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Background Introduction

State Infection Death

United States 1009258 52945

New York 295137 17638

New Jersey 113856 6442

Massachusetts 58302 3153

Illinois 48102 2132

California 46570 1884

Pennsylvania 45323 2092

Michigan 39234 3566

Florida 32838 1170

Louisiana 27286 1758

Texas 26865 738

Connecticut 26312 2089

Georgia 23607 1022

Maryland 20113 929

Until April 29, 2020

• 12-31-2019: WHO says mysterious 

pneumonia sickening dozens in China

• 01-11-2020: China reports 1st novel 

coronavirus death

• 01- 21,-2020: 1st confirmed case in the 

United States

• 01- 23-2020: China imposes strict 

lockdown in Wuhan

• 01-30-2020: WHO declares global health 

emergency

• 02-05-2020: Diamond Princess cruise 

ship quarantined

• 02-26-2020: 1st case of suspected local 

transmission in United States

• 03-03-2020: CDC lifts restrictions for 

virus testing

• 03-13-2020: Trump declares national 

emergency

• 03-15-2020: CDC warns against large 

gatherings

• 03-17-2020: Coronavirus now present in 

all 50 states

• 03-17-2020: Northern Californians 

ordered to “shelter in place”

• 03-20-2020: New York City declared US 

outbreak epicenter

• 03-26-2020: United States leads the 

world in COVID-19 cases

• 04-02-2020: Global cases hit 1 million
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Research Goals

Goal 1. Develop a dynamic epidemic modeling framework to
study the spatial-temporal pattern of the spread of COVID-19.

Goal 2. Investigate how factors contribute to the spread of
COVID-19.

Goal 3. Estimate and forecast the spatial-temporal pattern of
the spread of the virus in the US up to the county level.

Goal 4. Provide a user-friendly tool to visualize, track and
predict the infected and death cases of COVID-19 in the US.
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A Summary of Our Research and Products

Statistical Modeling

Mathematical Modeling Forecasting Data Products

Susceptible
(S)

Infection
(I)

Removed
(R)

Local Area
Characteristics
• Control Policies
• Demographic
• Socioeconomic

… …

Epidemic Data
• Confirmed cases
• Death cases
• Recovered cases

… …

Uncertainty

COVID-19 US Dashboard

Mobile Apps
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County-level Epidemic Data 1

48 mainland U.S. states and the District of Columbia;

3,104 counties in total;

Reported cases: infection, death, recovery.

1
Health Department Websites, NYT, COVID-19 Data Repository by JHU CSSE, COVID Tracking Project.
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County-level Features 2

Healthcare
EHPC, NHIC, 

TBed

Demographic
AA, HL, PD, 

Old, Sex

Control Policy
Social distancing,
Shelter-in-place

Geographic
Lat, Lon

Urban
Rural

Socioeconomic
Affluence, 

Disadvantage, 
Gini

2
U.S. Census Bureau and U.S. Department of Homeland Security.
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Challenges

MODELING

The underlying disease
transmission process is
unobservable.

There is a lot of uncertainty
about what is observed.

Contributions of the factors
are unknown.

The dynamics of the spread
is highly nonlinear and
complex.

FORECAST

Can we provide an accurate
short-term forecast?

How far the virus will spread and
how many lives it will claim?

Can we project the timing of the
outbreak peak and the number of
health resources required at a
peak?

What is the uncertainty associated
with the forecast?
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Spatio-Temporal Epidemic Modeling (STEM)
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SIR Models

Susceptible
(S)

Infection
(I)

Removed
(R)

Bilinear Incidence RatesKermack & Mckendrick
(1927)

SIR/SEIR related papers for COVID-19: Pan, et al. (2020), Sun, et al. (2020), Wang,
et al. (2020), Zhang, et al. (2010), and others.
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SIR Models

Susceptible
(S)

Infection
(I)

Removed
(R)

Bilinear Incidence Rates Nonlinear Incidence RatesKermack & Mckendrick
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SIR Models

Susceptible
(S)

Infection
(I)

Removed
(R)

Bilinear Incidence Rates Nonlinear Incidence Rates

Epidemic Data

Kermack & Mckendrick
(1927) Liu, et al. (1987)

SIR/SEIR related papers for COVID-19: Pan, et al. (2020), Sun, et al. (2020), Wang,
et al. (2020), Zhang, et al. (2010), and others.
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Mathematical Models vs. Statistical Models

Statistical Models

Pattern

Stochastic

Phenomeno
-logical

Mathematical Models

Process

Deterministic
Theoretical

v Explicitly model nonlinearities in the 
process

v Represent the average behavior 
v Focus is on model form, not parameter 

estimation for observed data

v Data speak for themselves 
v Provide a variety choices of errors 
v Often describe the observed data
v Focus is on the pattern, little information 

about the mechanism
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An Interface between Mathematical and Statistical Models

We investigate the disease dynamics by working at the interface of
theoretical models and empirical data by combining the advantages
of mathematical and statistical models.

Temporal Structure

Epidemic Data

Spatiotemporal Structure

Area-level Epidemic Data
(Ui : spatial coordinates)

Spatiotemporal + Covariates

• Area-level Epidemic Data
• Control Measures
• Local Factors

+ covariate effecti
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Spatio-Temporal Epidemic Modeling (STEM)

Suppose there are n counties. For the ith county on day t, we
assume that the new increased infection cases:

Yit |Ii ,t−1,Zi ,t−1,Ai ,t−r ,Xi ,Ui ∼ Poisson(µit),

Time-varying Covariates
(Control measures)

County-level Covariates
(Socioeconomic, demographic, … …)

Zit = log (Sit/Ni)

with E(γkt) = 0, k = 1, . . . , q, for model identifiability.
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STEM: Estimation
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Moving Window Penalized Quasi-likelihood Method

For the current time t, and the estimation window [t − t0, t], we
maximize the penalized quasi-likelihood:

n∑
i=1

t∑
s=t−t0

L

[
g−1

{
β0(Ui ) + β1(Ui ) log(Ii,s−1) + α0Zi,s−1 (1)

+

p∑
j=1

αjAij,s−r +

q∑
k=1

γk(Xik)

}
,Yis

]
− 1

2

{
λ0E(β0) + λ1E(β1)

}
,

where the energy functional is defined as:

E(β) =

∫
Ω

{
(∇2

u1
β)2 + 2(∇u1∇u2β)2 + (∇2

u2
β)2
}
du1du2.
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Moving Window Penalized Quasi-likelihood Method

Using spline basis expansion (Wang, et al., 2020 3 ) with
smoothness constraints Hθ` = 0, ` = 0, 1, (θ` = Q2θ

∗
` ), the

penalized quasi-likelihood (1) can be changed to:

−
n∑

i=1

t∑
s=t−t0

L

[
g−1

{
B(Ui )

>Q2(θ∗0 + θ∗1 log(Ii,s−1)) + α0Zi,s−1

+

p∑
j=1

αjAij,s−r +

q∑
k=1

Φ>k (Xik)ξk

}
,Yis

]
+

1

2

1∑
`=0

{
λ`θ
∗>
` Q>2 PQ2θ

∗
`

}
.

We obtain the estimators of αj , β`(·), and γk(·):

α̂jt , j = 0, . . . , p.

β̂`t(u) = B(u)>Q2θ̂
∗
`t , ` = 0, 1,

γ̂kt(xk) = Φk(xk)>ξ̂kt , k = 1, . . . , q.

3
Check our R packages: Triangulation and BPST to generate splines over triangulation.

https://github.com/funstatpackages
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Spline Approximation and PIRLS Algorithm

The optimization can be done via the penalized iteratively
reweighted least squares (PIRLS):

Wood (2015), Yu et al. (2019) and Kim and Wang (2020).
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Modeling the Number of Fatal Cases

Infection (I)

Death (D)

Recovered (R)

,
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Modeling the Number of Fatal Cases

Temporal Structure

Epidemic Data

Spatiotemporal Structure

Area level Epidemic Data
(Ui : spatial coordinates)

Spatiotemporal + Covariates

• Area level Epidemic Data
• Control Measures
• Local Factors

+ covariate effecti
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Modeling the Number of Fatal Cases

Suppose Cit , Dit , and Rit are the total confirmed cases, fatal
cases and recovered cases, respectively.

The number of active cases is: Iit = Cit − Dit − Rit .

Let Y D
it = Dit − Di ,t−1 be the new fatal cases on day t.

Death Model:

Y D
it |Xi ,Ui , Ii ,t−1,Ai ,t−r ∼ Poisson(µDit ),

log(µDit ) = βD0t(Ui )+βD1t log(Ii ,t−1)+

p∑
j=1

αD
jtAij ,t−r+

q∑
k=1

γDkt(Xik).
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Modeling the Number of Recovered Cases

Limit of recovered data during the disease spread.

Q. How do you use the information on the recovered cases?

A. Compartmental models in epidemilology (Anastassopoulou
et al. 2020; Siettos and Russo 2013).

Suppose that νt is the recovery rate (estimate or prior medical
studies).

Recovery Model:

∆Ris = νt Ii ,s−1 + εis , s = t − t0, . . . , t.
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Zero-Inflated Models at the Early Stage of Outbreak

Early in an epidemic, there are many counties with zero daily
new infections (Yit) and new deaths (Y D

it ).

Assume the observed counts Y ∗it = Yit or Y D
it contributes to a

Zero-Inflated Poisson (ZIP) distribution as follows:

P(Y ∗it = y∗|Ii ,t−1,Zi ,t−1,Ai ,t−r ,Xi ,Ui )

=

1− p∗it , y∗ = 0,

p∗it
(µ∗it)

y∗

{exp(µ∗it)−1}y∗! , y∗ > 0.

Also, p∗it = logit(η∗it) with η∗it = a1 + {b + exp(a2)} log(µ∗it)
and a1, a2 are unknown parameters; see Wood et al. (2016).
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COVID-19: Estimation and Inference
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Estimation Models

STEM for infections:

log(µit) = β0t(Ui ) + β1t(Ui ) log(Ii ,t−1) + α0tZi ,t−1 + α2tControli ,2,t−7

+ γ1t(Ginii ) + γ2t(Urbani ) + γ3t(PDi ) + γ4t(Affluencei )

+ γ5t(Disadvantagei ) + γ6t(Tbedi ) + γ7t(AAi ) + γ8t(HLi )

+ γ9t(NHICi ) + γ10t(EHPCi ) + γ11t(Sexi ) + γ12t(Oldi )

STEM for deaths:

log(µDit ) = βD0t(Ui ) + βD1t log(Ii ,t−1) + αD
2tControli ,2,t−7

+ γD1tGinii + γD2tUrbani + γD3tPDi + γD4tAffluencei

+ γD5tDisadvantagei + γD6tTbedi + γD7tAAi + γD8tHLi

+ γD9tNHICi + γD10tEHPCi + γD11tSexi + γD12tOldi .
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Estimation and Inference Settings

Date: 03/23/20 – 04/25/20.

Estimation window length: 9 days.

Univariate splines: cubic splines, 2 interior knots.

Bivariate splines:

522 triangles, 306 vertices;
119 triangles, 87 vertices.

Estimation: coefficients, coefficient maps, and curves of
covariates.

Inference: simultaneous confidence band (SCB).
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SCB: Population Density per Square Mile of Land Area
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A Summary of County-level Factors

Control Policy (“shelter-in-place”) is highly significant;

Infections increase with Population Density;

Infections increase with African American Ratio;

Infections increase with Hispanic Latino Ratio;

Infections are higher in Urban areas;

Infections are lower when there are more healthy care
investments (Hospital Beds).
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STEM: Forecasting
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Forecasting COVID-19: How Difficult Is It?

Forecast

Da
ta

Transmission 

Mechanisms

Factors

1 Short-term Forecast
Clear time series trend;

Relatively easy, many existing
methods are available;

Less uncertainty about what is
observed.

2 Long-term Forecast
A lot of uncertainty;

Lack of good quality data;

Forecasts might affect what we
are trying to forecast.
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STEM: h-step ahead Prediction

Model Estimation

Obtain H-ahead 
prediction

Update

!"#,%&', (Δ*#,%&', (Δ+#,%&'

• ,-#,%&' = ,-#,%&'/0 − !"#,%&'
• !+#,%&' = !+#,%&'/0 + (Δ+#,%&'
• 3*#,%&' = 3*#,%&'/0 + (Δ*#,%&'
• ,4#,%&' = ,4#,%&'/0 + !"#,%&' − (Δ+#,%&' − (Δ*#,%&'.

• !"#,%&': plug in ,4#,%&'/0, ,-#,%&'/0 to 

infectious model.

• (Δ*#,%&': plug in ,4#,%&'/0 to death model.

• (Δ+#,%&': 6̂ ,4#,%&'/0.

Update
,-#,%&', 3*#,%&', !+#,%&', ,4#,%&'
ℎ = ℎ + 1

If 1 ≤ ℎ ≤ :
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STEM: Projection Band

• Generate bootstrap 

sample on time points 

1, 2, … , %.
• Estimate model based on 

bootstrap sample:
&'(, )*(, )+(.

• Correct bias.

• Repeat the bootstrap 

procedure for , times.

• Leave out -, the most 

extreme paths.

• Obtain 100(1− -)%
prediction band.

• Simulate a forecast path 

at time points % + 1, % +
2,… , % + 2 based on 
2&' − &'(, 2)* − )*(, 2)+ − )+( . 

• 345,678( , 9Δ;5,678( , 9Δ<5,678(

are generated from 

Poisson distribution.

Estimation
Variation

Variation
from

Individual

Prediction
Band
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Forecast Comparisons

Linear: E(Cit |t) = βi,0 + βi1t, Var(Cit |t) = σ2
i , i = 1, . . . , n;

Exponential, Poisson:

log{E(Cit |t)} = βi0+βi1t, Var(Cit |t) = exp(βi0+βi1t), i = 1, . . . , n;

Simple Epidemic Model (EM):

log(µit) = β0 + β1 log(Ii,t−1), log(µD
it ) = βD

0 + βD
1 log(Ii,t−1)

Table: Average of root mean squared prediction errors (RMSPEh) for the
h-day ahead prediction, h = 1, . . . , 7, based on 03/23–04/18, 2020.

Method RMSPE1 RMSPE2 RMSPE3 RMSPE4 RMSPE5 RMSPE6 RMSPE7

Infection

Linear 40.332 56.581 74.074 94.038 117.661 143.440 167.763
Exponential >1000 >1000 >1000 >1000 >1000 >1000 >1000
EM 41.323 69.217 97.766 130.247 166.116 199.284 236.642
STEM 35.632 56.097 74.460 94.121 118.569 141.809 168.008

Death

Linear 6.899 9.917 13.297 16.944 21.272 25.393 29.586
Exponential >1000 >1000 >1000 >1000 >1000 >1000 >1000
EM 3.799 7.322 10.405 13.617 17.221 20.304 23.282
STEM 3.755 7.200 10.287 13.535 17.208 20.529 23.868
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Comparisons: Infection Count

Figure: Comparison of 7-day ahead predictions using different methods.
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Comparisons: Death Count

Figure: Comparison of 7-day ahead predictions using different methods.
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Long-term Projection at the County Level

We treat daily recovery rate as input parameters: 10% (red), 15% (green).

As far as we know, we are the only one providing the county-level projection.
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Long-term Projection at the State Level

We treat daily recovery rate as input parameters: 10% (red), 15% (green).

Our projection bands are much narrower than those provided by IHME.
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Long-term Projection for the U.S.

We treat daily recovery rate as input parameters: 10% (red), 15% (green).

Our projection bands are much narrower than those provided by IHME.

35 / 45



Long-term Projection

When will the COVID-19 end?

Expected date when the fatal cases stop increasing at different states with
recovery rate 10%. [Based on the data 04/18/20 – 04/26/20]

36 / 45



Data Products
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COVID-19 Dashboard

We provide a real-time 7-day forecast of infected and death counts at
both the county level & state level, and the corresponding risk analysis.
[https://covid19.stat.iastate.edu/]
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COVID-19 Dashboard – Insights

We provide some indepth statistical insights based on our analysis of
COVID-19 infected/death count.
[https://covid19.stat.iastate.edu/]
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Conclusions

Bridge the gap between mathematical models and statistical
analysis in the infectious disease study.

Enhance the dynamics of the SIR mechanism by means of
nonparametric spatiotemporal analysis.

Investigate the spatial associations between the
infection/death count, and area-level factors/characteristics
across the US.

Can be used as an important tool for understanding the
dynamic of the disease spread, as well as to assess how this
outbreak may unfold through time and space.

Provide a very accurate short-term forecast, and can also be
used for long-term prediction.
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Future Works

1 Methodology

Disease mapping: to illustrate high-risk areas, and help policy
making and resource allocation.

Extensions and applications:

epidemic models in which there are several types of areas with
potentially different characteristics;
more complex models that include features such as latent
periods or more realistic population structure.

2 Data products

Mobile App is underdevelopment: real-time forecast up to
county level;

Risk Analysis Apps for communities, schools, businesses and
companies will be developed.
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Our Products and Contact Information

Details of our research can be found in the arXiv paper

http://arxiv.org/abs/2004.14103

The R package of the proposed method can be downloaded
from the Github Repository:

https://github.com/covid19-dashboard-us/STEM

The R shiny apps demonstrating the proposed methods can
be found from

https://covid19.stat.iastate.edu/

Questions, comments, suggestions: please email me at

Email: lilywang@iastate.edu
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To Our Healthcare Workers:

E FThank you for putting yourself
in the way of danger to save
others and save the public!

Thanks for being heroes of this
country in the pandemic!

We are with you!

H G
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