• **Instructor**
 Vladimir Pozdnyakov
 Office: AUST 324
 Email: Vladimir.Pozdnyakov@uconn.edu
 Office Hours: Tue/Thurs 12:30-1:30PM, AUST 324

• **Lectures**
 Tue/Thurs 11-12:15PM, AUST 313

• **Class Web Page**
 http://merlot.stat.uconn.edu/~boba/stat6894/

• **Text**
 A Probability Path
 Sidney I. Resnick

• **Syllabus**
 - **Characteristic Functions**: Characteristic Functions: Definition and Basic Properties; Characteristic Function of Normal Distribution; Bochner’s Theorem, Polya’s Theorem, and Characteristic Functions of Lattice Distributions; Inversion Formula; Uniqueness Theorem, Inversion Formula for Z-valued RVs, Inversion Formula for Integrable CFs; Moments of Distributions and Smoothness of CFs; Smoothness of CFs and Moments of Distributions; Characteristic Function of Random Vectors; Multivariate Normal Distribution.
 - **Convergence Concepts and Weak Convergence**: Different Types of Convergence, the Iff Condition for a.s. Convergence; Convergence Graph Theorem; Uniform Convergence to a Continuous cdf; Weak Convergence of Probability Measures, Quantile Function Lemma; Skorohod’s Theorem; Mapping Theorem, Uniform Integrability and Convergence in Distribution Proposition; Portmanteau Theorem; Slutsky’s Theorem; Helly’s selection Theorem; Relatively Compact Family of Probability Measures, Prokhorov’s theorem; Continuity Theorem; Weak Laws of Large Numbers, Poisson’s Theorem, Central Limit Theorem; Lindeberg-Feller Theorem, Lyapunov Theorem; Cauchy Criterion for a.s. Convergence; Kolmogorov’s Inequality; Two-Series and Three-Series Theorems; Toeplitz Lemma, Kronecker’s Lemma; Strong LLN for I.I.D. Random Variables.
Gambling Theorem, Stopped Martingale Theorem, Doob’s Optional Stopping Theorem; Doob’s Upcrossing Lemma, Doob’s Convergence Theorem; L_2-Bounded Martingale Convergence, Doob’s Decomposition; UI Martingale Convergence, Levy’s Convergence Theorem; Doob’s Submartingale Inequality, Doob’s L_p Maximal Inequality.

• Exam

 – Midterm exam
 March 24, 11-12:15PM
 – Final exam
 TBA

• Grades

 – grades are based on the following weighed sum: homework (25%) + midterm (25%) + final exam (50%)
 – the final exam is cumulative
 – there will be no make-up exams