]

= (τ − 1)
N ′∑

j=1

yj +
(τ − 1)(τ + 2)

2

N ′∑

j=1

zj

−
K′∑

i=1

1Ei

N ′∑

j=1

[Wijyj + τWijzj + Nijzj ] +
K′∑

i=1

1Ei(1 + τ)

−
K′+N ′∑

i=K′+1

1Ei

N ′∑

j=1

[Wijyj + τWijzj + Nijzj ]−
K′∑

i=1

1Ei(1 + τ),

where 1Ei is the indicator that the ith scenario occurs.
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Suppose that we can find yi and zi such that for all K ′ + 1 ≤ i ≤ K ′ + N ′

N ′∑

j=1

Wijzj = 1 and
N ′∑

j=1

Wijyj + Nijzj = 1. (5)

In this case the stopped martingale Xτ is given by

Xτ = (τ − 1)
N ′∑

j=1

yj +
(τ − 1)(τ + 2)

2

N ′∑

j=1

zj

−
K′∑

i=1

1Ei

N ′∑

j=1

[Wijyj + τWijzj + Nijzj ] +
K′∑

i=1

1Ei
(1 + τ)

−(1 + τ).

Finally, once again the optional stopping theorem gives us a formula for E[τ2].

Note, however, that the increments of martingale Xn are no longer bounded almost

sure, so we need a different version. For example, the optional stopping theorem

from Shiryaev (1995, p. 485) will work here—just note that Xn is at most O(n2),

but P(τ > n) goes to zero at exponential rate. Let us now summarize our findings.

Theorem 2. If (y1, y2, ..., yN ′) and (z1, z2, ..., zN ′) solves the linear system (5) then

E[τ2] =
2∑N ′

j=1 zj


1 + E[τ ] + (1−E[τ ])

N ′∑

j=1

yj + A


 + 2−E[τ ], (6)

where

A =
K′∑

i=1

πi




N ′∑

j=1

[Wijyj + ΛiWijzj + Nijzj ]− 1− Λi


 ,

πi is the probability that the ith initial scenario occurs, and Λi is the value of τ

when the ith initial scenario occurs.
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Example 2. Consider the same alphabet Ω, compound pattern C and Markov

chain {Zn, n ≥ 1} as in Example 1. The values of (new) matrix Nij for the later

scenarios are



−256 −128 0 0 0 0

−128 −256 0 0 0 0

0 0 −256 −128 0 0

0 0 −128 −256 0 0

0 0 0 0 −64/3 −8

0 0 0 0 −8 −64/3




.

Solving linear system (5) (in fact, we need to solve consecutively two linear systems

of size 6) and applying formula (6) we obtain

E[τ2] = 125
4
25

.

Of course, in this case a symbolic differentiation of the generating function is pos-

sible, and it leads to the same answer (see next section).

Finally, let us note that in order to get the third moment we need to change

the size of initial bet for the nth gambler to yj + zjn + xjn
2, and after a similar

bookkeeping we will arrive to a formula for the third moment.

5. Generating Function

To find the generating function for the waiting time τ , E[ατ ], 0 ≤ α ≤ 1, we

need to introduce the same scenarios and the same gambling teams, but we need to

change the size of initial bets. More specifically, a gambler from the jth team that

starts his betting in the nth round will bet initially yjα
n dollars. Let ατWij(α)yj

denote the total winnings of jth team in the ith scenario. As before the most
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important observation is that Wij(α) is not a random variable, and it is fully

determined by the relationship between the jth gambling team and the ith ending

scenario.

If Xn again denotes the net gain of the casino at time n, then the stopped

martingale Xτ is given by

Xτ = (α2 + ... + ατ )
N ′∑

j=1

yj −
K′∑

i=1

1Ei

N ′∑

j=1

ατyjWij(α)

−
N ′∑

i=K′+1

1Ei

N ′∑

j=1

ατyjWij(α)

=
α2 − αατ

1− α

N ′∑

j=1

yj −
K′∑

i=1

1Ei

N ′∑

j=1

ατyjWij(α) +
K′∑

i=1

1Eiα
τ

−
K′∑

i=1

1Eiα
τ −

N ′∑

i=K′+1

1Ei

N ′∑

j=1

ατyjWij(α),

where Ei, 1 ≤ i ≤ K ′ + N ′ is the event that the ith scenario occurs. Suppose that

for every 0 < α < 1 we can find (y1, ..., yN ′) such that

N ′∑

j=1

Wij(α)yj = 1, for all K ′ + 1 ≤ i ≤ K ′ + N ′. (7)

Then the stopped martingale Xτ is given by

Xτ =
α2 − αατ

1− α

N ′∑

j=1

yj −
K′∑

i=1

ατ1Ei




N ′∑

j=1

yjWij(α)− 1


− ατ

=
α2 − αατ

1− α

N ′∑

j=1

yj −
K′∑

i=1

αΛi1Ei




N ′∑

j=1

yjWij(α)− 1


− ατ ,

where Λi, 1 ≤ i ≤ K ′ is the value of τ when the ith initial scenario occurs. Note that

Λi is not a random variable. After a routine application of the optional stopping

theorem we obtain

0 =
α2 − αE[ατ ]

1− α

N ′∑

j=1

yj −
K′∑

i=1

αΛiπi




N ′∑

j=1

yjWij(α)− 1


−E[ατ ].
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After some algebra we get the following result.

Theorem 3. If (y1, y2, ..., yN ′) solves the linear system (7), then

E[ατ ] =
α2/(1− α)

∑N ′

j=1 yj −
∑K′

i=1 αΛiπi

(∑N ′

j=1 yjWij(α)− 1
)

1 + α/(1− α)
∑N ′

j=1 yj

.

Example 3. Let Ω = {1, 2, 3} and C = {323, 313, 33}. Suppose again that the

initial probabilities are given by (3) and transition probability matrix is given by

(4). We have 9 initial ending scenarios and 6 later ones (see Example 1). After

solving linear system (7) and applying Theorem 3 we obtain

E[ατ ] =
α2(16− α2)

96− 9α(8 + α2)
=

1
6
α2 +

1
8
α3 +

1
12

α4 +
5
64

α5 +
9

128
α6 +

31
512

α7 + O(α8)
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