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Introduction

Repeated signi�cance tests were introduced in Armitage
(1958).

Major developments in the theory and applications of
RST:

Dias and Garcia (1999)

Hu (1988)

Jennison and Turnbull (2000)

Lai and Siegmund (1977 and 1979)



Lalley (1983)

Lerche (1986)

Selke and Siegmund (1983)

Sen (1981, 1985 and 1991)

Siegmund (1982 and 1985)

Takahashi (1990)

Whitehead (1997)

Woodroofe (1979 and 1982)

Woodroofe and Takahashi (1982).



Distributions with heavy tails have been used in
modeling

1. computer network tra¢ c:

Crovella, Taqqu and Bestavros (1998)

Willinger, Paxson and Taqqu 1998)

2. telecommunication systems:

Crovella and Taqqu (1999)

3. high frequency �nancial data:

M
::
uller, Dacorogna and Pictet (1998)

4. risk management and insurance data:

Bassi, Embrecht and Kafetzaki (1998)



Invariance Theorem

Donsker�s Theorem

Let fX;Xigi�1 be i.i.d random variables, EX = �,
V arX = �2 and

Sn = X1 +X2 + :::+Xn. A Functional Central Limit
Theorem (Donsker�s Theorem, see Billingsley (1995, p.
520)) implies that if Sn(t) is the linear interpolation be-
tween points

�
0; 0

�
;

�
1

n
;
S1 � �
�
p
n

�
; :::;

�
1;
Sn � n�
�
p
n

�



then

Sn(t) �!d W

in the sense C[0; 1] with uniform metric � where W is
standard Brownian motion on [0; 1].



A Nonparametric Repeated Signi�cance
Test

Let X1; X2; ::::; Xn; :::: be a sequence of independent
and identically distributed (iid) observations from a con-
tinuous distribution F with median �1 < � <1. We
are interested in testing

H0 : � = 0 vsHa : � 6= 0 via a nonparametric sequential
procedure. Suppose that we want to be sure that at
most N observations will be needed to reach a decision.
Assuming that �2 = V ar(X1) < 1; Sen (1981 and
1985) develops the following repeated signi�cance test
(RST), described below.



Let Sn =
Pn
i=1Xi and de�ne the stopping rule

� = min
n
n0 � n � N ; jSnj � b�

p
n
o
;

where n0 is the initial sample size, N is the target sample
size and b > 0 is a constant. The repeated signi�cance
test stops and rejects H0 if and only if � � N . The
power function of the RST, � (�) ; is given by:

� (�) = P� (� � N) = 1� P� (� > N)
= 1� P�

�
jSnj < b�

p
n;n0 � n � N

�
:



For a speci�ed signi�cance level � > 0; if n0=N ! t0
as N !1; it follows from Donsker�s Theorem that

max

(
jSnj
�
p
n
;n0 � n � N

)
d! sup

(
W (t)p
t
; t0 � t � 1

)

and

�(0) = P0

 
max

(
jSnj
�
p
n
;n0 � n � N

)
� b

!
! �;



where W (t) is a standard Brownian motion on the in-
terval [0; 1] and b = bt0(�) is the constant that char-
acterizes the continuation region, given by the square
root boundary, corresponding to the prescribed signi�-
cance level �:

The critical values bt0(�) for di¤erent choices of � and
t0 can obtained

from DeLong (1981).

If � is unknown, one can replace it by the sample stan-
dard deviation since it converges almost surely to � (Sen
1981):



Robust Nonparametric Repeated

Signi�cance Tests

Let X1; X2; ::::; Xn; :::: be a sequence of independent
and identically distributed observations from a continuous
distribution F symmetric about the median �1 < � <

1.

Assume that F is from a class of heavy tail distributions
with an in�nite variance and possibly no mean, as in the
case of the Cauchy distribution. We extend the approach
in Sen (1981 and 1985) and derive a RST for testing

H0 : � = 0 vs Ha : � 6= 0:



Main obstacles needed to overcome in deriving a
RST for data from heavy tail distributions:

� A random walk based on increments from a distrib-
ution with an

in�nite second moment does not converge to a Brown-
ian motion

� New invariance principles are needed for the random
walks

that will be used with the RST



To overcome the �rst di¢ culty we employ truncated sums.
We �rst consider the approximation for H0 : � = 0: Let
fX;Xigi�1 be i.i.d. random variables with a symmetric
continuous distribution and EX2 = 1. Let fdngn�1
be an increasing sequence of positive numbers such that

nP
�
jXj > dn

�
� n %1:

The truncated sums S�n we will consider are de�ned by

S�n =
nX
i=1

XiI(jXij�dn):



Denote by Bn the variance of S�n: The main theoretical
di¢ culty is that the sequence of the truncated sums is
not a process with independent increments. Therefore,
the classical weak invariance principle is not applicable
here.

However, in the case of symmetric distributions, the trun-
cated sums form a martingale, and this observation allows
one to prove the analog of Donsker�s theorem for the
truncated sums. The following result is true:



Theorem (Pozdnyakov 2002) If the random variable X
belongs to the Feller class

lim sup
t!1

t2P (jXj > t)
E
�
X2IjXj�t

� <1;

the average number of the excluded variables

nP
�
jXj > dn

�
� n %1;

and Bn=Bn+1 ! 1 then S�n(t) �!d W in the sense
(C[0; 1]; �), where S�n(t) is the linear interpolation be-
tween points

�
0; 0

�
;

�
B1
Bn
;
S�1p
Bn

�
; :::;

�
1;

S�np
Bn

�
:



If Bn is an unknown sequence then estimates of Bn could
be used. It follows from Egorov and Pozdnyakov (1997)
that under the additional condition

nP
�
jXj > dn

�
ln ln(n)

! +1;

the iterated logarithm law for the truncated sums S�n is
valid:

lim sup
n!1

S�nq
2Bn ln ln(Bn)

= 1 a.s.:



Under the same conditions the strong law of large num-
bers for the truncated sums of squares holds

lim
n!1

Pn
i=1X

2
i IjXij�dn
Bn

= 1 a.s.:

To construct an e¤ective RST procedure we propose the
use of the following sample variance version of truncated
sums Bn:

An =
nX
i=1

X2i IjXij�dn �
S�2nPn

i=1 IjXij�dn
:



It is not di¢ cult to show that the LIL and the SLLN
for the truncated sums imply that An and Bn are a.s.
equivalent:

An

Bn
! 1 a.s.

and therefore we can use An as a normalizing sequence.



Let

� = min
n
n0 � n � N ; jS�nj � bn

p
An
o

be the stopping rule, where n0 and N are the initial
and the target sample size, respectively and bn > 0 is a
constant.

The RST stops and rejects H0 if and only if � � N:

The power function of the RST is given by

� (�) = P� (� � N) = 1� P� (� > N)
= 1� P�

�
jS�nj < bn

p
An;n0 � n � N

�
:



In view of Pozdnyakov (2002), if Bn0=BN ! t0 and
N !1; then under H0;

max

(
jS�njp
An
;n0 � n � N

)
d! sup

(
W (t)p
t
; t0 � t � 1

)

and consequently,

� (0) = P0

 
max

n0�n�N

(
jS�njp
An

)
� bn

!
! �;

where the constant bn = bn(�) is the critical value that
determines the continuation region of the RST.



We now present an approximation for bn(�) for the class
of stable distributions.

Let fX;Xigi�1 be i.i.d. random variables with a sym-
metric continuous distribution and EX2 = 1. Assume
also that X belongs to the domain of attraction of the
stable distribution with an exponent 0 <  < 2, i.e.

E
�
X2I(jXj�t)

�
� t2�L(t);

where L(t) is a slowly varying function. Feller (1971,
p. 313) shows that the above condition is equivalent to

lim
t!1

t2P (jXj > t)
E
�
X2I(jXj�t)

� = 2� 


:

Hence, the random variableX belongs to the Feller class.



Let fX;Xigi�1 be i.i.d. random variables with a sym-
metric stable continuous distribution and EX2 =1. To
apply the invariance principle for truncated sums in Pozd-
nyakov (2002) the average number of excluded terms,
nP (jXj > dn); has to approach in�nity. For 0 <  < 2
we have that

P (jXj > t) � 2� 


t�L(t);

where L(t) is a slowly varying function. Hence, for dn =
dn�, where d; � > 0, we have that

nP (jXj > dn�) � 2� 


d�n1��L(dn�):



Therefore the average number of the excluded terms

nP (jXj > dn�) % 1 whenever 1 � � > 0. If 0 <
� < 1=2 this is guaranteed for all 0 <  < 2:

To approximate the constant bn(�) associated with a
speci�ed signi�cance level � of the RST one has to eval-
uate

t0 = lim
Bn0
BN

as n0; N !1:



Let n0; N ! 1 such that n0=N ! c; where 0 < c <

1: Since,

Bn � nd2�n(2�)�L(dn�)

and

lim
n0;N!1
n0
N!c

L(dn�0)

L(dN�)
= 1;

it follows that

lim
n0;N!1
n0
N!c

Bn0
BN

= c1+(2�)�:



Therefore, if bn = bn�, 0 <  < 2; 0 < � < 1=2,
n0; N !1 and

n0=N ! c; 0 < c < 1 we get from Pozdnyakov (2002)
that

max

(
jSnjp
An
;n0 � n � N

)
d! sup
[c1+(2�)�;1]

jW (t)jp
t
:

The constant bn(�) can be approximated by bt0(�) by
solving

P

0@ sup
[c1+(2�)�;1]

(
jW (t)jp

t

)
� bt0(�)

1A = �;

using the approach in De Long (1981).



We now present numerical results for evaluating the ap-
proximation for the critical value bn(�) for data

from a Cauchy distribution.

Let us assume that X has the Cauchy distribution, i.e.
 = 1.

We consider the truncation level dn = n1=4, i.e. � =
1=4. In table 1 simulation results are presented. For
each case the number of simulations performed is 10000.
The theoretical critical values and the corresponding sig-
ni�cance levels are taken from De Long (1981).



n0 N t0 bt0(�) theoretical � simulated �
100 303 1/4 2.7 .0503 .0541

100 303 1/4 3.3 .0098 .0094

100 754 1/12.5 2.6 .0989 .1012

30 91 1/4 2.7 .0503 .0638

30 91 1/4 3.3 .0098 .0167

30 226 1/12.5 2.6 .0989 .1119

Table 1. Simulation Results for Probability
of Type I Error



Approximating the Power Function of the RST

LetX;X1; X2; ::::; Xn; :::: be a sequence of independent
and identically distributed observations from a continuous
distribution F symmetric about the median �1 < � <

1 and E
�
X2

�
=1.

The power function of the RST is given by:

� (�) = P� (� � N) = 1� P� (� > N)
= 1� P�

�
jS�nj < bn

p
An;n0 � n � N

�
:

To approximate the power function an additional assump-
tion has to be made:

E
�
X2I(jXj�t)

�
s Kt2�;



where the constants K > 0 and 0 <  < 2 are known.

For n � 1 let

S�0n =
nX
i=1

(Xi � �) I(jXi��j < dn�):

It follows that �����S�n � (S�0n + n�)p
Bn

����� P! 0:



In view of that and the fact that

Bn

BN
s
�
n

N

�1+�(2�)
= t

and

S�0n + n�p
Bn

s
S�0np
Bn

+ �
N [1��(2�)]=2

K1=2b(2�)=2
t1=[1+�(2�)];

one can approximate S�n with a Brownian motion with a
nonlinear drift:

W (t) + �
N [1��(2�)]=2

K1=2b(2�)=2
t1=[1+�(2�)]:

Consequently, the power function of the RST can be ap-
proximated by



1� P

0@
����W (t) + �N

[1��(2�)]=2

K1=2b(2�)=2
t1=[1+�(2�)]

����
< bt0(�)

p
t; t0 � t � 1

1A :

The power computation boils down to computing:

P
�
jW (t) + ct�j < b

p
t for all t 2 [t0; 1]

�
;

where 1=2 < � < 1. Since

P
�
�b
p
t� ct� < W (t) < b

p
t� ct� for all t 2 [t0; 1]

�
=
Z bpt0�ct�0
�b
p
t0�ct

�
0

P

0@ �b
p
t� ct� < W (t) <

b
p
t� ct� for all t 2 [t0; 1]

����W (t0) = x

1A�
P
�
W (t0) 2 dx

�
;

computing the power function is equivalent to solving the
following problem. Consider the domain



D =
n
(x; y) : �t0 � y � 1� t0;

�b
p
t0 + y � c(t0 + y)� < x < b

p
t0 + y � c(t0 + y)�

o
:

Let �D(x; y) be the �rst time when the �degenerated�
two-dimensional di¤usion

(xt; yt) = (x +W (t); y + t) exits from the domain D,
where (x; y) belongs to the interior of the domain D.

What is the probability that a Brownian motion start-
ing at point x and at time y will stay inside the curved
boundaries, i.e.

P
�
y�D(x;y) = 1� t0

�
?



The generating operator of the di¤usion (xt; yt) is given
by

1

2

@2

@x2
+
@

@y
:

By Venttsel (1996, p. 333) the function

v(x; y) = P
�
y�D(x;y) = 1� t0

�

is the unique solution of the PDE

1

2

@2v

@x2
(x; y) +

@v

@y
(x; y) = 0 (x; y) 2 D;

that satis�es the following boundary conditions:



1. v(�b(t0 + y)1=2 � c(t0 + y)�; y) � 0,

2. v(x; 1� t0) � 1.

We can solve this parabolic equation numerically which
in turn will yield an approximation for the power function
of the RST.



Numerical Results

In Table 2 we present approximations for the power func-
tion of the RST for the Cauchy distribution for various
choices of � computed via the Brownian motion approx-
imation and by simulations .

The initial sample size n is 100. The target sample size

N0 is 303. These choices correspond to the �rst row
of Table 1. However, in this case we choose a higher
truncating level

dn = dn� = 5n
1=4
. The multiplier d = 5 is taken

in order to get a good approximation by the Brownian
motion with the nonlinear

drift. Note that the multiplier d does not have an e¤ect
on the approximation for the probability of type I error .



For the Cauchy distribution K = 2=� and  = 1.

� BM approx BM approx Sim
(4 re�nm) (5 re�nm) (1000 sim)

0 .0508 .0505 .044 (.0503)
.25 .1918 .1913 .183
.5 .5958 .5962 .557
.75 .9185 .9186 .907
1 .9948 .9948 .991

Table 2. Approximations for the Power Function .



Concluding Remarks and Future Work

1. Evaluating E(� ) and Var(� ).

2. Approximating P(� � n).

3. Approximating the P-value of the RST

4. Con�dence interval for �; after the RST rejects
H0.

5. Multivariate RST


