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Abstract. Let {X, Xi}i≥1 be i.i.d. bounded from below continuous random

variables, E|X| < ∞, EX2 = ∞, and {bn}n≥1 be a sequence of increasing
positive numbers. When X belongs to the Feller class and bn is such that

nP
�
X > bn

�→∞ and E(XIX>bn )
.

E(X2IX≤bn ) = o((ln n)−1), a functional

CLT for the truncated sums Sn =
Pn

i=1 XiIXi≤bn is proved.
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1. Introduction

Assume that we observe sequence of i.i.d. positive random variables with a
finite mean but an infinite variance. By the Kolmogorov’s strong law of large
numbers the sample mean converges to the true mean with probability 1. But
the classic Central Limit Theorem (CLT) is not valid any longer. What we can
do is to exclude the observations that exceed some given deterministic level. If
the truncating level increases to infinity as sample size is getting larger then the
sample mean of truncated observations is still a.s. consistent estimator of the true
mean. But in this case one also can show that under quite general conditions on
the distribution and truncating level we have an analog of the classic CLT. In fact,
the proof of this result is relatively simple. It only requires an application of some
standard results from the limit theory of sequences of series of independent random
variables, because for any fixed sample size we have just a sum of i.i.d. bounded
random variables.

However, the functional CLT for truncated sums presents a more challenging
problem due to the fact that the sequence of truncated sums is not a well-behaved
process. Perhaps this is one of the reasons why there are not many functional
limit theorems proven for truncated (or trimmed) sums. The list of related results
is Ould-Rois (1991), Kasahara (1993), Egorov and Pozdnyakov (1997) and Pozd-
nyakov (2003). But exactly this kind of limit theorem one needs to use, for example,
in the sequential analysis (Sen (1981)) which means that the presented result could
be also useful in applications.

The method that we use here is as follows. For each n we present the truncated
sum as a sum of two terms. The first terms are small in some appropriate sense,
while the sequence of the second terms forms a martingale. The functional CLT for
the martingale is proved using a scheme that was proposed in Pozdnyakov (2003)
for the case of truncated sums of symmetric random variables.
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Another interesting aspect of this result is that the considered distributions are
not symmetric. If truncating (or trimming) is based on the absolute values of
random variables then the symmetry of the distribution plays an important role.
Many results are obtained under the symmetry assumption. See, for example,
Pruitt (1988), Griffin and Pruitt (1987), Hahn and Kuelbs (1989), Haeusler and
Mason (1990), Hahn et al (1991), Cuzick et al (1995) and Griffin and Qazi (2002).
However, if the distribution is not symmetric many problems remain open. We
believe that the martingale approach employed here could be useful in solving those
open problems.

2. Main Result

Let {X, Xi}i≥1 be i.i.d random variables with an continuous distribution and
infinite second moment. Assume that

(1) EX = 0,

and

(2) X > −M a.s.

where M > 0. Without loss of generality we can shift random variables by their
expected values. This will simplify the notation.

Assume also that the random variable X belongs to the Feller class, i.e.

(3) lim sup
t→∞

t2P(X > t)
E

(
X2IX≤t

) < ∞.

Let {bn}n≥1 be a sequence of positive numbers such that bn ↑ ∞. The truncated
sum Sn we will consider are define by

(4) Sn =
n∑

i=1

XiIXi≤bn .

The main result is a functional CLT for Sn. Let dn be the smallest (negative)
number that

(5) E
(
XIdn≤X≤bn

)
= 0,

En = {x : dn ≤ x ≤ bn}, and An = nE(X2IX∈En). Since the distribution is
continuous the number always exists and dn ↓ as n → ∞. Let Sn(t) be a random
element of C[0, 1] obtained by linear interpolation between the points

(
0, 0

)
,
( A1

An
,
S1 −ES1√

An

)
, ...,

(
1,

Sn −ESn√
An

)
.

Theorem 1. If the random variable X satisfies conditions (1), (2) and (3), the
average number of the excluded variables

(6) nP
(
X > bn

) →∞,

bn grows fast enough to guarantee that the ratio

(7)
E(XIX>bn)
E(X2IX≤bn)

= o((lnn)−1),

and

(8)
An

An+1
→ 1,



FUNCTIONAL CLT FOR TRUNCATED SUMS 3

then

(9) Sn(t) −→d W

in the sense C[0, 1] with uniform metric ρ where W is standard Brownian motion
on [0, 1].

3. Proof of the Main Result

First let us note that for a fixed n the truncated sums Sn is a sum of independent
identically distributed bounded random variables. Thus, to establish a central limit
theorem for Sn we just need to check standard conditions say as it is given by Petrov
(1995, p. 113). Let

(10) Bn =
n∑

j=1

E
(
X2

j IXj≤bn

)
= nE

(
X2IX≤bn

)
.

The key observation is that conditions (3) and (6) imply that

bn = o(Bn).

Keeping this in mind one can prove the following result.

Theorem 2. Assume the random variable X and sequence bn satisfy conditions
(2), (3), and (6).

Then
Sn − nE

(
XIX≤bn

)
√

Bn

−→d N (0, 1).

This gives us a base to believe that the functional CLT is also valid under similar
conditions. However, in the case of functional limit theorem we have to think about
sequence {Sn}n≥1 as a process. Due to the truncation {Sn}n≥1 is not a process
with independent increments. It is also not monotone. As a consequence, many
needed tools (for instance, Kolmogorov’s inequality) are not available. The main
trick is to present process {Sn} as a sum of two well-behaved processes.

More specifically, denote Rn =
∑n

j=1 XjIXj<dn , and Mn =
∑n

j=1 XjIXj∈En , so
Sn = Rn + Mn. First we show that the Mn is a martingale with respect to a
certain σ-field. Using this fact we establish then a weak invariance principle for
Mn. Secondly, we show that Rn, in a sense, can be ignored.

Lemma 1. Let Fn = σ
(
X1IX1∈En , ..., XnIXn∈En

)
. The sequence {Mn,Fn}n>0

with M0 = 0 and F0 = {Ω, ∅} is a martingale, and its predictable quadratic variation
〈M〉n =

∑n
i=1 E

((
Mi −Mi−1

)2|Fi−1

)
is given by

(11) 〈M〉n =
n∑

i=1

E
(
X2IX∈Ei

)
+

n∑

i=2

E
(
X2IX∈Ei\Ei−1

)

P
(
X /∈ Ei−1

)
i−1∑

j=1

IXj /∈Ei−1 .

Proof. It is clear that {Fn} is a filtration, and Mn is Fn-measurable. Now note
that

Mn+1 −Mn = Xn+1IXn+1∈En+1 +
n∑

j=1

XjIXj∈En+1\En
.

Using Lemmas 1, 2 and 3 of Pozdnyakov (2003) one can show then that

E
(
Xn+1IXn+1∈En+1

∣∣Fn

)
= E

(
Xn+1IXn+1∈En+1

)
= 0,
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and for j < n

E
(
XiIXi∈En+1\En

∣∣Fn

)
=

E
(
XiIXi∈En+1\En

)

P
(
Xi /∈ En

) IXi /∈En
= 0.

This proves that {Mn,Fn}n>0 is a martingale. As to the predictable quadratic
variation, it is not difficult to find that

E
((

Mi −Mi−1

)2|Fi−1

)
= E

(
X2

i IXi∈Ei

)
+

i−1∑

j=1

E
(
X2

j IXj∈Ei\Ei−1

)

P
(
Xj /∈ Ei−1

) IXj /∈Ei−1

= E
(
X2IX∈Ei

)
+

E
(
X2IX∈Ei\Ei−1

)

P
(
X /∈ Ei−1

)
i−1∑

j=1

IXj /∈Ei−1 .

This finishes the proof of the lemma. ¤

Now we are ready to formulate the functional CLT for Mn The variance of the
martingale Mn is An. It is clear that

An = Var(Mn) = E〈M〉n =
n∑

j=1

E
(
X2

j IXj∈En

)
= nE(X2IX∈En

) ∼ Bn.

Let Mn(t) be a random element of C[0, 1] obtained by linear interpolation between
the points (0, 0), (A1/An, M1/

√
An),..., (1,Mn/

√
An). More specifically,

Mn(t) =
1√
An

[
Mi +

tAn −Ai

(Ai+1 −Ai)
(Mi+1 −Mi)

]
,

Ai

An
≤ t <

Ai+1

An
.

Brown (1971) showed that in order to establish the functional CLT for truncated
sum Sn we need to verify the Lindeberg condition

(12) for all ε > 0,
1

An

n∑

i=1

E
(
(Mi −Mi−1)2I|Mi−Mi−1|>ε

√
An

) → 0, as n →∞

and the weak law of large numbers for the predictable quadratic variation 〈M〉n
(13)

〈M〉n
An

−→P 1.

If conditions (12) and (13) hold, then

(14) Mn(t) −→d W.

The proof of the next result employs an approach similar to the one used in
Pozdnyakov (2003) for symmetric random variables. The random variables Xn are
not symmetric here, but our special choice of truncating levels bn and dn allows us
to use the same scheme with some obvious adjustments, so we omit the proof.

Proposition 1. If the random variable X satisfies conditions (1), (2), (3), (6) and
(8) then conditions (12) and (13) hold, and, as a consequence, Mn(t) −→d W in the
sense (C[0, 1], ρ).

Note that
Sn −ESn = Rn −ERn + Mn.

Thus, if we show that |Rn−ERn| are small, then we can substitute Mn in Proposi-
tion 1 by Sn to get Theorem 1. More specifically, it would be sufficient if we prove
the following lemma.
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Lemma 2. Under the conditions of Theorem 1

(15) max
i≤n

|Ri −ERi|√
An

−→P 0.

Proof. First let us show that the variance of Rn is small, indeed. Just note that

Var(Rn) = nVar(XIX<dn)

≤ nE(X2IX<dn
)

≤ nME(|X|IX<dn
)

= nME(XIX>bn).

Therefore,

(16) Var
(

Rn√
Bn

)
= O

(
E(XIX>bn

)
E(X2IX≤bn)

)
,

which goes to 0 as bn gets larger. This is enough to show that

|Rn −ERn|√
Bn

−→P 0.

But we need a bit more. To prove (15) we will show first that under the conditions
of Theorem 1 we have almost sure convergence for Rn, i.e with probability one

(17)
|Rn −ERn|√

Bn

−→ 0.

This could be proved via the straightforward application of the Bernstein inequal-
ities (see, for example, Petrov (1995, p. 57). Since |XIX<dn − EXIX<dn | is a.s.
bounded by 2M we get that for any ε > 0 we have the following estimate:

P(|Rn −ERn| > ε
√

Bn) ≤ 2max{e−ε2Bn/(4Var(Rn)), e−ε
√

Bn/(8M)}.
If sequence {bn} satisfies the condition (7), equation (16) tells us that

e−ε2Bn/(4Var(Rn)) = o

(
1
n2

)
.

On the other hand,
n

Bn
→ 0.

Therefore, we get that
∞∑

n=1

P(|Rn −ERn| > ε
√

Bn) < ∞.

The Borel-Cantelli lemma gives us a.s. convergence. It easy to see that (17) implies
that

(18) max
i≤n

|Ri −ERi|√
Bn

−→ 0 a.s.

Indeed, for each ε > 0 and almost all ω one can find n1 = n1(ε, ω) such that for all
n > n1

|Rn −ERn|√
Bn

< ε.
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Since Bn ↑ ∞ there exists n2 = n2(ε, ω) > n1 that for all n > n2

maxi<n1 |Ri −ERi|√
Bn

< ε,

and this proves (18). Since Bn ∼ An we finally get (15). ¤

4. Concluding Remarks

As we can see moment condition (1) is not needed for the ordinary CLT, so it
is possible that this condition could be also dropped in the case of the functional
CLT. But at the moment we do not now how to do it. Nevertheless, the class
of distributions that fit the description given in Theorem 1 is quite large. For
example, positive random variables that belongs to the domain of attraction of a
stable distribution with 1 < α < 2 are in the considered class. These distributions
are often used to model situations when there are outliers in data. So, the functional
CLT presented here could be potentially used to design sequential procedures for
continuous monitoring of such data.

Conditions (6) and (7) essentially determine the rate of growth of the sequence
bn. While (6) is required even for the ordinary CLT, condition (7) is more technical.
We need it to produce an estimate related to Rn – not a nice process to work with.
But they are not very restrictive in practical applications. Again, let us consider
the case when X belongs to the domain of attraction of a stable law with 1 < α < 2,
i.e. there exists a slowly varying function L(x) such that

E(X2, X < x) = x2−αL(x),

P(X > x) ∼ 2− α

α
x−αL(x),

and

E(X,X > x) ∼ 2− α

α− 1
x1−αL(x),

as x → +∞. Let bn = cnγ . What γ do we need to satisfy conditions of Theorem 1?
Condition (6) (the one that we need even for the ordinary CLT) produces γ < 1/α.
Condition (7) requires γ > 0 which is not really a restriction for the particular
choice of bn. We need this anyway to get an increasing sequence. If bn = c(lnn)γ ,
then we need nothing to get (6), and we need γ > 1 to have (7).

Finally, let us note that condition (8) looks technical, but, in fact, it is impossible
to omit this one. Indeed, since the variance An goes to infinity faster than n, by
choosing bn that changes by occasional jumps we can easily make Sn(t) to be very
different from the Brownian motion.
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Appendix A: Proof of the Theorem 2

Let

Xnj =
XjIXj≤bn

−E
(
XIX≤bn

)
√

Bn

.

According to Petrov (1995, p. 113) to establish the CLT for this sequence of series
of random variables we need to check that for every fixed ε > 0 the following
conditions hold

n∑

j=1

P
(|Xnj | ≥ ε

) →0,

n∑

j=1

Var
(
XnjI|Xnj |<ε

) →1,

n∑

j=1

E
(
XnjI|Xnj |<ε

) →0.

First note that conditions (3) and (6) imply that

bn = o(Bn).

Therefore, for all sufficiently large n we have that |Xjn| < ε with probability 1 and,
as consequence,

n∑

j=1

P
(|Xnj | ≥ ε

)
= nP

(|XIX≤bn −E
(
XIX≤bn

)| > εBn

)
= 0,

n∑

j=1

Var
(
XnjI|Xnj |<ε

)
=

n∑

j=1

Var
(
Xnj

)
=

Var(Sn)
Bn

,

and
n∑

j=1

E
(
XnjI|Xnj |<ε

)
=

n∑

j=1

E
(
Xnj

)
= 0.

But since EX2 = ∞ we have that

Var(Sn)
Bn

→ 1.

Appendix B: Proof of the Proposition 1

Let us first to show that

(19) E
( 〈M〉n −An

An

)2

→ 0,

then, as consequence, we get trivially (13). If we define αi by

αi =
E

(
X2IX∈Ei+1\Ei

)

P(X /∈ Ei)
,
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then the predictable quadratic variation is given by

〈M〉n = E
(
X2

1 IX1∈E1

)
+E

(
X2

2 IX2∈E2

)
+... +E

(
X2

nIXn∈En

)
+α1IX1 /∈E1

+α2IX1 /∈E2 +α2IX2 /∈E2

+...
+αn−1IX1 /∈En−1 +αn−1IX2 /∈En−1 +... +0.

Therefore, the quadratic variation can be viewed as a sum of independent random
variables. Specifically,

〈M〉n =
n∑

i=1

E
(
X2

i IXi∈Ei

)
+

n−1∑

i=1

Yin,

where

Yin =αiIXi /∈Ei
+ ... + αn−1IXi /∈En−1

=αiIXi∈Ei+1\Ei
+ (αi + αi+1)IXi∈Ei+2\Ei+1 + ... + (αi + ... + αn−1)IXi /∈En−1 .

Now note that
EYin = E(X2IX∈En\Ei

)
and

Yin ≤ αi + ... + αn−1 a.s.

These two observations lead us to the following inequality:

Var(Yin) ≤ E[Yin]2 ≤ (αi + ... + αn−1)EYin.

Since

αi + ... + αn−1 =
E

(
X2IX∈Ei+1\Ei

)

P(X /∈ Ei)
+ ... +

E
(
X2IX∈En\En−1

)

P(X /∈ En−1)

≤E
(
X2IX∈Ei+1\Ei

)

P(X /∈ En−1)
+ ... +

E
(
X2IX∈En\En−1

)

P(X /∈ En−1)

=
E(X2IX∈En\Ei

)
P(X /∈ En−1)

≤E(X2IX∈En\Ei
)

P(X > bn)

=
EYin

P(X > bn)
,

we get that

Var(Yin) ≤ [EYin]2

P(X > bn)
≤ A2

n

n2P(X > bn)
.

Thus, finally we get

E
( 〈M〉n −An

An

)2

=
Var(

∑n−1
i=1 Yin)

A2
n

≤ 1
A2

n

nA2
n

n2P(X > bn)
=

1
nP(X > bn)

→ 0.

Now let us show that the martingale Mn satisfies Lindenberg condition (12). By
the Cauchy inequality we have

E
(
(Mi −Mi−1)2I|Mi−Mi−1|>ε

√
An

)

≤ (
E(Mi −Mi−1)4

)1/2(
P

(|Mi −Mi−1| > ε
√

An

))1/2
.
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First note that by the Chebyshev inequality we have

P
(|Mi −Mi−1| > ε

√
An

) ≤ Ai −Ai−1

ε2An
.

Now let us estimate E(Mi −Mi−1)4. To do this let us first present the martingale
difference Mi −Mi−1 as a sum of independent random variables. Specifically, the
martingale difference can be viewed in the following way:

Mi −Mi−1 = ξ1 + ... + ξi−1 + ξi,

where ξi = XiIXi∈Ei
and ξj = XjIXj∈Ei\Ei−1 for j = 1, 2, ..., i − 1. Note that

Eξj = 0 for all j = 1, .., i, therefore, we get that

E(Mi −Mi−1)4 =
i∑

j=1

Eξ4
j + 6

∑

1≤j<k≤i

Eξ2
j Eξ2

k

≤
i∑

j=1

Eξ4
j + 3




i∑

j=1

Eξ2
j




2

Since for all sufficiently large n

ξ2
j ≤ b2

i ≤ b2
n for all 1 ≤ j ≤ i ≤ n

we find that

E(Mi −Mi−1)4 ≤ b2
n(Ai −Ai−1) + 3(Ai −Ai−1)2.

Hence, we have that

E
(
(Mi −Mi−1)2I|Mi−Mi−1|>ε

√
An

) ≤
√

b2
n + 3(Ai −Ai−1)(Ai −Ai−1)

ε
√

An

≤bn(Ai −Ai−1)
ε
√

An

+
2(Ai −Ai−1)3/2

ε
√

An

.

Thus, we get that

1
An

n∑

i=1

E
(
(Mi −Mi−1)2I|Mi−Mi−1|>ε

√
An

) ≤

≤ 1
An

n∑

i=1

bn(Ai −Ai−1)
ε
√

An

+
2

An

n∑

i=1

(Ai −Ai−1)3/2

ε
√

An

≤ bn

εA
3/2
n

n∑

i=1

(Ai −Ai−1) +
2

εA
3/2
n

n∑

i=1

(Ai −Ai−1)3/2

≤ bn

εA
1/2
n

+
2

εA
3/2
n

n∑

i=1

(Ai −Ai−1)3/2.

Because of (3) and (6) we have

bn√
An

∼ bn√
Bn

= O

(
1√

nP(|X| > bn)

)
→ 0
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as n →∞, so the first term goes to zero. Finally, it is easy to show that

1

A
3/2
n

n∑

i=1

(Ai −Ai−1)3/2 ≤
(

maxi≤n Ai −Ai−1

An

)1/2

→ 0,

if An/An+1 → 1. This finishes the proof of the proposition.


