IHE Department

B THE UNIVERSITY OF of
& CHICAGOQ | public Health sc iences

ASA DATA SCIENCE IN ACTION
IN RESPONSE TO THE OUTBREAK
OF COVID-19

BaySIR: A Bayesian
Semiparametric
Compartmental Models for
Modeling COVID-19 Epidemics

Tianjian Zhou, Ph.D.
Yuan Ji, Ph.D.
Department of Public Health Sciences

The University of Chicago

Paper: https://arxiv.org/pdf/2006.05581.pdf
Software: https://github.com/tianjianzhou/BaySIR



https://arxiv.org/pdf/2006.05581.pdf
https://github.com/tianjianzhou/BaySIR

Visualization of COVID-19
I Pa rt I Pandemic



Number of daily new positive

Daily new tests and positive

07[02
o “

6 06/30
07/05

04,9809

Og%fa w? 5 04423

04/06
04004 9

Rl 2]

03430

42

of!
0403k 100

0426 04,29

0428 9%8pe

7 0504 ogfﬁgs 0540152‘13

0425
0501

04422
05{14
05409 08g}56

o Vs

0:

032
032%6

0325

s o511
05(26 08

0625
06429

#

48405
Number of daily new tests

US Case and Test

Numbers




2020-06-08

50-

| Counts

l 1000000
100000
L -
10000
40 - H—l | 1000
100

10
0

lat

30-

Cumulative cases at the county level of US

« About 150 counties have not reported a case (grey blocks)
+ Epicenters in major metropolitans

+ We should all go to Montana!



2020-07-08

50-

Counts

1000000
A 100000
10000
40- : : :l 1000
1 100

10
0

at

30-

Cumulative cases at the county level of US

« About 150 counties have not reported a case (grey blocks)
+ Epicenters in major metropolitans

+ We should all go to Montana!



0 T T T T T T T T 1
2020-02-28  2020-03-15  2020-03-31 2020-04-16  2020-05-02  2020-05-18  2020-06-03  2020-06-19  2020-07-05

US COVID-19 Death
Numbers




Advanced

Visualizati
on Of http://covidl9.laiyaconsulting.com/
COVID-19

Pandemics


http://covid19.laiyaconsulting.com/

@8] THE UNIVERSITY OF
® CHICACO |Soprtmentot e

.24

Pa I‘t II Statistical Modeling for COVID-19



@& THE UNIVERSITY OF
w E:sﬁ;t:ineea':::;ciences
X

Compartmental Models — Classic approaches

A generative dynamic mathematical model mimicking how
iInfectious diseases spread through the entire life circle

During an epidemic, the entire population is divided into
compartments, corresponding to different stages of a disease

Individuals in the same compartment have the same
characteristics

Interested in: how individuals flow through compartments over
time, 1.e., the dynamics of the spread of the disease
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Compartmental Models: SIR

SIR model: Susceptible, Infectious and Removed

S: Do not have the disease and can be infected

I: Have the disease and can infect others

R: Had the disease but then removed from the possibility of
being infected again or spreading the disease (deceased or
recovered)

o Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical theory
of epidemics. Proceedings of the Royal Society of London, Series A, 115(772):700-721.

o Weiss, H. (2013). The SIR model and the foundations of public health. Materials
Matematics, 2013(3):1-17.
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Deterministic Compartmental Models

* Characterize the flow of individuals through a set of differential
equations

* Given initial values & parameters, deterministic trajectory

* SIR model:
s, B dl, B dR;
a =TSy g T ySdeale g =l

Susceptible S |=>»{ Infectious! |=>»| Removed R

BSI/N al

S . o
% - expected number of contacts of susceptible people per unit time
a =2 expected number of removals per person per unit time
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A stylized example of the life circle for an
epidemic
SIR model
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Deterministic Compartmental I\/Iodels

SIR Model - Terminology:

* Disease transmission rate

B

* Removal rate

* Infectious period
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Deterministic Compartmental I\/Iodels

SIR Model - Terminology:
* Basic reproduction number
Ro =P/

* Effective reproduction number

Re = (BSp)/(aN)

Theorem 2.1. 1. If R. <1, then I(t) decreases monotonically to zero as
t — o0.

NS

If R, > 1, then I(t) starts increasing, reaches its maximum, and then
decreases to zero ast — oo. We call this scenario of increasing numbers
of infected individuals an epidemic.
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Discrete time approximation of SIR

B
St+1 =St — Nstlt:

It+1 = It + %Stlt - alt,

Rev1 = Re taly
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SIR Model - Extensions?
* Add vital dynamics (births and deaths) & demographics

— S I R |—

* Add more compartments: Exposed but not infectious yet

S E I R

* Allow more possible transitions across compartments:
* Recovered and become susceptible again

S I R
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o Gumel, A. B,, Ruan, S., Day, T., Watmough, J., Brauer, F., Van den Driessche, P., Gabrielson,
D., Bowman, C., Alexander, M. E., Ardal, S., Wu, J., and Sahai, B. M. (2004). Modelling
strategies for controlling SARS outbreaks. Proceedings of the Royal Society of London.
Series B: Biological Sciences, 271(1554):2223-2232.
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Figure 1. Schemauc flow diagram for the SARS model (2.1)-(2.6). The model consists of six sub populations: susceptible (S(7)),
asymptomatic (E(r)), quarantined (Q(r) ), symptomatic (I(r)), isolated (J(r)) and recovered (R(r)) individuals in a population of N
(O] S + E@) + Q@) +1() + J(@) + R(r) individuals.
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Stochastic Compartmental Models

* Deterministic models are simple, easy to analyze, and reflects
the “law of large numbers” .

* However, the spread of disease is naturally stochastic: disease
transmission between two individuals is random rather than

deterministic!
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Stochastic Compartmental Models
Stochastic SIR Model:

(St I, Ry) is a continuous time Markov chain

* Each infectious individual makes effective contacts (sufficient
for disease transmission) with any specific individual in the
population at times given by a Poisson process of rate /N,
and assume all Poisson processes are independent of each
other. (Expected number of effective contacts made by each
infectious individual is B per unit time.)

* The infectious period (length of an infectious individual

being infectious before getting removed) follows an

exponential distribution with mean a1,



Stochastic Compartmental Models
Stochastic SIR Model:

(St I, Ry) is a continuous time Markov chain

« Within (¢, t +6], (6 small) each susceptible individual
independently avoids infection with probability exp(—Bid/N);

* Each infectious individual independently avoids removal with
probability exp(—ad)

* Then,

1o)
Pri{(Sess levs) = (s =1L, i+ D[S, I) = (s,1)} = ﬁ% + 0(6)
Pri(St+s:It+s) = (5,1 = DI(St, 1) = (5,0} = aid + 0(6)



Stochastic Compartmental I\/Iodels
Stochastic SIR Model:

(St I, Ry) is a continuous time Markov chain

* Usually need individual-level data (time of infection, removal,
etc. for each individual, some may be latent) to make
iInference



Stochastic Compartmental Models
Stochastic SIR Model — Discrete-time Approximation:

(St I, Ry) is a discrete-time Markov chain

* Within (¢, t +1], each susceptible individual independently
avoids infection with probability exp(—Bi/N):

* Each infectious individual independently avoids removal with
probability exp(—a)



Stochastic Compartmental Models
Stochastic SIR Model — Discrete-time Approximation:

(St I, Ry) is a discrete-time Markov chain

* Then,
Sty1 =St — 4
Iyyq =1t + Ay — By
Riy1 =Ry + By
where

At ~ Bin(St, 1-—- e_ﬁlt/N)
Bt ~ Bin(lt, 1 - e_a)



Department of
Public Health Sciences

® CHICAGO

Stochastic Compartmental Models
Stochastic SIR Model — Discrete-time Approximation:

BIOMETRICS 62, 11701177

December 2006

Statistical Inference in a Stochastic Epidemic SEIR Model
with Control Intervention: Ebola as a Case Study

A similar model was used in

Lekone, P. E. and Finkenstadt, B. F. (2006). Statistical inference in a stochastic
epidemic SEIR model with control intervention: Ebola as a case study. Biometrics,

62(4):1170- 1177.

Phenyo E. Lekone" and Birbel F. Finkenstiadt

Department of Statistics, University of Warwick, Coventry CV4 7TAL, U.K.

* email: lekonepe@mopipi.ub.bw

DOI: 10.1111/j.1541-0420.2006.00609.x

Given initial conditions S(0) = s, E(0) = ey, I(0) = a, and
the population size N, the discretized stochastic SEIR model

is specified by

S(t+ h) = 8(t) - B(t), (1)
E(t+h)=E(t)+ B(t) - C(t), (2)
I(t+ h) = I(t) + C(t) — D(t), (3)
S(t) + E(t) + I(t) + R(t) = N, (4)

where

B(t) ~ Bin(S(t), P(t)), C(t) ~Bin(E(t), pc),

D(t) ~ Bin(I(t),pg) (5)
are random variables with binomial Bin(n, p) distributions

with probabilities

P(t) 1 — exp

i)
N l:l(lll. Pe 1 — exp(—ph),

pr = 1 —exp(—vh) (6)
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Stochastic SIR Model — Discrete-time Approximation:

(St I, Ry) is a discrete-time Markov chain

A ~ Bin(S;, 1 — e PIt/N) ~ Pois(BS,I;/N)
B; ~ Bin(l;,1 — e~ %) = Pois(al;)

The core model structure (Equations 1-5) was integrated stochastically using a 4™ order Runge-
Kutta (RK4) scheme. Specifically, for each step of the RK4 scheme, each unique term on the
righthand side (rhs) of Equations 1-4 was determined using a random sample from a Poisson
Substantial undocumented infection facilitates the rapid distribution, i.e.

dissemination of novel coronavirus (SARS-CoV2)

Ruiyun Li'*, Sen Pei**t, Bin Chen™, Yimeng Song’, Tao Zhang’, Wan Yang', Jeffrey Shaman*f

BSili

i

Ul = Pois(

o i contredeas B b Bt uBS ¢
{Cemepanding author. Emi: 3449 o cskumbia o (5.2 106 cums.cokarbia o (15) U2 = Pois | ——+

Estimation of the prevalence and contagiousness of undocumented novel coronavirus (SARS-CoV2) N

infections is critical for understanding the overall prevalence and pandemic potential of this disease. Here t

we use observations of reported infection within China, in conjunction with mobility data, anetworked

dynamic metapopulation model and Bayesian inference, to infer critical epidemiological characteristics M;:S

associated with SARS-CoV2, including the fraction of undocumented infections and their contagiousness. X ij

We estimate 86% of all infections were undocumented (95% CI: [82%-90%)) prior to 23 January 2020 U3 = Pois | 6 .

travel restrictions. Per person, rate of infections was 55% of documented N, —1I"
0 ] j
j J

infections ([46%-62%), yet, due to their greater numbers, undocumented infections were the infection
source for 79% of documented cases. These findings explain the rapid geographic spread of SARS-CoV2
and indicate containment of this virus will be particularly challenging
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Stochastic Compartmental Models

Jayesian Analysis (2009) 4, Number 4, pp. 465-496

Bayesian Analysis for Emerging Infectious
Diseases

Chris P Jewell*, Theodore Kypraios', Peter Neal' and Gareth O. Roberts

Abstract. Infectious diseases both within human and animal populations often
pose serious health and socioeconomic risks. From a statistical perspective, their
prediction is complicated by the fact that no two epidemics are identical due to
changing contact habits, mutations of infectious agents, and changing human and
animal behaviour in response to the presence of an epidemic. Thus model param
eters governing infectious mechanisms will typically be unknown. On the other
hand, epidemic control strategies need to be decided rapidly as data accumulate
In this paper we present a fully Bayesian methodology for performing inference
and online prediction for epidemics in structured populations. Key features of
our approach are the development of an MCMC- (and adaptive MCMC-) based
methodology for parameter estimation, epidemic prediction, and online assessment
of risk from currently unobserved infections. We illustrate our methods using two
complementary studies: an analysis of the 2001 UK Foot and Mouth epidemic,
and modelling the potential risk from a possible future Avian Influenza epidemic
to the UK Poultry industry.
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BayeS|an Nonparametrics for Stochastic
Epidemic Models

Theodore Kypraios and Philip D. O’Neill

Abstract.  The vast majority of models for the spread of communicable dis-
eases are parametric in nature and involve underlying assumptions about how
the disease spreads through a population. In this article, we consider the use
of Bayesian nonparametric approaches to analysing data from disease out-
breaks. Specifically we focus on methods for estimating the infection pro-
cess in simple models under the assumption that this process has an explicit
time-dependence.

Key words and phrases: Bayesian nonparametrics, epidemic model, Gaus-
sian process.
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State-space Compartmental Models

* (Can be seen as statistical models built on deterministic
compartmental models

* Deterministic model with randomness to account for measurement
error & process error (but in a way different from stochastic
compartmental models)

* Recently becoming popular in statistics literature
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State-space Compartmental Models: Example 1

Tracking Epidemics With Google Flu Trends Data
and a State-Space SEIR Model

Vanja Dukic, Hedibert F. LOPES, and Nicholas G. POLSON

In this anticle, we use Google Flu Trends data together with a sequential surveillance model based on state-space methodology to track
the evolution of an epidemic process over time. We embed a classical mathematical epidemiology model [a susceptible-exposed-infected
recovered (SEIR) model] within the state-space framework, thereby extending the SEIR dynamics to allow changes through time. The
implementation of this model is based on a panticle filtering algonithm, which leams about the epidemic process sequentially through time
and provides updated estimated odds of a pandemic with each new surveillance data point. We show how our approach, in combination
with sequential Bayes factors, can serve as an online diagnostic tool for influenza pandemic. We take a close look at the Google Flu Trends
data describing the spread of fluin the United States during 2003-2009 and in nine separate U.S. states chosen to represent a wide range of
health care and emergency system strengths and weaknesses. This anticle has online supplementary materials

KEY WORDS: Flu: Google correlate: Google insights: Google searches: Google trends; HINI: Infectious Discases: Influenza: IP surveil
lance; Nowcasting: Online surveillance: Panticle filtering
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State-space Compartmental Models: Example 1

Due to the nature of ILI surveillance data. our observations
will consist only of noisily observed weekly counts of ILI visits,
I,. which can be thought of as a proxy to the true fraction of

infected population, /;, ineach week-long time period (r — 1. t]. Journal of the American Statistical Association, December 2012
Instead of working directly with /; however, we will model the
observed growth rate of the infectious population, y; = (I; — expressed as follows:

I;1)/I;—;. This leads to the following state-space model for the

St =81 —BS;-1I,_1/N
growth rate:

Vi =g +& & ~ N(0.02) 3) E,
El 1

lll

We will refer to Equation (3) as the “observation equation™
and Equation (4) as the “evolution equation” for the growth
rate. The mean component of Equation (4) is derived from the
deterministic evolution of /,_; based on the discretized SEIR
model (2) above, with the true number of infections /, related
to g via I, = (1 + g,)I,_;. With the infectious state /; modeled

(1 —a)E,; 1+ﬁS, oI 1;";\"

g =—y+a +e & ~N(0,07)). )

l, =(|—}’)I, [‘+'(XE, 1

RI=RI I+)’lr I
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State-space Compartmental Models: Example 2

The Annals of Applied Statistics

2007, Nol, 1, No, 1, 202-224

DOLE 1012 14/16-A0AS 1000

© Institute of Mathematical Statistics, 2017

FORECASTING SEASONAL INFLUENZA WITH A STATE-SPACE
SIR MODEL'

BY DAVE OSTHUS* ", KYLE S. HICKMANN*, PETRUTA C. CARAGEA",
DAVE HIGDON®® AND SARA Y. DEL VALLE*

Los Alamos National Laboratory*, lowa State University', and Virginia Tech*
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State-space Compartmental Models: Example 2

error) simultaneously. The state-space model we propose, henceforth referred to
as the Dirichlet-Beta state-space model (DBSSM), is defined as

(4.1a) il6r, ¢ ~ Beta(20! 1 (1 —6/1)),
(4.1b) 0¢16;—1, ¢ ~ Dirichlet(x f (6,1, B, V)).
where y; is ILI+ attime r = 1,2, ..., T,6,= 6,6/, 6F) represents the true but

unobservable susceptible, infectious, and recovered proportions of the population,
respectively, ¢ = {0y, v, B,k, A} where y > 0 is the recovery rate, § > 0 is the
disease transmission rate, k > 0 controls the variance of equation (4.1b), A > 0
controls the variance of equation (4.1a), and f (0,1, B.y) € R? is defined in detail
in the following paragraph. Furthermore, 6% + 6! + 6 =1and 6>, 6/, 6% > 0 for
all . The DBSSM assumes 6y.7 = (6g, 01, ..., 07) is a first-order Markov chain
(i.e., [0:1600:¢:—1)] = [0,]6;—1] for all t) and for all  # s, y, is independent of yy,
given 0,.
We define f(-) as the solution to equation (4.2),

des . I . dor
e — 9591. — 989/ . (_)I. R
dt p dt p 4 dt

starting the ODE at 6, ;. The solution to equation (4.2) is not known explicitly,

(4.2) =y6!,
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Our state-space model for COVID-19:

Bayesian Hierarchical
Semiparametric modeling
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Model for COVID-19: Compartments

alV
. Undocumented Documented
Susceptible 3 _< Infectious 1Y } Infectious 1P —>| Removed R
BS(1Y + IP) (1 —a)IV alP




Model for COVID-19: Epidemiological Parameters

Some parameters vary over time

* Disease transmission rate: f = [
* Diagnosis rate: y = V¢
* Removal rate: a (not time-varying)
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Model for COVID-19: Epidemic Process

Sy =Si-1 = BiaSia (I + 121)/N,
[fj =(1-— a)lt,(il + /81,—15!,—1([&('11 + [1,21)/1\/ — By,
[[P = (1 — Of)[fil + Bl,—lv

Ry = Ry + a(lL + 12,),

* B:_1: number of new confirmed cases between day t — 1 and t,
our observed data

* Epidemic process is fully determined by the initial values,
parameters, and observations



Model for COVID-19: Observed Data

* By = Vt(l - a)ltu
* ¥ =log(—log(1l—1y.))
* #e~N(yin, of)

For simplicity, y; = 1
Prior: i and aﬁ follow normal-inverse-gamma
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Model for COVID-19: Prior

* I8 known (set at 100) , I{ /1§ ~ Gamma,

Ry=0,So=N-1Y -1 — R,

,6~’t = log(B;), Et ~ Gaussian Process

e a1~ Gamma
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Model for COVID-19: Parallel Tempering
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(a) IV using PT, z¢ = 0.38 (b) 1Y not using PT, z¢ = 4.46
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0 200 400 600 800 1000 0 200 400 600 800 1000
(¢) n using PT, zg = —0.30 (d)  not using PT, zg = —5.90

Figure 2: Markov chains for IJ and 7 using (a, c¢) or not using (b, d) parallel tempering.
The posterior correlation of I§ and 7 is —0.82. The value z refers to Geweke’s z-score for
convergence diagnostic. All chains are based on 30,000 iterations (discarding first 10,000

iterations as burn-in and keeping 1 draw every 20 iterations).
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Model for COVID-19: Simulation
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Figure 3: The upper panel shows the simulated daily confirmed cases for the three scenarios.
The lower panel shows the estimated time-varying effective reproduction numbers (solid
black line), 95% credible intervals (grey band), and simulation truth (dashed red line) for

the three scenarios.
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Results: Test of Fit

* Johnson (2004): Bayesian chi-square test for goodness-of-fit

15 20
1 1

10
1

Sorted o values

o

T T T

T T
0 5 10 15 20
Expected order statistics

Figure 5: Quantile-quantile plot of posterior samples of the test statistic w against expected

order statistics from a y? distribution for the Bayesian x? test
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Results: Within-sample Prediction
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Figure 6: Within-sample forecasts for Illinois using 20-day, 40-day or 60-day training data.
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Results: Out-of-sample Prediction
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Figure 7: Out-of-sample forecasts for Illinois in the next 30 days. (a) Observed daily
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Future Works

* State-space compartmental models built on deterministic models

are quite flexible & easier to make inference compared to stochastic
models

* Future;

"= Model epidemiological parameters (regression, time-dependent,
hierarchical, flexible form using Bayesian nonparametrics like GP)

" Recurring and seasonal trends

= Borrow information from other countries and states
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