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1. Introduction

The occurrence of patterns in stochastic sequences is an important topic with a
wide range of applications, and it has been studied by many different methods. The
first systematic treatment of the problem can be found in Feller (1968) who used
the recurrent event theory. The combinatorial methods were introduced by Guibas
and Odlyzko (1981a, 1981b). Various probabilistic techniques were employed in
Biggins and Cannings (1987), Blom and Thorburn (1982), Breen et al. (1985),
Chrysaphinou and Papastavridis (1990), Han and Hirano (2003), Robin and Daudin
(1999), Stefanov (2003) and Uchida (1998). The modern probabilistic approach is
the Markov chain embedding method. For this method and related techniques we
refer readers to Antzoulakos (2001), Fu (1986), Fu (2001), Fu and Chang (2002),
Fu and Koutras (1994), Stefanov (2000), Stefanov and Pakes (1997) and Stefanov
and Pakes (1999). Two recent books provide a useful review of these methods:
Balakrishnan and Koutras (2002) and Fu and Lou (2003).

In this note we will use the martingale method that was introduced by Li (1980)
and Li and Gerber (1981), and further developed in Pozdnyakov and Kulldorff
(2006) and Pozdnyakov et al. (2005). The idea of the method is that a valuable
information on the occurrence of patterns can be obtained from a specially designed
martingale. However, the common perception is that the martingale approach is
not easy to be employed for Markov dependent trials. But, in fact, it has been
shown by Glaz et al. (2006) that the occurrence of patterns in a Markov chain also
can be treated by the martingale technique.

Here we will consider the problem of the occurrence of subpattern in Markov
chains. The simplest version of this problem in the case of the Bernoulli trials is
as follows. What is the distribution of the number of (overlapping) occurrences of
run of length l until run of length L > l is observed? Closely related results can
be found in Aki et al. (1996), Hirano and Aki (2003) and Uchida (1998), somewhat
related—in Aki and Hirano (1994), Chadjiconstantinidis and Koutras (2001) and
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Hirano and Aki (1997). The progress made here is two-fold. First, we demonstrate
that the martingale approach is fruitful in this case also. Second, what we consider
here is more general than that in the papers mentioned above. Here the stopping
rule is determined by many patterns, not just by one. A potential application of
the introduced technique is a test of randomness that can be designed in a way
similar to one suggested by Rukhin (2001, 2002). A detailed exposition is provided
in the last section of the note.

2. Formal Statement of the Problem

Let {Zn, n ≥ 1} be a Markov chain of order m over a finite alphabet Ω. Let
P = a1a2...al be a pattern (a word from the alphabet Ω) of length l ≥ m. Consider
a collection of patterns C = {PB1, PB2, ..., PBK}, where PBi = a1...alb

(i)
1 ...b

(i)
li

.
Assume that no pattern from C contains another as a subpattern. Let τi be the
waiting time until the first occurrence of the pattern PBi, and

τ = min{τ1, ..., τK}.
Assume that P(τ < ∞) = 1, and P(τ = τi) > 0 for all 1 ≤ i ≤ K. The main object
of interest is the number of overlapping occurrences of subpattern P until τ which
is denoted by N . The goal is to obtain the expected value and generating function
of N .

3. Key Martingale Related to Pattern PB

Let us imagine a table in a casino that generates Markov chain {Zn, n ≥ 1}.
Consider a gambler that arrives in the casino right after n-th trial. First, the
gambler watches l consecutive trials. If he does not see pattern P then he does not
bet. If he sees P then he starts to place bets on B = b1...bN . More specifically, he
bets a dollar that the

Zn+l+1 = b1.

If it is not, he loses his bet and leaves the game. If he wins, he gets

1/pal−m+1,...,al|b1 ,

where pal−m+1,...,al|b1 = P(Zm+1 = b1|Z1 = al−m+1, ..., Zm = al), the transition
probability. Then he bets his entire capital on the event that

Zn+l+2 = b2.

If he loses, he leaves. If he wins his total capital is now

1/pal−m+1,...,al|b1/pal−m+2,...,alb1|b2 .

He continues the betting through the pattern B. If he finishes the pattern, he leaves
the game with his winning.

Now, if {Xn, n ≥ 1} is a total amount of money that the casino has from the
gambler at moments n, then it is obvious that this stochastic sequence forms a
martingale with respect to filtration generated by {Zn, n ≥ 1}. The initial value of
this martingale is 0.
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4. Expected Value of N
To compute the expected number of occurrences till τ we introduce K teams

of gamblers. A gambler from the j-th team that arrives at moment n bets yj

dollars (the amount of money that we specify a bit later) on pattern Aj in the way
described in the previous section. Let Xn be a net gain of the casino at moment n.
Since it is a sum of finite number of martingales, Xn is a martingale itself.

Next step is to obtain the expression of the stopped martingale Xτ . To do that
one needs to introduce a new notion of “profit matrix”. Let yjWij will be total
winnings of the j-th team whenever τ = τi. The matrix Wij , 1 ≤ i, j ≤ K is called
the profit matrix. Only gamblers who observe P enter the game, and most of them
are losers. Also note only those gamblers that enter the game right before the
stopping time τ (more precisely, those who enter the game after τ − L, where L is
length of the longest pattern from C) can have some money in their pockets at time
τ . Moreover, when τ = τi, the amount of winnings of the j-th team is completely
determined by overlapping of PBi and PBj , and this quantity is a constant not
a random variable. Later an explicit formula for Wij will be provided. Also one
needs to distinguish the patterns from C that ends by P from those that do not. If
the game is stopped because of the first occurrence of a pattern that also ends with
P the total amount of money paid by the j-th team is yj(N −1). The gambler who
observes the last occurrence of P does not place his bet before τ . If the game is
stopped because of the first occurrence of a pattern that does not end with P the
total amount of money paid by the j-th team is yjN .

Without loss of generality let us assume that PB1, PB2, ..., PBQ ends with P ,
and PBQ+1, PBQ+2, ..., PBK do not. Then the stopped martingale is given by

Xτ =





(y1 + ... + yK)(N − 1)− (W11y1 + ... + W1KyK), if τ = τ1,
... ...
(y1 + ... + yK)(N − 1)− (WQ1y1 + ... + WQKyK), if τ = τQ,
(y1 + ... + yK)N − (WQ+11y1 + ... + WQ+1KyK), if τ = τQ+1,
... ...
(y1 + ... + yK)N − (WK1y1 + ... + WKKyK), if τ = τK .

Or one can write this in a more compact form

Xτ =
K∑

j=1

yjN −
Q∑

i=1

K∑

j=1

yj(Wij + 1)Iτ=τi −
K∑

i=Q+1

K∑

j=1

yjWijIτ=τi .

Now, let us assume that there exists a solution, (y∗1 , ..., y∗K), of the following linear
system:

(1)

(W11 + 1)y1 + ... + (W1K + 1)yK = 1
... ...
(WQ1 + 1)y1 + ... + (WQK + 1)yK = 1
W(Q+1)1y1 + ... + W(Q+1)KyK = 1
... ...
WK1y1 + ... + WKKyK = 1

For this choice of the initial bets (y∗1 , ..., y∗K), the stopped martingale is given by a
very simple formula

Xτ = (y∗1 + .. + y∗K)N − 1.
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Now one can show that the increments of the martingale Xn are almost sure
bounded, and the expected value of τ is finite. Therefore, by Optional-Stopping
Theorem (e.g., Williams (1991, p. 100)) we find that

E(Xτ ) = 0.

Since the weights are not random, we get the following result.

Theorem 1. If (y∗1 , ..., y∗K) solves system (1), then

E(N ) =
1

y∗1 + ... + y∗K
.

Remark 1. An interesting observation (which is consistent, for instance, with
results of Uchida (1998)) is that the expected value of N does not depend on the
initial distribution of the Markov chain.

5. Computation of the Profit Matrix Wij

One can say that the definition of Wij is too vague, but, in fact, it is not. The
explicit expression for that matrix can be presented. First, one needs to introduce
the following measure of overlapping of B = b1b2...bN and C = c1c2...cM :

W (B, C) =
min(N,M)−l∑

k=1

δk(B, C),

where

δk(B,C) =





1
pcl−m+1...cl|cl+1 ...pcl−m+k...cl+k−1|cl+k

, if c1 = bN−k−l+1,

c2 = bN−k−l+2,
...
cl+k = bN ,

0, otherwise,

and l is the length of the pattern P . Now, having this notation at hand one can
show that

Wij = W (PBi, PBj).
For instance, if {Zn, n ≥ 1} is a second-order Markov chain with two states H

and T , C = {HHTHH,HHHHT}, and P = HH, then

W21 = W (HHHHT, HHTHH) =
1

pHH|T
+ 0 + 0,

and
W22 = W (HHHHT, HHHHT ) = 0 + 0 +

1
pHH|HpHH|HpHH|T

.

6. Examples: Expected Number of Occurrences

Let {Zn, n ≥ 1} be a sequence of Bernoulli trials with P(Zn = H) = p > 0 and
P(Zn = T ) = q > 0. Let C = {HHTHH,HHHHT}, and P = HH. Then the
matrix Wij , 1 ≤ i, j ≤ 2 is equal to




1
p2q

0

1
q

1
p2q


 .
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Solving (1) we find that

y∗1 =
p2q − p4q2

1 + p2q − p4q
, y∗2 =

p2q(1− p2 + p2q)
(1 + p2q − p4q)

.

Finally, by Theorem 1 we find that

E(N ) =
1 + p2q − p4q

2p2q − p4q
.

Remark 2. The nature of the problem is such that making {Zn, n ≥ 1} a Markov
chain does not really complicate the problem. Since every gambler watches the
game for l rounds first they know how to bet in a fair fashion even if we have
Markov dependent sequence with an dependence order less than l. The exactly
same algorithm works in this case.

For example, let now {Zn, n ≥ 1} be a second-order two-state Markov chain,
and again C = {HHTHH,HHHHT}, P = HH. The profit matrix then is




1
(1− pHH|H)pHT |HpTH|H

0

1
1− pHHH

1
(pHH|H)2(1− pHH|H)


 .

Solving system (1) and applying Theorem 1 we obtain that

E(N ) =
1 + (1− pHH|T )2(1 + pHH|H)pHT |HpTH|H

(1− pHH|H)((1− pHT |HpTH|H)(pHH|H)2 + pHT |HpTH|H)
.

Remark 3. Let us now comment on computational difficulties that one can have
with the usage of this approach. The algorithm is consist of three step: first we
form a profit matrix, then we solve a linear system associated with the matrix,
and, finally, we apply formula of Theorem 1. First all, the examples above show us
that the imposing Markov dependence structure on a stochastic sequence does not
complicate calculations—unconditional probabilities should be simply substituted
by conditional ones. Also making the alphabet bigger is not an issue. A computa-
tional difficulty can be caused by the size of the profit matrix. The size of Wij is
always K×K, where K is the number of stopping patterns in list C. If the number
of patterns in C is huge it will be not easy to use the Theorem 1. Fortunately,
the intended application of this method—test of randomness—does not require a
long list of stopping patterns. Also we do not think that any other method can
lead to smaller matrices. It is is not clear for the moment how this problem can be
solved by an appropriate Markov chain embedding. But most likely the number of
needed states will be a number of all the prefixes of the compound pattern C. As a
consequence, the size of the transition matrix of the embedded Markov chain will
be larger than K ×K, and it will be significantly larger if the number of patterns,
K, is much smaller than the average length of patterns in C.

7. Generating Function of N
When the martingale method of gambling teams has been already developed for

the expected value, the transition to the generating function is relatively easy. All
the needed ideas have been introduced. We will use the same key martingale, but
now we play a bit with the amount of initial bets.
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Again the gambler from j-th teams first observes l consecutive trials. If he does
not see P he leaves the game without playing. If it is P he bets yjα

k dollars
on Bj where k is a number of overlapping occurrences of P till this moment, and
0 < α < 1. Since the size of the bet is fully determined by the previous history of the
process, the total net gain of the casino, Xn, forms a martingale. Let αNyjWij(α)
be total winnings of the j-team when game is ended with the pattern PBi. Then
the stopped martingale Xτ is given by

Xτ =
K∑

j=1

yjα
1− αN

1− α

− αN




Q∑

i=1

K∑

j=1

yj(Wij(α) + 1)Iτ=τi
+

K∑

i=Q+1

K∑

j=1

yjWij(α)Iτ=τi


 .

As before the key property of Wij(α) is that it is not a random variable. The
explicit algorithm that allows us to compute Wij(α) will be presented a bit later.
Now, let us choose weights (y1, ..., yK) in such a way that

(2)

(W11(α) + 1)y1 + ... + (W1K(α) + 1)yK = 1
... ...
(WQ1(α) + 1)y1 + ... + (WQK(α) + 1)yK = 1
WQ+11(α)y1 + ... + WQ+1K(α)yK = 1
... ...
WK1(α)y1 + ... + WKK(α)yK = 1

With this choice of the weights denoted by (y∗1 , ..., y∗K) we get the following simple
expression for the stopped martingale:

Xτ =
K∑

j=1

y∗j α
1− αN

1− α
− αN .

After the routine application of the Optional-Stopping Theorem and a bit of algebra
we get the following result.

Theorem 2. If (y∗1 , ..., y∗K) solves system (2), then

EαN = 1− 1
α

1−α (y∗1 + ... + y∗K) + 1
,

8. Computation of Wij(α)

One can derive an explicit formula for matrix Wij(α). Consider two patterns
B = b1b2...bN and C = c1c2...cM . Let us introduce the following measure of
overlapping of B and C:

W (B, C)(α) =
min(N,M)−l∑

k=1

δk(B, C)α−nk ,

where δk(·, ·) is the same function defined earlier, and nk is the number of occur-
rences of P in the suffix bN−k−l+2...bN . The matrix Wij(α) is given by

Wij(α) = W (PBi, PBj)(α).
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9. Examples: Generating Function

Consider a sequence of Bernoulli trials {Zn, n ≥ 1} with P(Zn = H) = p > 0
and P(Zn = T ) = q > 0. Let C = {HHTHH, HHHHT}, and P = HH. Then
the matrix Wij(α), 1 ≤ i, j ≤ 2 is given by




1
αp2q

0

1
q

1
α2p2q




Theorem 2 then tells us that

E(αN ) =
α2p2(−1 + α(−1 + αp2))q

−1 + α + αp2(−1 + α2(−1 + p2))q
.

One can check also that
∂E(αN )

∂α

∣∣∣
α=1

=
1 + p2q − p4q

2p2q − p4q
,

the expected value of N .
Let us give another example. Again we consider Bernoulli trials {Zn, n ≥ 1}

with P(Zn = H) = p > 0 and P(Zn = T ) = q > 0. Let P = HH, but now
C = {HHH, HHT}. The matrix Wij(α), 1 ≤ i, j ≤ 2 is given by




1
αp

0

0
1
q


 ,

y∗1 = p2α/(1 + pα), y∗2 = 1 − p. After a bit arithmetics the formula of Theorem 2
gives us

E(αN ) = α(1− p) + pα2.

Now, this answer can be easily obtained without any help of Theorem 2. Indeed,
as soon as we have run HH we stop the next round. Therefore, N can take
only two values: 1 when we are stopped by HHT , or 2 if we stopped because of
HHH. Finally, for instance, using Li (1980) one can obtain P(τ = τ1) = p and
P(τ = τ2) = 1− p.

10. Application: Test of Randomness

Most standard generators of random numbers are really pseudo-random. Var-
ious deterministic procedures are employed to produce “random” sequences. As
a consequence, some patterning can be observed for such generators. Therefore,
testing based on occurrence of words (patterns) seems to be a natural idea (see
Rukhin (2001, 2002)).

In particular, in Rukhin (2001, p.118) a number of occurrences of a given (nonover-
lapping with itself or nonperiodic) word in a random text is suggested as a test
statistic for randomness. Depending on the relationship between the length of the
word and the length of the random text, a Poisson limiting distribution or normal
can be used to make inference.

Clearly, that random variable N can be also employed to design a similar test of
randomness. The difference between our test and one suggested by Rukhin (2001)
that here we stop at random time τ . But it is not bad. The stopping time is
defined by collection C the choice of which is completely up to us. As a result,
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we can control the average stopping time. In general, to increase E(τ) we need
longer patterns in C and a smaller K, cardinality of C. In return, we have an exact
distribution, and we are not restricted to nonperiodic words. Also the previous
section demonstrates that C provides a good control over the distribution of N as
well.

Let us consider a four-letter alphabet {1, 2, 3, 4} with the uniform distribution
over it. We assume that letters are drawn in an independent way. The testing word
is P = 111, and

C = {11111, 11122, 11133, 11144}.
In this case, E(τ) = 287.15789, by Theorem 1 E(N ) = 4.42105, and Theorem 2
gives us

E(αN ) =
12α + 3α2 + 4α2

64− 36a− 9a2
.

Taylor series of this rational function gives us needed probabilities. Results of
100000 simulations together with the exact probabilities are presented in Table 1.
The simulated expected number of occurrences is 4.42671. We can see that there
is a good agreement between the exact and simulated probabilities. Thus we can
claim that Splus function sample passed this test of randomness.

exact simulated
P(N = 1) .18750 .18788
P(N = 2) .15234 .15019
P(N = 3) .17456 .17714
P(N = 4) .11961 .11831
P(N = 5) .09183 .09156
P(N = 6) .06848 .06797
P(N = 7) .05143 .05125
P(N = 8) .03856 .03909
P(N = 9) .02892 .02891
P(N = 10) .02169 .02255
P(N = 11) .01627 .01629
P(N > 11) .04879 .04886

Table 1. Test of Randomness
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