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Outline of the Presentation

Scan statistics for normal data.

Introduction
Probability Inequalities: one dimensional data.
Product-type approximations for one dimensional data.
Inequalities and approximations: two dimensional data.
Variable window scan statistics: minimum p-value approach.
Applications to time series data.

Summary and future work.
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Berg, W. (1945). Aggregates in one-and-two-dimensional random
distributions. London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science 36, 337-346.
Dinneen, G. P. and Reed, I. S. (1956). An analysis of signal detection
and location by digital methods. IRE Trans. Information Theory,
IT-2, 29-39.
Domb, C. (1950). Some probability distributions connected with
recording apparatus II. Proceedings Cambridge Phil. Soc., 46,
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Mack, C. (1948). An exact formula for Qk (n), the probable number
of k- aggregates in a random distribution of n points. London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science
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Silberstein, L. (1945). The probable number of aggregates in random
distributions of points. London, Edinburgh, and Dublin Philosophical
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Introduction: Early Theoretical Advances on Scan
Statistics
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Ikeda, S. (1965). On Bouman-Velden-Yamamoto’s asymptotic
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Naus, J. I. (1965a). The distribution of the size of the maximum
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Naus, J. I. (1965b). Power comparison of two tests of non-random
clustering. Technometrics 8, 493-517.
Barton, D. E. and Mallows, C. L. (1965). Some aspects of the
random sequence. Annals of Mathematical Statistics 36, 236-260.
Leslie, R. T. (1969). Recurrent times of clusters of Poisson points. J.
Applied Probability 6, 372-388.
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Introduction: Early Theoretical Advances on Scan Statistics

Cressie, N. (1977). On some properties of the scan statistic on the
circle and the line. J. Applied Probability 14, 272-283.
Cressie, N. (1980). The asymptotic distribution of the scan statistic
under uniformity. Annals of Probability 8, 838-840.
Glaz, J. (1979). Expected waiting time for the visual response.
Biological Cybernetics 35, 39-41.
Glaz, J. and Naus J. (1979). Multiple coverage of the line. Annals of
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Greenberg, I. (1970). The first occurrence of N successes in N trials.
Technometrics 12, 627-634.
Huntington, R. J. and Naus, J. I. (1975). A simpler expression for the
Kth nearest neighbor coincidence probabilities. Annals of Probability
3, 894-896.
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Introduction: Early Theoretical Advances

Huntington, R. J. (1978). Distribution of the minimum number of
points in a scanning interval on the line. Stochastic Processes and
their Applications 25, 73-77.
Hwang, F. K. (1974). A discrete clustering problem. Manuscript, Bell
Labs, Murray Hill.

Hwang, F. K. (1979). A generalization of the Karlin-McGregor
theorem on coincidence probabilities and an application to clustering.
Annals of Probability 5, 814-817.
Karlin, S. and McGregor, G. (1959). Coincidence probabilities. Pacific
Journal of Mathematics 9, 1141-1164.
Naus, J. I. (1974). Probabilities for a generalized birthday problem. J.
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Naus, J. I. (1979). An indexed bibliography of clusters, clumps, and
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Introduction: Applications

Scan statistics are used for detecting clusters of rare events.

Applications:

Agricultural Sciences
Astronomy
Bioinformatics
Biosurveillance
Ecology and Environmental Sciences
Epidemiology
Physics
Reliability and Quality Control
Signal Detection
Social Networks
Telecommunication Sciences
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Probability Inequalities

Let X1, ....,XN , ... be a sequence of iid normal observations with mean
µ and variance σ2. Let Yr ,u = ∑u

i=r Xi for u ≥ r ≥ 1. For integers
2 ≤ m < N, where m is the length of the sliding window and N is the
specified range of the monitored process, define the scan statistic

Sm,N = max
m≤j≤N

{Yj−m+1,j} . (1)

The sequence {Yj−m+1,j ;m ≤ j ≤ N}, based on which the scan
statistic is defined, contains N −m+ 1 observations of moving sums
of length m.
The random variables {Yj−m+1,j ;m ≤ j ≤ N} have a joint
multivariate normal distribution with mean vector (mµ, ....,mµ)′ and
variance and covariance matrix Σ = {σi ,j}, where σi ,i = mσ2,
σi ,j = 0, for |j − i | ≥ m and σi ,j = (m− k)σ2, for |j − i | = k,
1 ≤ k ≤ m− 1.
For 2 ≤ m ≤ N and −∞ < t < ∞, let

Gm,t (N) = P (Y1,m < t,Y2,m+1 < t, ....,YN−m+1,N < t) . (2)
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Probability Inequalities

The distribution of the scan statistic Sm,N is given by

P (Sm,N < t) = Gm,t (N). (3)

The probability that the scan statistic exceeds level t is given by

P (Sm,N ≥ t) = 1− Gm,t (N). (4)

This scan statistic can be used in detecting a local change in the
process mean within a sequence of N observations via testing the null
hypothesis of randomness, H0, that assumes Xi , 1 ≤ i ≤ N, are iid
normal random variables with mean µ0 and variance σ2.
For the alternative hypothesis, H1, of a local change in µ , one often
specifies a segment of m consecutive observations

R(i0,m) = {i0, i0 + 1, ...., i0 +m− 1},

where 1 ≤ i0 ≤ N −m+ 1 is unknown and 2 ≤ m ≤ N/4 is the
window length. We first discuss the case when m is known.
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Probability Inequalities

Under H1, for any i0 ≤ i ≤ i0 +m− 1, Xi has a normal distribution
with mean µ1 and variance σ2, where µ1 > µ0. For i /∈ R(i0,m), X ′i s
are distributed according to the distribution specified by the null
hypothesis.

Let X1, ....,XN , .... be iid continuous random variables with mean µ
and variance σ2. The following inequalities are used in approximating
the distribution of the scan statistic:

Theorem (Glaz, Naus and Wang 2012) For integers i ,m ≥ 2, L ≥ 1,

G (N) ≥ G (im)[
1+ G (Lm−1)−G (Lm)

G ((L+1)m−1)

]M−im ,N ≥ (i ∨ L)m, (5)

G (N) ≤ G (im){1− [G ((L+ 1)m− 1)− G ((L+ 1)m)]}N−im ,
for N ≥ (i ∨ (L+ 1))m.
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Probability Inequalities

The followig inequalities are used for approximating the distribution of
the scan statistic for normal data.

For choices of i and L in theorem above and
G (3m− 1) ≥ G (2m− 1)G (2m) we get:

G (N) ≥ G (2m)[
1+ G (2m−1)−G (2m)

G (2m−1)G (2m)

]N−2m , N ≥ 2m, (6)

G (N) ≤ G (2m){1− [G (2m− 1)−G (2m)]}N−2m , N ≥ 2m. (7)
We expect these bounds to be tight for a large value of t, since they
converge as G (2m)→ 1 and G (2m− 1)− G (2m)→ 0, which holds
as t −→ ∞.
In Glaz, Naus and Wang (2012), inequalities for expected values and
variances of a stopping time for moving sums are evaluated via the R
algorithms in Genz and Bretz ( 2009).

Joseph Glaz (University of Connecticut) Scan Statistics for Normal Data 24/10 20 / 34



Probability Inequalities

The followig inequalities are used for approximating the distribution of
the scan statistic for normal data.
For choices of i and L in theorem above and
G (3m− 1) ≥ G (2m− 1)G (2m) we get:

G (N) ≥ G (2m)[
1+ G (2m−1)−G (2m)

G (2m−1)G (2m)

]N−2m , N ≥ 2m, (6)

G (N) ≤ G (2m){1− [G (2m− 1)−G (2m)]}N−2m , N ≥ 2m. (7)
We expect these bounds to be tight for a large value of t, since they
converge as G (2m)→ 1 and G (2m− 1)− G (2m)→ 0, which holds
as t −→ ∞.
In Glaz, Naus and Wang (2012), inequalities for expected values and
variances of a stopping time for moving sums are evaluated via the R
algorithms in Genz and Bretz ( 2009).

Joseph Glaz (University of Connecticut) Scan Statistics for Normal Data 24/10 20 / 34



Probability Inequalities

The followig inequalities are used for approximating the distribution of
the scan statistic for normal data.
For choices of i and L in theorem above and
G (3m− 1) ≥ G (2m− 1)G (2m) we get:

G (N) ≥ G (2m)[
1+ G (2m−1)−G (2m)

G (2m−1)G (2m)

]N−2m , N ≥ 2m, (6)

G (N) ≤ G (2m){1− [G (2m− 1)−G (2m)]}N−2m , N ≥ 2m. (7)

We expect these bounds to be tight for a large value of t, since they
converge as G (2m)→ 1 and G (2m− 1)− G (2m)→ 0, which holds
as t −→ ∞.
In Glaz, Naus and Wang (2012), inequalities for expected values and
variances of a stopping time for moving sums are evaluated via the R
algorithms in Genz and Bretz ( 2009).

Joseph Glaz (University of Connecticut) Scan Statistics for Normal Data 24/10 20 / 34



Probability Inequalities

The followig inequalities are used for approximating the distribution of
the scan statistic for normal data.
For choices of i and L in theorem above and
G (3m− 1) ≥ G (2m− 1)G (2m) we get:

G (N) ≥ G (2m)[
1+ G (2m−1)−G (2m)

G (2m−1)G (2m)

]N−2m , N ≥ 2m, (6)

G (N) ≤ G (2m){1− [G (2m− 1)−G (2m)]}N−2m , N ≥ 2m. (7)
We expect these bounds to be tight for a large value of t, since they
converge as G (2m)→ 1 and G (2m− 1)− G (2m)→ 0, which holds
as t −→ ∞.

In Glaz, Naus and Wang (2012), inequalities for expected values and
variances of a stopping time for moving sums are evaluated via the R
algorithms in Genz and Bretz ( 2009).

Joseph Glaz (University of Connecticut) Scan Statistics for Normal Data 24/10 20 / 34



Probability Inequalities

The followig inequalities are used for approximating the distribution of
the scan statistic for normal data.
For choices of i and L in theorem above and
G (3m− 1) ≥ G (2m− 1)G (2m) we get:

G (N) ≥ G (2m)[
1+ G (2m−1)−G (2m)

G (2m−1)G (2m)

]N−2m , N ≥ 2m, (6)

G (N) ≤ G (2m){1− [G (2m− 1)−G (2m)]}N−2m , N ≥ 2m. (7)
We expect these bounds to be tight for a large value of t, since they
converge as G (2m)→ 1 and G (2m− 1)− G (2m)→ 0, which holds
as t −→ ∞.
In Glaz, Naus and Wang (2012), inequalities for expected values and
variances of a stopping time for moving sums are evaluated via the R
algorithms in Genz and Bretz ( 2009).

Joseph Glaz (University of Connecticut) Scan Statistics for Normal Data 24/10 20 / 34



Approximations for the Distribution of the Scan Statistic

A Markov-type approximation for G (N) based on a method
introduced in Naus (1982). Let N = Km+ υ, where K ≥ 3,m ≥ 2
and 0 ≤ υ ≤ m− 1 are integers. Then, for 2 ≤ L ≤ H − 1

G (N) = P
{
max

m≤k≤N
Yk−m+1,k < t

}
= P

(⋂K
j=1Ej

)
= P

(
L−1⋂
i=1

Ei

)
∏K
j=LP

(
Ej |
⋂j−1
h=1Eh

)
, (8)

where for 1 ≤ j ≤ K − 1

Ej =
(

max
jm≤k≤(j+1)m

Yk−m+1,k < t
)
,

which can be interpreted as the event of no exceedance of level t
within a block of m+ 1 consecutive partial sums of length m, and

EK =
(

max
Km≤k≤Km+υ

Yk−m+1,k < t
)
.
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Product-type approximations

By conditioning on the most recent past L ≥ 2 events Ej , in (8) we
get the following approximation for G (M) :

G (N) ≈ P
(
L−1⋂
i=1

Ei

)[
∏K−1
j=L P

(
Ej |

j−1⋂
h=j−L+1

Eh

)]
P

(
EK |

K−1⋂
p=K−L+1

Ep

)

= P

(
L⋂
i=1

Ei

)
∏K−1
j=L+1


P

(
j⋂

h=j−L+1
Eh

)

P

(
j−1⋂

h=j−L+1
Eh

)



P

(
K⋂

p=K−L−1
Ep

)

P

(
K−1⋂

p=K−L−1
Ep

)

= G ((L+ 1)m)
[
G ((L+ 1)m)
G (Lm)

]K−L−1 G (Lm+ υ)

G (Lm)
. (9)

For N = Km and L = 2 the above approximation reduces to

G (N) ≈ G (3m)
[
G (3m)
G (2m)

]K−3
. (10)
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Product-type approximations:Quasi-stationarity property

Let X1, ....,XN , ..... be iid continuous random variables with mean µ
and variance σ2.

For m ≥ 2, j ≥ 1, let

qj = P (Yj+1, j+m ≤ t|Yi ,i+m−1 ≤ t; 1 ≤ i ≤ j .)

Theorem (Glaz and Johnson 1988): If 0 < P(X1 ≤ t/m) < 1, then
limj→∞ qj = q, where 0 < q < 1.

The proof of the theorem is based on the R-theory of Markov chains.
One can show that for m = 2 the q′j s oscilate about q. This property
does not extend for m ≥ 3, even though numerically one observes an
oscilatory pattern of convergence of qj to q.
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Haiman approximation

Haiman (1999 and 2007) derived accurate approximations for G (M)
for iid discrete random variables. These approximations are valid as
well for iid continuous random variables.

A nice feature of these approximations is that a sharp error bound can
be easily evaluated.

For the problem at hand, for N ≥ 3m, the following approximation for
G (N) is obtained from Haiman (2007, Corollary 2):

G (N) ≈ 2G (2m)− G (3m)[
1+ G (2m)− G (3m) + 2 (G (2m)− G (3m))2

]N/m , (11)

with an error bound of approximately

3.3[1− G (2m)]2N/m. (12)
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A Multiple Window Scan Statistics

Let 2 ≤ m1 < m2 < ..... < mn be a given sequence of window lengths
associated with scan statistics Sm1 , ....,Smn , respectively.

Since the size of the rectangular window m is unknown, for testing H0
vs H1 we propose the following test statistic:

Pmin = min{pj ; 1 ≤ j ≤ n}, (13)

the minimum P-value statistic, which is based on n fixed window size
scan statistics: Sm1 , ....,Smn , where 2 ≤ mj < mj+1 ≤ N − 1,
1 ≤ j ≤ n− 1, and pj = P (Sm ≥ kj ), is the observed p-value.
A simulation algorithm is used to implement this multiple window
scan statistic and evaluate its power.
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A Multiple Window Scan Statistic

For 1 ≤ j ≤ n, let tj be the observed value of Smj and
pj = P(Smj ≥ tj | H0) the associated p-value. Since the exact
distribution for the Pmin statistic is unknown, for a given significant
level α, the critical value pα,

PH0 (Pmin ≤ pα) = α,

has to be evaluated via simulation.

In each run of the simulation, we generate N observations under the
null hypothesis. Then we scan the whole region with multiple moving
windows of sizes m1,m2, .... and mn, and record the observed values
of the fixed window scan statistics, Sm1 , ....,Smn , denoted by
t1, t2, ..., tn, respectively.
Then, a Monte-Carlo R algorithm is employed to evaluate the
observed p values: pj = P(Smj ≥ tj | H0), 1 ≤ j ≤ n.
The minimum of value of these p values is recorded and this process
is repeated 10, 000 times. Based on that, an approximate α ∗ 100
percentile of the distribution of P (1)min statistic is obtained.
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Numerical Results

Inequalities and approximations for a fixed window scan statistic for
normal data with µ = 0 and σ2 = 1,N = 1000,m = 50:

t 20 23 24 25 26 27 28
LB .2530 .0729 .0479 .0388 .0221 .0121 .0074
A 1 .2601 .0851 .0551 .0350 .0216 .0130 .0077
A 2 .2587 .0847 .0551 .0349 .0214 .0132 .0077
EB . 1.84−3 7.39−4 2.84−4 1.05−4 3.63−5 1.21−5
UB .2607 .0886 .0613 .0390 .0252 .0121 .0085
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Numerical Results

Power study to evaluate the performance of the multiple window scan
statistic: for normal data, H0 : µ = 0, σ2 = 1,N = 250
α = Pr Type I Error, µ1 = the mean under the aternative in a
subsequence of n observations.

n µ1 Pmin S5 S10 S15 S20 S25
10 .5 .091 .074 .100 .076 .061 .067

1 .424 .339 .468 .317 .228 .189
1.5 .909 .828 .926 .770 .589 .465

15 .5 .150 .116 .149 .155 .119 .099
1 .742 .506 .695 .773 .618 .505
1.5 .993 .932 .987 .994 .971 .921

20 .5 .247 .153 .209 .263 .264 .189
1 .895 .602 .819 .878 .913 .834
1.5 1.0 .981 .997 1.0 1.0 1.0

α .05 .045 .048 .047 .046 .063
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Scan Statistics for Time Series Data

Let X1, ....,XM be a sequence of observations from an AR(1) process,
Xt = θXt−1 +ωt , where ωt is a Gaussian white noise with mean
µ = 0 and variance σ2 = 1. Since X ′t s follow a multivariate normal
distribution, {Yi−m+1,i ;m ≤ i ≤ M} have a multivariate normal
distribution with zero mean vector and covariance matrix Σ = {σi ,j},
where σi ,j = cov(Yi ,i+m−1,Yj ,j+m−1).
A routine derivation, yields the following covariance matrix:

σi ,j =



θ
(1−θ)4

(1− θj+m−i )(1− θi−j ) + θj+m−i+1

(1−θ)4
(1− θi−j )2

+ j+m−i
(1−θ)2

+ 2θ
(1−θ)3

[j +m− 1− i − θ
1−θ (1− θj+m−1−i )]

+ θ
(1−θ)4

(1− θi−j )(1− θj+m−i ), i − j < m
1

1−θ2
{m+ 2θ

1−θ [m− 1−
θ
1−θ (1− θm−1)]}, i = j

θi−j−m+1 (1−θm )2

(1−θ)2
, otherwise.
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Scan Statistics for Time Series Data

Given the mean vector and covariance matrix, we can utilize the R
algorithms by Genz and Bretz (2009) to approximate the distribution
G (M) for a fixed window scan statistic and the multiple window scan
statistic Pmin.
For an AR(2) model, Xt = θ1Xt−1 + θ2Xt−2 +ωt , where ωt is the
Gaussian white noise with mean µ = 0 and variance σ2 = 1,the X ′t s
follow a multivariate normal distribution with the following ACF:

γh =


1−θ2

1−θ2−θ21−θ2θ21−θ22+θ32
, when if h = 0,

γ0
θ1
1−θ2

, when if h = 1,

γ0[θ1γh−1 + θ2γh−2], when if h > 1.

Then {Yi−m+1,i ;m ≤ i ≤ M} a multivariate normal distribution with
a mean vector of zeros and covariance matrix Σ = {σi ,j}, which can
be derived similarly as in the AR(1) process. The explicit form of the
covariance matrix is omitted here for simplicity. Wang and Glaz
(2013) investigated the performance of multiple window scan
statistics for ARMA models.
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Numerical Results

Power study to evaluate the performance of the multiple window scan
statistic Pmin: for AR(1) data, θ = .1,N = 1500
α = Pr Type I Error, µ1 = the mean under the aternative in a
subsequence of n observations in the white noise component.

n µ1 Pmin S5 S10 S15 S20 S25
10 .5 .076 .075 .063 .056 .062 .05

1 .292 .211 .337 .172 .124 .101
1.5 .797 .649 .841 .554 .388 .285

15 .5 .103 .072 .087 .093 .085 .074
1 .532 .273 .494 .594 .407 .297
1.5 .973 .810 .960 .989 .915 .800

20 .5 .115 .068 .091 .113 .120 .100
1 .762 .378 .615 .759 .818 .683
1.5 1.0 .905 .992 1.0 1.0 .992

α .050 .037 .052 .052 .051 .052
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Series D Data Set from Box and Jenkins (1978)

This data set consists of 310 hourly uncontrolled viscosity readings of
a chemical process. This data set has been modeled via an AR(1)
process in Box and Jenkins (1978), with estimated parameters:
θ = 0.87, and σ2 = 0.09

To evaluate the performance of the multiple window scan statistic, we
introduced a change in the Gaussian white noise component at a
random location. We employed a similar algorithm to the one outlined
above to perform a power study that is presented in the table below.
A simulation with 10,000 trial has been used to simulate the power.

The multiple window scan statistic outperformed the fixed window
scan statistics, with an incorrectly specified window size where a
change in mean has occurred. A discrepancy in some of the results
could have resulted from the model lack of fit.
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Numerical Results

Series D data set from Box and Jenkins (1978).

α = Pr Type I Error, µ1 = the mean under the aternative in a
subsequence of n observations in the white noise component.

n µ1 Pmin S5 S10 S15 S20 S25
10 .15 .142 .170 .260 .035 0 0

.20 .584 .588 .628 .330 .100 0

.25 .703 .731 .710 .641 .403 .262
15 .15 .394 .234 .379 .473 .226 .161

.20 .704 .725 .700 .664 .622 .520

.25 .841 .845 .834 .864 .756 .731
20 .15 .625 .324 .499 .574 .617 .500

.20 .778 .787 .774 .750 .753 .737

.25 .932 .889 .914 .910 .942 .805
α .051 .040 .054 .049 .059 .040

.
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Summary and Future Work

Two dimensional continuous-type data sets

Scan statistics for graphs

Non-homogeneous processes

Three dimensional scan statistics

Conditional-type scan statistics
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