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Outline of the Presentation

Scan statistics for local change in variance for normal data.

Introduction
Approximations for one dimensional data: population variance is known
Scan statistics for one dimensional data when the variance known.
Multiple window scan for one dimensional data when the variance is
known.
Scan statistics for two dimensional data

Summary and future work.
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Introduction: One dimensional data

Let X1, . . . ,XM be a sequence of iid normal observations with mean µ
and variance σ2, where M is the specified range of the monitoring
process. We are interested in detecting a local upward shift in
variance.
Let 2 ≤ m ≤ M/4, be the size of the sliding window of a segment of
m consecutive observations. We are interested in testing the following
hypotheses:
H0: Xi , 1 ≤ i ≤ M, are iid normal random variables with mean µ and
variance σ20, vs. Ha: Xi , 1 ≤ i ≤ M, are independent normal random
variables with mean µ, the X ′i s have variance σ21 > σ20,
for i ∈ R(a,m) = {a, a+ 1, ...., a+m− 1}, where
1 ≤ a ≤ M −m+ 1 is unknown, and variance σ20 for i /∈ R(a,m).
The restriction m ≤ M/4 is used to emphasize the interest in
detecting a local change in variance.
In the above hypotheses one can always assume that µ = 0. If µ 6= 0,
one can replace the X ′i s with the sequence of recurrent residuals:
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Introduction: One dimensional data

Wi =
(i − 1)Xi −∑i−1

j=1 Xj√
i(i − 1)

, 2 ≤ i ≤ M,

which are iid normal random variables with mean 0 and variance σ20,
under the null hypothesis (Bauer 1978).
When σ20 is known, without loss of generality one can assume σ20 = 1.
A scan statistic for detecting a local change in variance, is defined by:

Sm,M = max{Yr ,m ; 1 ≤ r ≤ M −m+ 1}, (1)

where Yr ,m are the moving sums of squares of the observed data:

Yr ,m =
r+m−1

∑
i=r

X 2i ; 1 ≤ r ≤ M −m+ 1. (2)

Under H0, the random variables Yr ,m , 1 ≤ r ≤ M −m+ 1, are
m-dependent and have a joint multivariate chi-square distribution and
marginal chi-square distributions with m degrees of freedom.
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Introduction: One dimensional data

The joint covariance matrix is given by: Σ = {σi ,j}, where: σi ,i = 2m, for
1 ≤ i ≤ m, σi ,j = 0, for |j − i | ≥ m and σi ,j = 2(m− k), for |j − i | = k,
1 ≤ k ≤ m− 1. For 2 ≤ m ≤ M/4 and −∞ < t < ∞, let

Gm,t (M) = P(Sm,M < t) = P(Y1,m < t,Y2,m < t, . . . ,YM−m+1,m < t),
(3)

be the cumulative distribution function of Sm,M . Then,

P(Sm,M ≥ t) = 1− Gm,t (M). (4)
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Introduction: One dimensional data

For our hypotheses testing problem, when the window size m is
known, the generalized likelihood ratio test rejects the null
hypothesis, in favor of the local change alternative hypothesis Ha,

whenever Sm,M exceeds a threshold value t, where t is determined by
P(Sm,M ≥ t|H0) = α, α being the specified significance level.

Hence, to implement our testing procedure we need to evaluate
G (M).

Unlike the case of detecting a local change in the mean level for the
normal data, where extensive theoretical results and R algorithms for
computing multivariate normal and t distributions are readily available

(Genz 2009 and Wang and Glaz 2014), for the problem at hand there
are no algorithms to evaluate G (M).

Due to complexity of the dependence structure of the multivariate
chi-square distribution for Yr ,m , 1 ≤ r ≤ M −m+ 1, one has to
evaluate G (M) via Monte Carlo simulation.
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Introduction: Two Dimensional Data

For 1 ≤ i ≤ M1 and 1 ≤ j ≤ M2, let {Xij} be iid normal observations
with mean µ and variance σ20. We are interested in detecting an
occurrence of a local change in variance, from σ20 to σ21, within a
rectangular subregion of m1 ×m2 observations.
For k = 1, 2, let 2 ≤ mk ≤ Mk/4 be the pre-specified size of a two
dimensional sliding window. A fixed window scan statistic for
detecting a local change in variance, is defined by:

Sm1,m2(M1,M2) = max{Yi1,i2(m1,m2); 1 ≤ ik ≤ Mk −mk + 1, k = 1, 2},
(5)

where for 1 ≤ ik ≤ Mk −mk + 1, k = 1, 2,

Yi1,i2(m1,m2) =
i1+m1−1

∑
i=i1

i2+m2−1
∑
i=i2

X 2ij (6)

are the moving sums of squares in the m1 ×m2 rectangular grid of
the observed data with south west location (i1, i2).
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Introduction: Two Dimensional Data

For 2 ≤ m ≤ M/4 and −∞ < t < ∞, let

Gm,t (M) = P(Sm,m(M,M) ≤ t) = P(max{Yi1,i2(m1,m2); 1 ≤ ik ≤ Mk −mk + 1, k = 1, 2} ≤ t),
(7)

be the cumulative distribution function of Sm,m(M,M).
Then,

P(Sm,m(M,M) > t) = 1− Gm,t (M). (8)

We test the null hypothesis: H0: Xij , 1 ≤ i , j ≤ M, are iid. normal
observations with mean µ and variance σ20. The alternative
hypothesis is: Ha: Xij , 1 ≤ i , j ≤ M, are independent normal
observations with mean µ, the X ′ij s have variance σ21 > σ20, for
i , j ∈ Ra1,a2(m,m) = {(i1, i2); ak≤ i1, i2≤ ak+m+ 1, k = 1, 2},
where 1 ≤ a1, a2 ≤ M −m+ 1 are unknown coordinates of the
southwest location of an m×m window, and variance σ20 for
i , j /∈ Ra1,a2(m,m).
For our hypotheses testing problem, without loss of generality, one
can always assume that µ = 0 and σ20 = 1.
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Introduction: two dimensional data

When the true window size m where a change in variance has
occurred, is known, the generalized likelihood ratio test rejects our
null hypothesis,

in favor of the local change alternative hypothesis Ha, whenever Sm,m
exceeds a threshold value t, where t is determined

by P(Sm,m ≥ t|H0) = α, where α is the specified significance level.

Hence, to implement our testing procedure we need to evaluate
accurately G (M), the joint distribution of the moving sum of squares.

Under H0, the random variables
{Yi1,i2(m1,m2); 1 ≤ ik ≤ Mk −mk + 1, k = 1, 2}, are m2 -dependent
and have a joint multivariate chi-square distribution and marginal
chi-square distributions with m2 degrees of freedom.

To expedite the computations, two approximations by based on Wang
and Glaz (2014) or Haiman (2006) can be used.
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Approximations for G(m)

We now present two approximations for G (M). It follows from Glaz,
Naus and Wang (2012), that:

G (M) = G (3m)
[
G (3m)
G (2m)

]K−3 G (2m+ v)
G (2m)

, (9)

where K ≥ 3,m ≥ 2 and 0 ≤ v ≤ m− 1 are integers such that
M = Km+ v .
The second approximation for G (M) is based on Haiman (2007):

G (M) =
2G (2m)− G (3m)

[1+ G (2m)− G (3m) + 2(G (2m)− G (3m))2]M/m−1 ,

(10)
where a sharp approximation of the error bound is given by:

3.3[1− G (2m)]2(M/m− 1), (11)

M ≥ 3m, 1− G (2m) ≤ 0.025 and
3.3M [1− G (2m)]2(M/m− 1) ≤ 1.
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Approximations for G(m)

The two approximations reduce significantly the computing time to
evaluate G (m), especially when M/m is large.

Monte Carlo simulation is used to evaluate the accuracy of these two
approximations.

An effective algorithm has been developed in Zhao and Glaz (2016a)
to search for the critical value that determines the rejection region.

Numerical examples.
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Scan Statistics for One Dimensional Data - Variance
Known

The performance of a fixed window scan statistic is evaluated in Zhao
and Glaz (2016a, Section 2).

We now outline the steps for deriving a variable window scan statistic.
For a local upward shift in variance, the generalized likelihood ratio
test will reject H0 in favor of Ha for large values of

Λ =
supθεΘ1 ∏M

i=1 fθ(xi )

supθεΘ0 ∏M
i=1 fθ(xi )

, (12)

where fθ(xi ) is the probability density of the ith observation in the scanned
sequence {Xi} and Θ0 and Θ1 are the parameter spaces for the null and
alternative hypotheses, respectively.

This generalized likelihood ratio statistic can be expressed as follows:
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Scan Statistics for One Dimensional Data - Variance
Known

Λ = sup
Θ1

(
1

σ1

)m
exp

(
1
2

a+m−1
∑
i=a

X 2i −
1
2σ21

a+m−1
∑
i=a

X 2i

)

= sup
Θ1

(
1

σ1

)m
exp

(
1
2
Ya,m −

1
2σ21

Ya,m

)
= sup

a;m

(
m
Ya,m

)m/2

exp
(
1
2
Ya,m −

m
2

)
, (13)

where Ya,m = ∑a+m−1
i=a X 2i .

The last step follows from the fact that for fixed and but arbitrary a
and m, constrained by parameter space Θ1, the supremum is achieved
at σ̂21 = Ya,m/m > 1.
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Scan Statistics for One Dimensional Data - Variance
Known

Let

Lm(Ya,m) =
(
m
Ya,m

)m/2

exp
(
1
2
Ya,m −

m
2

)
. (14)

Regard Lm(Ya,m) as a function of Y = Ya,m , depending on a, for
fixed but arbitrary m. This function is a convex function of Y and it
is increasing in Y on Θ1.
Therefore, for fixed m, the supremum in (13) is achieved at the
maximum value of Y . One can obtain a unique value of a that
maximizes Y .
It follows that, for a given sequence of observations, one can get the
location and length of the window that maximizes Lm(Ya,m).
This maximum value of Lm(Ya,m) is the value of our variable window
scan statistic based on the generalized likelihood ratio principle.
An algorithm in Zhao and Glaz (2016a) implements the search for the
location and length of the window that maximizes Lm(Ya,m).

Joseph Glaz (University of Connecticut) Local Change in Variance 09/06 17 / 30



Scan Statistics for One Dimensional Data - Variance
Known

If M is large, implementing a variable window scan statistics might be
computationally intensive. We propose to investigate the performance
of the following multiple window scan statistic, based on the
minimum P-value method (Glaz and Zhang 2004 and Wang and Glaz
2014). Since the window length m is unknown, a sequence of n fixed
window scan statistics {Sm1 , Sm2 , . . . ,Smn} can be employed
simultaneously, where 2 ≤ m1 < m2 < . . . < mn ≤ M/4.
The lengths of the n sliding windows are chosen in advance by the
experimenter. For 1 ≤ j ≤ n, let tj be the observed value of Smj and
pj = P(Smj > tj |H0) its associated p-value.
To test H0 vs. Ha, the minimum p-value statistic, Pmin, is defined as
follows:

Pmin = min{pj ; 1 ≤ j ≤ n}. (15)
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Scan Statistics for One Dimensional Data - Variance
Known

The null hypothesis is rejected if the observed value of Pmin falls
below a critical value corresponding to a specified significance level α.

Since the exact distribution of the Pmin statistic is unknown, for a
given significant level α, the critical value pα, PH0(Pmin < pα) = α,
has to be evaluated by a Monte Carlo simulation.

The following algorithm can be used to find the critical value pα.

An algorithm to implement the Pmin statistic has been presented in
Zhao and Glaz (2016a).

Numerical results to compare the performance of the variable and
multiple window scan statistics.

Joseph Glaz (University of Connecticut) Local Change in Variance 09/06 19 / 30



Scan Statistics for One Dimensional Data - Variance
Unknown

A Training sample approach is discussed in Zhao and Glaz (2016b).
A second approach to eliminate the unknown parameter σ20, when H0
is true, is to condition on the suffi cient statistic under H0.
When H0 is true, the suffi cient statistic for σ20 under H0 is:

R2 =
M

∑
i=1
X 2i .

The distribution of the random vector {Xi , 1 ≤ i ≤ M}, given
R2 = r2, is uniform on a sphere of radius r (Dempster 1969, Chap.
12). Moreover, the random vector

{X ∗∗i = Xi/R; 1 ≤ i ≤ M}, (16)

where R =
√

∑M
i=1 X

2
i , has a joint uniform distribution on the

(M − 1) dimensional unit sphere.
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Scan Statistics for One Dimensional Data - Variance
Unknown

Consequently, we can define a scan statistic for the sequence of
observations {X ∗∗i ; 1 ≤ i ≤ M}:

S∗∗m,M = max{Y ∗∗r ,m ; 1 ≤ r ≤ M −m+ 1}, (17)

where

Y ∗∗r ,m =
r+m−1

∑
i=r

X ∗∗2i =
∑r+m−1
i=r X 2i
R2

; 1 ≤ r ≤ M −m+ 1. (18)

We propose to employ this scan statistic for testing H0, conditional
on R2 = r2. The conditional P-value of this scan statistic is given by

P(S∗∗m,M ≥ s |R2 = r2,H0),

where s is the observed value of S∗∗m,M .
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Scan Statistics for One Dimensional Data - Variance
Unknown

Under H0, the distribution of S∗∗m,M does not depend on any unknown
parameters.

Hence, for a given significance level α we can find the critical value t
such that P(S∗∗m,M ≥ t|R2 = r2,H0) = α.

These computations will be implemented via a Monte Carlo
simulation that generates N sequences of data of M iid N(0, 1)
observations, and then dividing each observation by R.

Numerical results to evaluate the performance of the fixed window
scan statistic via the approach of conditioning on the suffi cient
statistic.
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Scan Statistics for One Dimensional Data - Variance
Unknown

A third approach for our testing problem is a parametric bootstrap
test.

The first step in implementing it is to estimate σ20, the unknown
population variance under H0, via the sample variance of the observed
data: σ̂20 = S

2
M .

Let F̂0 denote the fitted null model based on this estimate of σ20.

The method of evaluation of the P-value for the fixed window scan
statistic Sm,M , where s is its observed value, via:

p = P(Sm,M ≥ s |F̂0),

is referred to as a parametric bootstrap test.

This P-value is evaluated via simulation, based on an algorithm in
Zhao and Glaz (2016b).
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Multiple and Variable Window Scan Statistics

Based on numerical results for fixed window scan statistics, it is
evident that the scan statistic conditional on the suffi cient statistic for
σ20 is superior to the other two fixed window scan statistics.

Hence, multiple and variable window scan statistics will be based on
the method of conditioning on the suffi cient statistic for σ20
For n ≥ 2, let 2 ≤ m1 < m2 < . . . < mn ≤ M/4 be the n sliding
windows. For the transformed data sequence {X ∗∗1 , ....,X ∗∗M }, defined
in (16), the corresponding fixed window scan statistics,
S∗∗m1,M ,S

∗∗
m2,M , . . . , S∗∗mn ,M , are given in equation (17).

For 1 ≤ j ≤ n, let sj ,be the observed value of S∗∗mj ,M and

pj = P(S∗∗mj ,M > sj |R
2 = r2,H0) its associated p-value, respectively.

For testing H0 vs. H1, we employ the following minimum P-value
statistic, denoted by Pmin:

Pmin = min {pj ; 1 ≤ j ≤ n} .
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Multiple and Variable Window Scan Statistics

Pmin is referred to as a conditional multiple window scan statistic.
Note that, in the context of multiple testing, Pmin can be viewed as a
bootstrap test statistic (Davison and Hinkley 1997, Sec. 4.4.3).

Since the exact distribution of the Pmin statistic is unknown, for a
given significant level α, the critical value pα :

PH0(Pmin < pα) = α, (19)

has to be computed by a Monte Carlo simulation.

While employing Pmin to test H0 vs. H1, one can obtain an estimate
of the window size where a change in variance has occurred, m̂, from
the window size corresponding to the observed value of Pmin.
Moreover, one can estimate the starting location of the window with
the change of variance, î0, via the location which maximizes the
moving sum squares with the fixed window size m̂.
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Multiple and Variable Window Scan Statistics

A related test statistic is a conditional generalized likelihood ratio test
(GLRT), based on conditioning on the total sum of squares of the
whole data sequence, ∑M

k=1 X
2
k = R

2, and the sum of squares of the
partial data, {Xi0 , . . . ,Xi0+m−1} corresponding to a specified
alternative, ∑i0+m−1

k=i0
X 2k = r

2, where 3 ≤ m ≤ M/4.
Therefore, under H0, (X1,X2, . . . ,XM ), conditional on R, has a joint
the uniform distribution on the (M − 1) sphere with radius R.
Under H1, conditional on R and r , (X1, . . . ,Xi0−1,Xi0+m , . . . ,XM )
jointly follow a uniform distribution on the (M −m− 1) sphere with
radius

√
R2 − r2 and are independent of (Xi0 , . . . ,Xi0+m−1), where

the latter jointly follow the uniform distribution on (m− 1) sphere
with radius r .
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Multiple and Variable Window Scan Statistics

Hence, for the problem at hand, the conditional GLRT is given by:

Λ =
supΘ1 f (x1, . . . , xM | R, r)
supΘ0 f (x1, . . . , xM | R, r)

=
supΘ1

{
1

SSm−1(r )
× 1

SSM−m−1(
√
R 2−r 2)

}
supΘ0

{
1

SSM−1(R )

}
=
supΘ1

{
1

mπm/2rm−1/Γ(m/2+1)(M−m)π(M−m)/2(R 2−r 2)(M−m−1)/2/Γ(M/2−m/2+1)

}
supΘ0

{
1

MπM/2RM−1/Γ(M/2+1)

} ,

(20)

where f (x1, . . . , xM | R, r) is the joint density of X1, . . . ,XM
conditional on R and r under respective hypotheses;
SSN (K ) = NπN/2KN−1/Γ(N/2+ 1) gives the surface area of the
(N − 1) dim sphere with radius K .
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Multiple and Variable Window Scan Statistics

After routine derivations, it follows from equation (20), that

Λ =Λ(m, i0 | R, r)

∝supΘ1

B(m/2, (M −m)/2)
(r2/R2)(m−1)/2(1− r2/R2)(M−m−1)/2

∝sup{m,i0}
B(m/2, (M −m)/2)

(Y ∗∗i0,m)
(m−1)/2(1− Y ∗∗i0,m)(M−m−1)/2

, (21)

where B(α, β) =
∫ 1
0 x

α−1(1− x)β−1dx is the beta function and Y ∗∗i0,m ,
as defined in (18), is the moving sum squares for the transformed
data {X ∗∗i = Xi/R; 1 ≤ i ≤ M}, defined in (16).
The final representation of the conditional GLRT statistic depends
only on the joint distribution of {X ∗∗i = Xi/R; 1 ≤ i ≤ M}, which
under H0, does not depend on the unknown value of σ0, and under
H1, depends only on σ1/σ0.
Moreover, for a fixed window size m, the function
g(Y ∗∗) = (Y ∗∗)(m−1)/2(1− Y ∗∗)(M−m−1)/2 is decreasing in Y ∗∗
under H1.Joseph Glaz (University of Connecticut) Local Change in Variance 09/06 28 / 30



Multiple and Variable Window Scan Statistics

Therefore, the conditional GLRT, Λ is increasing in Y ∗∗

Hence, for a known fixed value of m, the conditional GLRT will be
the same as our fixed window scan statistic, conditional on the
suffi cient statistic for σ20, discussed earlier.
Zhao and Glaz (2016b) present an algorithm that finds LR∗, the value
of the conditional GLRT statistic; m∗ is the most likely window size
where a possible upward local change in variance has occurred and
i∗0 (m

∗) is the most likely starting location for the local change. We
refer to the conditional GLRT statistic, Λ, as a conditional variable
window scan statistic.
The p-value for Λ can be obtained by performing N simulation runs,
each having M iid N(0, 1) random variables, and then repeating the
algorithm in Zhao and Glaz (2016b) for each of the simulated
M-sequences.
Numerical results to compare power of the conditional multiple
window scan statistic Pmin, conditional variable variable window scan
statistic Λ and conditional fixed window scan statistic S∗∗m,M .Joseph Glaz (University of Connecticut) Local Change in Variance 09/06 29 / 30



Scan Statistics for Two Dimensional Data

The results that have been discussed above have been extended to
two dimensional data

Zhao and Glaz (2017). Scan Statistics for Detecting a Local Change
in Variance for Two Dimensional Normal Data. Commun. Stat.
Theor. Meth. Ser. A, Vol. 46, No. 11, 5517-5530.

The references for the one dimensional case:

Zhao, B. and Glaz, J. (2016a). Scan Statistics for Detecting a Local
Change in Variance for Normal Data.with Known Variance.
Methodology and Computing in Applied Probability 18, 967-978.
Zhao, B. and Glaz, J. (2016b). Scan Statistics for Detecting a Local
Change in Variance for Normal Data.with Unknown Variance.
Statistics and Probability Letters 110, 137-145.
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