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Part I Visualization of COVID-19 
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US Epidemic

Cumulative cases at the county level of US
• About 150 counties have not reported a case (grey blocks)
• Epicenters in major metropolitans
• We should all go to Montana!
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Part II Statistical Modeling for COVID-19
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Compartmental Models – Classic approaches

• A generative dynamic mathematical model mimicking how 
infectious diseases spread through the entire life circle

• During an epidemic, the entire population is divided into 
compartments, corresponding to different stages of a disease

• Individuals in the same compartment have the same 
characteristics

• Interested in: how individuals flow through compartments over 
time, i.e., the dynamics of the spread of the disease
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Compartmental Models: SIR

SIR model: Susceptible, Infectious and Removed

• S: Do not have the disease and can be infected

• I: Have the disease and can infect others

• R: Had the disease but then removed from the possibility of 
being infected again or spreading the disease (deceased or 
recovered)

o Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical theory 
of epidemics. Proceedings of the Royal Society of London, Series A, 115(772):700–721. 

o Weiss, H. (2013). The SIR model and the foundations of public health. Materials 
Matematics, 2013(3):1–17. 
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Deterministic Compartmental Models

• Characterize the flow of individuals through a set of differential 
equations

• Given initial values & parameters, deterministic trajectory

• SIR model:
d𝑆!
d𝑡 = −

𝛽
𝑁𝑆!𝐼!,

d𝐼!
d𝑡 =

𝛽
𝑁𝑆!𝐼! − 𝛼𝐼!,

d𝑅!
d𝑡 = 𝛼𝐼!

Susceptible 𝑆 Infectious 𝐼 Removed 𝑅

𝛽𝑆𝐼/𝑁 𝛼𝐼
!"
#

à expected number of contacts of susceptible people per unit time
𝛼 à expected number of removals per person per unit time
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Deterministic Compartmental Models

SIR Model - Terminology:

• Disease transmission rate 
𝛽

• Removal rate
𝛼

• Infectious period
𝛼"#
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Deterministic Compartmental Models

SIR Model - Terminology:

• Basic reproduction number 
ℛ$ = 𝛽/𝛼

• Effective reproduction number 
ℛ% = 𝛽𝑆$ / 𝛼𝑁
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Discrete time approximation of SIR

𝑆!&# = 𝑆! −
𝛽
𝑁𝑆!𝐼!,

𝐼!&# = 𝐼! +
𝛽
𝑁𝑆!𝐼! − 𝛼𝐼!,

𝑅!&# = 𝑅! + 𝛼𝐼!
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• Add vital dynamics (births and deaths) & demographics 

• Add more compartments: Exposed but not infectious yet

• Allow more possible transitions across compartments: 
• Recovered and become susceptible again

𝑆 𝐼 𝑅

𝑆 𝐸 𝐼 𝑅

𝑆 𝐼 𝑅
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Deterministic Compartmental Models

o Gumel, A. B., Ruan, S., Day, T., Watmough, J., Brauer, F., Van den Driessche, P., Gabrielson, 
D., Bowman, C., Alexander, M. E., Ardal, S., Wu, J., and Sahai, B. M. (2004). Modelling 
strategies for controlling SARS outbreaks. Proceedings of the Royal Society of London. 
Series B: Biological Sciences, 271(1554):2223–2232. 
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Stochastic Compartmental Models

• Deterministic models are simple, easy to analyze, and reflects 
the “law of large numbers”.

• However, the spread of disease is naturally stochastic: disease 
transmission between two individuals is random rather than 
deterministic!
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Stochastic Compartmental Models

Stochastic SIR Model:
𝑆!, 𝐼!, 𝑅! is a continuous time Markov chain

• Each infectious individual makes effective contacts (sufficient 
for disease transmission) with any specific individual in the 
population at times given by a Poisson process of rate β/N, 
and assume all Poisson processes are independent of each 
other. (Expected number of effective contacts made by each 
infectious individual is β per unit time.)

• The infectious period (length of an infectious individual 
being infectious before getting removed) follows an 
exponential distribution with mean 𝛼"#.
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Stochastic Compartmental Models

Stochastic SIR Model:
𝑆!, 𝐼!, 𝑅! is a continuous time Markov chain

• Within ](𝑡, 𝑡 +𝛿 , (𝛿 small) each susceptible individual 
independently avoids infection with probability exp −𝛽𝑖𝛿/𝑁 ;

• Each infectious individual independently avoids removal with 
probability exp −𝛼𝛿

• Then, 

𝑃𝑟 𝑆!"#, 𝐼!"# = 𝑠 − 1, 𝑖 + 1 𝑆!, 𝐼! = 𝑠, 𝑖 =
𝛽𝑠𝑖𝛿
𝑁 + 𝑜 𝛿

𝑃𝑟 𝑆!"#, 𝐼!"# = 𝑠, 𝑖 − 1 𝑆!, 𝐼! = 𝑠, 𝑖 = 𝛼𝑖𝛿 + 𝑜 𝛿
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Stochastic Compartmental Models

Stochastic SIR Model:
𝑆!, 𝐼!, 𝑅! is a continuous time Markov chain

• Usually need individual-level data (time of infection, removal, 
etc. for each individual, some may be latent) to make 
inference
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Stochastic Compartmental Models

Stochastic SIR Model – Discrete-time Approximation:
𝑆!, 𝐼!, 𝑅! is a discrete-time Markov chain

• Within ](𝑡, 𝑡 +1 , each susceptible individual independently 
avoids infection with probability exp −𝛽𝑖/𝑁 ;

• Each infectious individual independently avoids removal with 
probability exp −𝛼
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Stochastic Compartmental Models

Stochastic SIR Model – Discrete-time Approximation:
𝑆!, 𝐼!, 𝑅! is a discrete-time Markov chain

• Then,
𝑆!&# = 𝑆! −𝐴!

𝐼!&# = 𝐼! +𝐴! −𝐵!
𝑅!&# = 𝑅! +𝐵!

where
𝐴! ~ Bin 𝑆!, 1 − 𝑒"'($/*
𝐵! ~ Bin 𝐼!, 1 − 𝑒"+
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Stochastic Compartmental Models

Stochastic SIR Model – Discrete-time Approximation:
• A similar model was used in

Lekone, P. E. and Finkensta ̈dt, B. F. (2006). Statistical inference in a stochastic 
epidemic SEIR model with control intervention: Ebola as a case study. Biometrics, 
62(4):1170– 1177. 
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Stochastic Compartmental Models

Stochastic SIR Model – Discrete-time Approximation:
𝑆!, 𝐼!, 𝑅! is a discrete-time Markov chain

𝐴! ~ Bin 𝑆!, 1 − 𝑒"'($/* ≈ Pois 𝛽𝑆!𝐼!/𝑁
𝐵! ~ Bin 𝐼!, 1 − 𝑒"+ ≈ Pois 𝛼𝐼!
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Stochastic Compartmental Models
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Stochastic Compartmental Models
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State-space Compartmental Models

• Can be seen as statistical models built on deterministic 
compartmental models

• Deterministic model with randomness to account for measurement 
error & process error (but in a way different from stochastic 
compartmental models)

• Recently becoming popular in statistics literature
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State-space Compartmental Models: Example 2
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Our state-space model for COVID-19:

Bayesian Hierarchical 
Semiparametric modeling
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Susceptible 𝑆 Undocumented
Infectious 𝐼%

Documented
Infectious 𝐼& Removed 𝑅

𝛽𝑆 𝐼% + 𝐼& /𝑁 𝛾 1− 𝛼 𝐼%

𝛼𝐼%

𝛼𝐼&

Model for COVID-19: Compartments
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Some parameters vary over time

• Disease transmission rate: 𝛽 → 𝛽!
• Diagnosis rate: 𝛾 → 𝛾!
• Removal rate: 𝛼 (not time-varying)
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• 𝐵!"#: number of new confirmed cases between day 𝑡 − 1 and 𝑡, 
our observed data

• Epidemic process is fully determined by the initial values, 
parameters, and observations 
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Model for COVID-19: Observed Data

• 𝐵! = 𝛾! 1 − 𝛼 𝐼!$

• :𝛾! = log − log 1 − 𝛾!

• :𝛾! ~𝑁 𝒚!%𝜼, 𝜎&'
For simplicity, 𝒚! = 1
Prior: 𝜼 and 𝜎&' follow normal-inverse-gamma
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Model for COVID-19: Prior

• 𝐼() known (set at 100) , ⁄𝐼($ 𝐼() ~ Gamma, 

• 𝑅( = 0, 𝑆( = 𝑁 − 𝐼($ − 𝐼() −𝑅(

• E𝛽! = log 𝛽! , E𝛽! ~ Gaussian Process

• 𝛼"# ~ Gamma
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Model for COVID-19: Parallel Tempering
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Model for COVID-19: Simulation
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Results: Effective Reproduction Number
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Results: Test of Fit
• Johnson (2004): Bayesian chi-square test for goodness-of-fit
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Results: Within-sample Prediction
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Results: Out-of-sample Prediction
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Future Works

• State-space compartmental models built on deterministic models 
are quite flexible & easier to make inference compared to stochastic 
models

• Future:

§ Model epidemiological parameters (regression, time-dependent, 
hierarchical, flexible form using Bayesian nonparametrics like GP)

§ Recurring and seasonal trends

§ Borrow information from other countries and states
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