Chapter 5. Minimax Analysis

- The Minimax Rule

Let

\[\mathcal{D}^* = \{ \text{all randomized decision rules } \delta^* : \quad R(\theta, \delta^*) < \infty \text{ for all } \theta \in \Theta \}. \]

A decision rule \(\delta_0 \) is a \textbf{minimax decision rule} if it minimizes \(\sup_{\theta \in \Theta} R(\theta, \delta) \) among all decision rules in \(\mathcal{D}^* \), i.e., if

\[
\sup_{\theta \in \Theta} R(\theta, \delta_0) = \inf_{\delta \in \mathcal{D}^*} \sup_{\theta \in \Theta} R(\theta, \delta^*).
\]

The quantity, \(\sup_{\theta \in \Theta} R(\theta, \delta_0) \), is called the \textbf{minimax value}.
• Admissibility of the Minimax Rule

Theorem 1: If δ_0 is a unique minimax rule, then δ_0 is admissible.

Proof: Suppose δ_0 is not admissible. Then, there exists δ_1 such that

$$R(\theta, \delta_1) \leq R(\theta, \delta_0) \text{ for all } \theta \in \Theta$$

and

$$R(\theta, \delta_1) < R(\theta, \delta_0)$$

for some θ. It follows that

$$\sup_{\theta \in \Theta} R(\theta, \delta_1) \leq \sup_{\theta \in \Theta} R(\theta, \delta_0),$$

which implies that δ_1 is also minimax. This contradicts the uniqueness of the minimax rule.

\[\square \]
• Determination of Minimax Rules

Theorem 2: If δ_0 is admissible and has a constant risk function over Θ, then δ_0 is minimax.

Proof: If δ_0 is not minimax, then there exists δ_1 such that

$$\sup_{\theta \in \Theta} R(\theta, \delta_1) < \sup_{\theta \in \Theta} R(\theta, \delta_0).$$

Since $R(\theta, \delta_0) = c$ for some constant c, then

$$R(\theta, \delta_1) < c = R(\theta, \delta_0)$$

for all $\theta \in \Theta$. This contradicts the admissibility of δ_0.

Let δ^π be the Bayes rule with respect to π. Then the Bayes risk is

$$r(\pi) = r(\pi, \delta^\pi) = \int_{\Theta} R(\theta, \delta^\pi)dF^\pi(\theta).$$

Definition: A prior π is said to be least favorable if for all prior distribution π',

$$r(\pi) = r(\pi, \delta^\pi) \geq r(\pi') = r(\pi', \delta^{\pi'}).$$
Theorem 3: Suppose π is a distribution on Θ such that

$$r(\pi, \delta^\pi) = \int_\Theta R(\theta, \delta^\pi) dF^\pi(\theta) = \sup_{\theta \in \Theta} R(\theta, \delta^\pi).$$

Then

1. δ^π is minimax.
2. If δ^π is the unique Bayes rule with respect to π, then it is the unique minimax rule.
3. π is least favorable.

Note: The condition

$$r(\pi, \delta^\pi) = \int_\Theta R(\theta, \delta^\pi) dF^\pi(\theta) = \sup_{\theta \in \Theta} R(\theta, \delta^\pi)$$

says that the average of $R(\theta, \delta^\pi)$ equals to its maximum. This will happen when the risk function is constant or when π assigns probability 1 to the set on which the risk function taken on its maximum.
Proof: (1) Let δ be any other decision rule. Then

$$\sup_{\theta \in \Theta} R(\theta, \delta) \geq \int_{\Theta} R(\theta, \delta) dF^\pi(\theta)$$

$$\geq \int_{\Theta} R(\theta, \delta^\pi) dF^\pi(\theta) = r(\pi, \delta^\pi)$$

$$= \sup_{\theta \in \Theta} R(\theta, \delta^\pi).$$

Thus, δ^π is minimax.

The proof of (2) is analogous to that of (1) with the replacement of "\geq" by "$>$".

(3) Let π' be any other prior distribution on Θ. Then

$$r(\pi', \delta^\pi') = \int_{\Theta} R(\theta, \delta^\pi') dF^{\pi'}(\theta)$$

$$\leq \int_{\Theta} R(\theta, \delta^\pi) dF^{\pi'}(\theta) \ (\delta^\pi' \text{ is Bayes w.r.t. } \pi')$$

$$\leq \sup_{\theta \in \Theta} R(\theta, \delta^\pi) = r(\pi, \delta^\pi).$$

This completes the proof.

\[\square\]
Corollary 1 (Theorem 17 of the textbook): If
\(\delta_0^* \in D^* \) is Bayes with respect to \(\pi_0 \in \Theta^* \), where \(\Theta^* \) denotes the set of all \(\pi \) for which \(L(\pi, a) < \infty \) for all \(a \in A \), and

\[
R(\theta, \delta_0^*) \leq r(\pi_0, \delta_0^*)
\]

for all \(\theta \in \Theta \), then \(\delta^* \) is minimax and \(\pi_0 \) is least favorable.

Proof: If

\[
R(\theta, \delta_0^*) \leq r(\pi_0, \delta_0^*),
\]

then

\[
r(\pi_0, \delta_0^*) = \sup_{\theta \in \Theta} R(\theta, \delta_0^*).
\]

Thus, Corollary 1 directly follows from Theorem 3. \(\square \)
Corollary 2 (Equalizer Rules): If a Bayes rule δ^π has constant risk, then it is minimax.

Corollary 3 (Sub-Equalizer Rules): Let

$$W_\pi = \{\theta : R(\theta, \delta^\pi) = \sup_{\theta' \in \Theta} R(\theta, \delta^\pi)\}.$$

If $P^\pi(W_\pi) = 1$, then δ^π is minimax.

The proofs of the above two corollaries are straightforward.

Let π_n be a sequence of prior distributions and also let δ_n is the Bayes rule with respect to π_n. Write

$$r_n = r(\pi_n, \delta_n) = \int_{\Theta} R(\theta, \delta_n) dF^{\pi_n}(\theta).$$

Assume

$$r = \lim_{n \to \infty} r_n < \infty.$$

Definition: A sequence π_n is said to be least favorable if for every π,

$$r(\pi, \delta_\pi) \leq r.$$
Theorem 4: Suppose \(\pi_n \) is a sequence of prior distributions with Bayes risk \(r_n \to r \), and \(\delta \) is a decision rule such that

\[
\sup_{\theta \in \Theta} R(\theta, \delta) \leq r.
\]

Then

(1) \(\delta \) is minimax.

(2) the sequence \(\pi_n \) is least favorable if the equality holds.

Proof: (1) Suppose \(\delta' \) is any other decision rule. Then

\[
\sup_{\theta \in \Theta} R(\theta, \delta') \geq \int_{\Theta} R(\theta, \delta')dF^{\pi_n}(\theta) \geq r_n
\]

for any \(n \). Thus,

\[
\sup_{\theta \in \Theta} R(\theta, \delta') \geq \lim_{n \to \infty} r_n = r \geq \sup_{\theta \in \Theta} R(\theta, \delta),
\]

which implies that \(\delta \) is minimax.

(2) Let \(\pi \) denote any prior distribution. Then

\[
r_\pi = r(\pi, \delta_\pi) = \int_{\Theta} R(\theta, \delta_\pi)dF^\pi(\theta)
\]

\[
\leq \int_{\Theta} R(\theta, \delta)dF^\pi(\theta) \leq \sup_{\theta \in \Theta} R(\theta, \delta) = r.
\]

Hence, \(\{\pi_n\} \) is least favorable. \(\square \)
Example 1: Suppose that $X \sim N(\theta, 1)$ and that it is desired to estimate θ under squared-error loss. We seek to prove that the usual estimator, $\delta_0(x) = x$, is minimax.

Solution:

Method 1: By the Bylth’s theorem, we have shown that δ_0 is admissible. Since

$$R(\theta, \delta_0) = E_\theta[(\theta - \delta_0)^2] = 1,$$

which is constant. Thus, Theorem 2 gives that δ_0 is admissible.

Method 2: Suppose that we cannot apply the Bylth’s theorem. Let $\pi(\theta) = 1$. Then δ_0 is the generalized Bayes rule. Consider a sequence of proper prior $\pi_n = N(0, n)$. Then,

$$\delta_n = \left(\frac{n}{n + 1}\right) x,$$

and

$$r_n = r(\pi_n, \delta_n) = \int_{-\infty}^{\infty} R(\theta, \delta_n) \pi_n(\theta) d\theta$$

$$= \int_{-\infty}^{\infty} \frac{1}{(n + 1)^2} (n^2 + \theta^2) \pi_n(\theta) d\theta = \frac{n}{n + 1}.$$

14-9
Thus,
\[\lim_{n \to \infty} r_n = 1. \]
Since \(R(\theta, \delta_0) = 1 \), \(\sup_{\theta} R(\theta, \delta_0) = 1 \). Theorem 4 leads to that \(\delta_0 = x \) is minimax and the sequence \(\{N(0, n)\} \) is least favorable. \(\square \)

Example 2: Assume \(X \sim \mathcal{B}(n, \theta) \) is observed, and that it is desired to estimate \(\theta \) under squared-error loss. Then, \(\delta = \frac{x}{n} \) is admissible and it is also UMVUE. Is \(\delta \) minimax?

Solution: How to show that \(\delta = \frac{x}{n} \) is admissible?

To examine whether \(\delta = \frac{x}{n} \) is minimax, we find an equalizer rule of the form \(\delta(x) = ax + b \). Clearly,

\[
R(\theta, \delta) = E_\theta[(aX + b - \theta)^2] \\
= E_\theta[\{a(X - n\theta) + b + (an - 1)\theta\}^2] \\
= a^2 n\theta(1 - \theta) + [b + (an - 1)\theta]^2 \\
= \theta^2[-a^2 n + (an - 1)^2] + \theta[a^2 n + 2b(an - 1)] + b^2.
\]

For the risk to be constant in \(\theta \), we must have

\[-a^2 n + (an - 1)^2 = 0 \]

and

\[a^2 n + 2b(an - 1) = 0. \]
Solving these equations for a and b gives

$$a = (n + \sqrt{n})^{-1} \quad \text{and} \quad b = \frac{\sqrt{n}}{2(n + \sqrt{n})}.$$

Thus,

$$\delta_0(x) = ax + b = \frac{x + \sqrt{n}/2}{n + \sqrt{n}}$$

is an equalizer rule.

To complete the argument, we must show that δ_0 is Bayes. It is easy to see that if $\theta \sim \mathcal{B}e(\alpha, \beta)$, then the Bayes estimator is

$$\frac{x + \alpha}{n + \alpha + \beta}.$$

Hence, the equalizer rule δ_0 is clearly of this form with

$$\alpha = \beta = \frac{\sqrt{n}}{2}.$$

Hence δ_0 is Bayes, and Corollary 2 gives that δ_0 is minimax and the least favorable prior is $\mathcal{B}e(\sqrt{n}/2, \sqrt{n}/2)$. Since δ_0 is δ, then $\delta = x/n$ cannot be minimax.

Straightforward calculation yields

$$R(\theta, \delta_0) = \frac{1}{[4(1 + \sqrt{n})^2]}$$

14-11
and

\[R(\theta, \delta = x/n) = \frac{\theta(1 - \theta)}{n}. \]

From Figure 5.9 on page 375 of the textbook, we can see that the minimax rule compares very favorably with \(\delta(x) = x/n \) for small \(n \) but rather unfavorably for large \(n \).