SUPPLEMENTARY MATERIALS FOR UNIVARIATE EXTREME
VALUE MIXTURE MODELLING

CARL SCARROTT

1. INTRODUCTION TO EVMIX PACKAGE

The broadest collection of the extreme value mixture models are implemented in the
evmix package (Scarrott and Hu, 2015) for R (R Core Team, 2013a), which is available
from CRAN. Other R packages that explicitly include a more limited selection of such models
are condmixt (Carreau, 2012) and CompLognormal by Nadarajah (2013). See the main
Chapter for a more discussion of these packages. This supplementary material will focus
on demonstrating features of the evmix package.

The seed idea for the evmix package was formed in the review of threshold estimation
tools in Scarrott and MacDonald (2012), which includes extreme value mixture models.
Hu (2013a) produced the basis of the package as part of his Master’s thesis. The thesis
placed the majority of the existing extreme value mixture models into a standardised
framework to compare their properties, which has been referred to as the “standard
model” in the main Chapter. Some of the alternative formulations of extreme value
mixture models were also considered. An extensive simulation study compared the per-
formance of these mixture models, including specifically investigating the performance of
the bulk or parameterised tail fractions and continuity constraints.

Hu (2013a) wrote a User Guide for the original version of the package (Hu, 2013b). The
evmix package is subject to ongoing development and a more comprehensive description
of the latest package features are given by Hu and Scarrott (2013). Both these documents
are distributed as part of the package help files and provide fairly comprehensive coverage
of the basic features of the package. There is no intention to repeat the information
provided in these publications herein. The focus of this supplementary material is to
provide additional insights about these models and guidance on using the package in
practice, so mostly real data applications are considered below.

The following guide was written for version 0.2.5 of the evmix package. New features are
continuously being added and modified. Extreme value mixture models and the inference
scheme for them are a matter of ongoing research and as such functionality may vary in
the future and no guarantee of backwards compatibility is provided.

2. KEy FuNncTIONS AND NAMING CONVENTIONS IN THE EVMIX PACKAGE

The nomenclature for the quartet of distribution functions for each mixture model uses
the commonplace letter prefixes (d, p, q and r), postfixed with an abbreviated name
derived from the bulk and tail components. For example, when a normal bulk model
is combined with a GPD tail the postfix is normgpd, giving the quartet of distribution

function names:
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dnormgpd - probability density function (pdf);

pnormgpd - cumulative distribution function (cdf);

gqnormgpd - quantile (inverse cumulative distribution) function; and
rnormgpd - random number generation.

The usual options given in the stats package (R Core Team, 2013b) quartet of distribu-
tion functions are provided for these mixture models (e.g., lower.tail in the pnormgpd
function). A complete list of the implemented models and their abbreviated names are
given in Section 3.

Maximum likelihood estimation (MLE) fitting functions (prefixed by f for ‘f’itting) are
provided in a standardized form, similar to the schema in the evd package (Stephen-
son, 2002) to which most researchers in the field will be familiar. The fitting functions
have options for different maximum likelihood approaches for the threshold and other
parameters:

e useq = NULL - MLE of complete likelihood of all parameters including the thresh-
old (currently the default option, but not preferred option see Section 4.2 below);

e useq as a scalar and fixedu = TRUE - fixed threshold approach with threshold set
to useq;

e useq as a scalar and fixedu = FALSE - use the useq as the initial value for the
threshold in the optimisation of complete likelihood;

e useq as a vector and fixedu = TRUE - carry out a grid search over the thresholds
in useq to find the value which maximises the profile likelihood, which is then
fixed at that value and the conditional likelihood of the non-threshold parameters
is used in the MLE; and

e useq as a vector and fixedu = FALSE - carry out a grid search over the thresholds
in useq to find the value which maximises the profile likelihood, which is then used
as the initial value for the threshold in the MLE over the complete likelihood.

The MLE fitting sub-functions use a similar nomenclature, for example:

fnormgpd - fitting by maximum likelihood estimation;

lnormgpd - log-likelihood function;

nlnormgpd - negative log-likelihood function, designed for optimisation; and
proflunormgpd and nlunormgpd - profile likelihood and conditional negative log-
likelihood function for a given threshold.

The semiparametric bulk model with a mixture of gammas for the bulk model also has
special functions for the expectation and maximisation steps in the EM algorithm (see
mgamma and mgammagpd). The hybrid Pareto (see hpd) and dynamically weighted mix-
ture models (see dwm) have no threshold parameter, so do not have corresponding profile
likelihood functions.

2.1. Exceptions to Naming Conventions. The two-tailed mixture models with GPD
for both the upper and lower tails (gng, gkg and itmgng) utilise a profile likelihood grid
search over all combination pairs of both the lower and upper thresholds (ulseq and
urseq respectively). As such, the profile likelihood (and underlying conditional negative
log-likelihood) functions are applied over each combination pair.
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The interval transitions models (itmnormgpd, itmweibullgpd and itmgng) transition
between the bulk and tail models over a symmetric interval around the threshold. For
these models, the profile likelihood grid search is over all combination pairs of both the
thresholds (useq) and interval half-widths (eseq).

Scalar and vectorised parameter inputs for the quartet of distribution functions are pro-
vided for all the mixture models to allow for nonstationary parameters, except those with
nonparametric bulk models which currently only allow scalar parameter inputs. How-
ever, parameter estimation for nonstationary modelling is currently unavailable, so all the
fitting related functions only except scalar parameter inputs.

Each implemented mixture model has an additional variant which includes a constraint
of continuity of the pdf at the threshold, currently achieved by constraining the GPD
scale parameter. The function name nomenclature uses a further postfix of con for the
constrained variant, for example:

e dnormgpd - normal bulk and GPD tail with no continuity constraint; and
e dnormgpdcon - normal bulk and GPD tail with single constraint of continuity of
the pdf at the threshold.

The only exception is the hybrid Pareto (see dhpd) which has two constraints of continuity
in the zeroth and first derivative of the pdf at the threshold, as discussed in the main
chapter. The hybrid Pareto with only a single constraint of continuity of the pdf at the
threshold uses the con postfix (see dhpdcon).

2.2. Graphical Diagnostics. In addition to the mixture model related functions var-
ious graphical diagnostic functions for assessing the model fit are provided. The usual
probability, quantile, return level and density plots are provided for model fit diagnostics
(see evmix.diag), similar to those implemented in the ismev package Stephenson (2014).
These diagnostics are demonstrated in Section 4 below.

The following graphical diagnostics for threshold choice are currently provided:

e tcplot - threshold stability plots for GPD shape and modified scale parameters;

e mrlplot - mean residual life plot;

e hillplot - Hill plot and some of it’s many variants (AltHill, SmooHill and AltSmooHill
plots); and

e pickandsplot - Pickand’s plot.

The maximum likelihood estimates of both GPD parameters and asymptotic Wald absed
confidence intervals using the observed information matrix are output by the tcplot
function. The mrlplot function outputs the sample mean excesses and central limit
theorem based confidence intervals. The Hill and Pickand’s shape parameter estimates
and their corresponding confidence intervals are output by the latter functions.

3. IMPLEMENTED EXTREME VALUE MIXTURE MODELS

3.1. Standard Mixture Models. The current release 0.2.5 of the evmix package (Scar-
rott and Hu, 2015) implements the following parametric bulk extreme value mixture
models with a GPD for the upper tail (for references see help files, or main Chapter):
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e normal, see help(normgpd);

e gamma, see help(gammagpd);

e Weibull, see help(weibullgpd);

e log-normal, see help(lognormgpd); and
® beta, see help(betagpd).

The beta distribution has support = € [0,1], so when spliced with a GPD upper tail
the threshold must be less than one. However, the beta-GPD can have a support with
upper limit above one. The exponential bulk model of Teodorescu and Vernicu (2009)
has not yet been explicitly implemented, as it is a special case of the gamma bulk model.
Similarly, the Pareto tail models discussed in the main Chapter have not yet been explicitly
implemented as they are a special case of the GPD tail.

The following semiparametric bulk model has been implemented:
e finite mixture of gammas with GPD for upper tail, see help (mgammagpd).

The semi-parametric bulk model using a mixture of exponentials of Lee et al. (2012) is
not explicitly implemented, as it is a special case of the mixture of gammas bulk model.
The EM algorithm is used for the mixture of gammas bulk mixture model. Standalone
functions for the mixture of gammas model, with no GPD spliced into the upper tail,
have been provided for non-extreme value applications.

The following nonparametric bulk models with GPD upper tail have been implemented:

e standard kernel density estimator using a constant bandwidth (estimated us-
ing leave-one-out cross-validation likelihood) with a wide range of kernels, see
help(kdengpd); and

e boundary corrected kernel density estimator (using a bandwidth estimated us-
ing leave-one-out cross-validation likelihood) with a range of boundary correction
approaches and kernel functions, see help (bckdengpd).

The so-called simple boundary corrected kernel density estimator of Jones (1993) using
a constant bandwidth was considered by MacDonald et al. (2013); MacDonald (2012),
which is the preferred option of those provided. However, a wide range of other kernel and
pseudo-kernel density estimators for bounded support have also been implemented, see Hu
and Scarrott (2013) for details. Standalone functions for implementing the standard
(help(kden)) and boundary corrected kernel density estimators (help(bckden)), with
no extreme value tail model, have been provided for non-extreme value applications.

3.2. Two-tailed Mixture Models. All of the above mixture models have a GPD for
the upper tail, so are referred to a one-tailed mixture models. The following two-tailed

mixture models have been provided with a GPD for both the lower and upper tails, with
bulk model of:

e normal, see help(gng).

e standard kernel density estimator using a constant bandwidth (estimated using
a leave one out cross-validation likelihood) with a wide range of kernels, see
help(gkg).

3.3. Alternative Mixture Models. The alternative extreme value mixture models
which do not fit within the framework for the standard mixture models, that have been
implemented are:
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e dynamically weighted mixture model, see help(dwm);
e interval transition mixture model, see variants listed below; and
e hybrid Pareto, see help (hpd).

An alternative variant of the hybrid Pareto with only a single constraint of continuity
of the pdf at the threshold is also provided, see help(hpdcon). The many variants of
the “mixture of hybrid Pareto’s” has not been implemented, as these are available in the
condmixt package (Carreau, 2012).

Various bulk models within the interval transition mixture model framework have been
implemented, with model name prefixed with itm:

e Weibull and GPD for upper tail, see help(itmweibullgpd);
e normal and GPD for upper tail, see help (itmnormgpd); and
e normal and GPD for both the upper and lower tails, see help(itmgng).

4. EXAMPLES

Examples of the usage of the evmix package are provided in the User Guide (Hu, 2013b)
and (Hu and Scarrott, 2013). Here the focus is on demonstrating features of the extreme
value mixture models and maximum likelihood inference approaches, which will be used
to provide some justification of the advice provided in the main Chapter.

Firstly, Section 4.1 uses simulated data to demonstrate the expected behaviour when the
bulk and tail models are appropriate descriptors for the population distribution. The Stan-
dard and Poor’s and Dow Jones closing price returns are used in Sections 4.3.1 and 4.3.2
to demonstrate what features to expect when the bulk model is not entirely appropriate.
These datasets will also be used to demonstrate the benefits of the parameterised tail
fraction approach compared to the bulk model based tail fraction.

The poor performance of black box optimisers within the default inference approach of
maximising the complete likelihood of all the parameters is demonstrated in Section 4.2.
The benefits are demonstrated of the recommended approach of using a profile likelihood
search for the threshold, which is then fixed in latter MLE inferences for the non-threshold
parameters.

Numerous of the mixture models developed in the literature suffer from poor performance
in wide application, due to ignoring the tail fraction scaling which usually scales the
conditional GPD to make it an unconditional tail model. Section 4.4 demonstrates the
poor performance and some of the model features associated with ignoring the tail fraction.

The Appendix includes further examples of using the evmix package to reproduce all of
the figures in the main Chapter.

4.1. When the Bulk Model is Appropriate. A sample of 1,000 standard normal
variates are simulated to demonstrate features of these mixture models when the bulk
model is appropriate, and the population tail is known to be in the domain of attraction
of the GPD. The following code takes the simulated dataset and fits the extreme value
mixture model with a normal bulk and GPD for the upper tail (denoted normal+GPD).

A grid search over thresholds u = 0,0.1,...,2.5 is carried out using the profile likelihood.
The threshold is then fixed at the threshold value that maximises the profile likelihood
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(fixedu = TRUE). Variants of the normal+GPD with a bulk model based (fit.bulk) and
parameterised tail fraction (fit.para) are both fitted.

-
library(evmix)

set.seed(1)
x = rnorm(1000)

# fit normal bulk with GPD upper tail (bulk model based tail fraction)
fit.bulk = fnormgpd(x, useq = seq(0, 2.5, 0.1), fixedu = TRUE)

# fit normal bulk with GPD upper tail (parameterised tail fraction)
fit.para = fnormgpd(x, phiu = FALSE, useq = seq(0, 2.5, 0.1), fixedu = TRUE)
L

The fitted density functions are plotted with the following code and the result is shown
in Figure 1(a). The fitted density is close to the true population density, except due to
the discontinuity just above the threshold. The bulk model based and parameterised tail
fraction approaches have both given essentially the same parameter estimates in this case,
see Table 1(a). In particular, the estimated thresholds (u = 2.2) are the same. Notice
that in the current version (0.2.5) of the package that there is currently no uncertainty
estimate for the threshold when the fixed threshold approach is taken.

(a) set.seed (1)

Tail Fraction ‘ i o ‘ U ‘ Oy ‘ ¢
Bulk | -0.011 (0.033) | 1.036 (0.023) | 2.2 | 0.203 (0.086) | 0.350 (0.353)
Parameterised | -0.009 (0.036) | 1.039 (0.028) | 2.2 | 0.203 (0.086) | 0.350 (0.353)
(b) set.seed(7)
Tail Fraction ‘ i ‘ ‘ ﬁ ‘ o, ¢
Bulk | 0.001 (0.031) | 0.977 ( .023) 0.655 (0 131) | -0.451 (0.143)
Parameterised | -0.091 (0.056) | 0.927 (0.039) | 0.9 | 0.583 (0.062) | -0.152 (0.079)

TABLE 1. Estimated parameters (and standard error) for the normal+GPD
model with seeds 1 and 7, with bulk model and parameterised tail fractions.
The threshold is estimated using profile likelihood estimation but no stan-
dard is provided.

# density histogram
hist(x, freq = FALSE, breaks = seq(-4, 4, 0.025), ylim = c(0, 0.8))

# Overlay population normal distribution
x.to.plot = seq(-4, 4, 0.01)
lines(x.to.plot, dnorm(x.to.plot), col = "red", lwd = 2)

# Overlay fitted normal+GPD densities

fx.bulk = with(fit.bulk, dnormgpd(x.to.plot, nmean, nsd, u, sigmau, xi))
lines(x.to.plot, fx.bulk, col = "blue", lwd = 2)

abline(v = fit.bulk$u, col = "blue", lwd = 2)

fx.para = with(fit.para, dnormgpd(x.to.plot, nmean, nsd, u, sigmau, xi, phiu))
lines(x.to.plot, fx.para, col = "darkgreen", lty = 2, lwd = 2)
abline(v = fit.para$u, col = "darkgreen", lty = 2, lwd = 2)

with(fit.bulk, rbind(mle, se))
with(fit.para, rbind(mle, se))
.
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FIGURE 1. Density histogram of 1,000 simulated standard normal variates
overlaid with the true density function (red solid line), with different seeds.
The fitted density function of the normal+GPD with bulk model based
(blue solid line) and parameterised tail fraction (green dashed line).
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Notice that the shape (and scale) parameter estimates of the GPD exhibit a large uncer-
tainty, due to high threshold which leads to little tail observations. Model fit diagnostics
are obtained for the bulk model based tail fraction with the following code. The default
settings of the evmix.diag function set the axis scales to focus on only the upper tail
regions of each diagnostic plot, as demonstrated by the first line. This default behaviour
is overridden in the second line using the option upperfocus = FALSE, which allows each
diagnostic plot to cover the full range of values. The diagnostic plots in Figure 2(a) indi-
cate no issues with the upper tail fit and Figure 2(b) indicates an adequate fit over the
observed range of support.

# Model fit diagnostics
evmix.diag(fit.bulk)
evmix.diag(fit.bulk, upperfocus = FALSE)

It is often the case that the estimated thresholds (and thus the other parameters) for the
bulk model based and parameterised tail fraction approaches are different. This is most
easily demonstrated from re-running the above simulation code with a different seed().
Figure 1(b) and Table 1(b) shows the resultant fitted density with a seed of 7. The two
variants have very different estimated thresholds, but provide a similar fit to the upper
tail over the range of support shown. However, the differing shape parameter estimates
so will have rather different extrapolations. Notice that the uncertainty in the shape and
scale parameter estimates is much lower, due to the lower threshold and therefore larger
sample of tail observations.

4.1.1. Discussion of Correct Bulk Model Results. The bulk model is the same as the
population that the data are simulated from, so one would expect the bulk model based tail
fraction should be a good estimator. The bulk model based tail fraction uses the estimated
parameters for the bulk model which are based on the (usually) ample information below
the threshold. Hu (2013a) showed via simulation from many different populations, that
there is a small benefit from using the bulk model based tail fraction if the bulk model
is known to be correct, or if there is sufficient data to demonstrate that it is providing a
good fit. However, in general for extreme value applications the bulk distribution is rarely
known and data is often limited. As the benefit of the bulk model based tail fraction is
small, then it is safest to use the parameterised tail fraction approach. This advice is
demonstrated via simulation by Hu (2013a) and briefly shown using a data example in
Section 4.3.1 below.

If the bulk model is the same as the population then, in some sense, there is no need
for a GPD tail model at all. As far as the author is aware, no-one has considered the
relative benefits of using a the true population model versus an extreme value mixture
model, with the population distribution as the bulk model and the usual GPD tail model,
for estimation of tail quantities in finite samples. One of the motivating factors for using
extreme value models is that they are designed to perform well for tail estimation. It is
intuitive that the performance of either model will depend on the estimation approach
and in particular it’s influence function.

One would expect that for large samples that the true population model will perform
best in general, as any asymptotic approximation error of the GPD will depreciate the
performance of the extreme value mixture model (unless the tail is exactly a GPD).
However, in the finite sample case the performance of either model for tail estimation is
less obvious. In the above simulation the data are simulated from a normal population,
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in Figure 1(a).
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for which the upper tail is known to be relatively slow to converge to the exponential
limit (Coles, 2001), so it is not entirely obvious as to whether using the true normal
distribution as the model or normal4+GPD mixture model will performance best for tail
estimation purposes. In real life applications, the population distribution is rarely known,
at which this issue becomes moot.

There also appears to have been no substantive study of the performance of hypothesis
testing in deciding if a bulk only model is sufficient or if there is evidence for the need
for the extreme value mixture model, with consideration of the resulting impacts on tail
inference.

If the bulk model is the same as the population model, and the population is in the domain
of attraction of the GPD, then a wide range of thresholds may be able to provide similar
fitting performance. We should therefore expect a high variance in the threshold estimates
and will often observe multiple modes in the (profile) likelihood, and presumably any
other objective function used for estimation purposed. When using traditional graphical
diagnostics for GPD threshold choice (see main Chapter) users can subjectively balance
the benefits of reduced estimation variance by decreasing the threshold, or reduce the
bias induced by the GPD tail approximation by increasing the threshold. The user aims
to choose the lowest threshold for which the GPD provides a suitable fit. The author is
unaware of any attempts to adapt standard inference approaches (like maximum likelihood
estimation or method of moments) to select the lowest threshold that provides “close to”
optimal performance, e.g. to choose the lowest threshold such that the likelihood is within
some small € of the maximum likelihood.

It is also worthwhile being aware that although the threshold potentially has an impact
over entire range of support (i.e. both the bulk and tail fits), it is also a very “localised
degree of freedom” so adds great flexibility in the fitted distribution around the thresh-
old. This feature was highlighted by MacDonald et al. (2011). The consequence of this
localised degree of freedom is that the threshold values chosen by the inference schemes
are often associated with the largest deviations in sample density/distribution function
due to natural sample variation. This feature also leads to the commonly observed multi-
modal objective functions (e.g. multiple modes in the likelihood or Bayesian posterior),
for which examples are provided within the references given in the main Chapter.

The local degree of freedom applied by the threshold has strongly influenced the estimates
in some of the examples presented in this supplementary material. For example, in Fig-
ure 1(b) the parameterised tail fraction based fit has a threshold (vertical dashed line)
next to an unusually large change in the sample density. On the left of the threshold the
density histogram estimator is relatively low (well below the red line) and to the right of
the threshold it is relatively high. The local flexibility has allowed the bulk model to have
density which is rather low just below the threshold and the GPD tail model rather high
above the threshold, to match what is observed in the sample data. Similar deviations
can be observed in the cumulative distribution function and quantile function about the
threshold.

These sample density/distribution function variations are purely due to natural sample
variation. A comparison of the sensitivity of alternative threshold estimation procedures
and the thresholds selected by extreme value mixture models to these natural deviations
has not been well studied. It is intuitive that traditional graphical diagnostics will also
exhibit deviations around these locations (e.g. the MLE of the shape may change markedly
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on either side of a location of high density), so users may be visually drawn to these
locations when making subjective assessments for threshold choice.

Of course, the extent of this localised effect is reduced if smoothness constraints (e.g.
continuity in zeroth or first) on the pdf at the threshold are used. However, these can
lead to further lack of robustness of the tail fit to that the bulk, as information is passed
between the bulk and tail model for parameter inference, as discussed in the main Chapter.

Obviously, when choosing the subset of the thresholds to apply the grid search over the
profile likelihood it is important to try a physically relevant range, with a sufficient fine
subdivision. In the ideal world one would use an numerical optimisation routine to find
the threshold that maximises the profile likelihood. Unfortunately, due to the multiple
modes that are often present in the profile likelihood (see main Chapter for discussion)
standard optimisers often get stuck in a local mode and so often fail to find the global
maximum. In applying the grid search of profile likelihood, one should always check if
the estimated threshold is close to the boundaries in the support of grid of thresholds, as
this could be an indication of the grid support not being wide enough or a problem with
the model or it’s fit to the sample data which is demonstrated in Section 4.3.1.

Rounding of the data can also create problems for (profile) likelihood maximisation. Data
generating processes which lead to isolated sample data values with high frequency, rel-
ative to the surrounding density, are particularly problematic. A common issue demon-
strated in Section 4.3.2 is such a bias in threshold choice due to excess zeroes. If the bulk
model cannot capture the excess zeroes, then the threshold is often drawn to zero as the
extra “local degree of freedom” enable the overall mixture model to capture the excess
sample frequency around zero.

4.2. Do Not Use Defaults! Currently, the default approach within the fitting function
(e.g. by fnormgpd used above) is to use MLE for all the parameters, including the
threshold. In the main Chapter this objective function is described as the complete
likelihood. Unfortunately, this is not ideal as the likelihood function is often multi-modal
which is an expected and inherent feature of these models due to the threshold stability
properties of the GPD, see the main Chapter for further details. The complete likelihood
optimisation often gets stuck in a local mode close to the initial parameter values.

In particular, the multi-modality is often due to multiple different threshold providing
suitable fit. As such the estimated threshold is often close to the initial value, which by
default is the 90% sample quantile estimated using the quantile () function.

There are numerous approaches to overcome this problem. The obvious one is to use
an optimisation scheme which can better cope with potentially multi-modal objective
functions. In general, Hu (2013a) found the quasi-Newton “BFGS” performed well com-
pared to the other inbuilt optimisation schemes within the optim function, namely the
“Nelder-Mead” and conjugate gradient “CG” approaches. The BFGS optimisation scheme
is therefore used by default throughout the evmix package.

However, all of the optimisation schemes (inlcuding BFGS) within the optim were found
to frequently get stuck in local modes and so not always find the global maximum. The
only other viable alternative within the optim function is the stochastic optimiser which
uses simulated-annealling, “SANN”, which performed better but was too slow for practical
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purposes. Any of the optimisation schemes available in the optim function can be used
by setting the method argument in the fitting function.

Another approach is to manually try multiple different starting values for the optimisation,
using the pvector option.

The current default setting is a compromise and is certainly not ideal, so is a focus of
future research. As all the code in the evmix library is user-visible, it is possible for you
to adapt the fitting functions to use your favourite optimisation routine.

4.2.1. Profile Likelihood Grid Search is Better. All of the fitting functions include options
to use grid search over the profile likelihood to find the threshold that maximises the
complete likelihood. The details of which are given in Section 2 above. In summary, the
user specifies a vector of thresholds to consider (useq for one tail, ulseq and urseq for
lower and upper tail threshold for two tailed models) and the value which maximises the
profile likelihood provides the threshold estimate. The user can then choose to either fix
the threshold at the estimated value (fixedu=TRUE) or use the estimated value as the
initial value for the maximisation of the complete likelihood (fixedu=FALSE).

The current best practice for MLE of the mixture mdoel parameters, is that one should
be use the profile likelihood estimation of the threshold, which is then fixed at the value
so that the maximum likelihood estimation is over all the non-threshold parameters con-
ditional on the threshold. Unfortunately, it is not straightforward to make this the default
option in all the fitting functions within the package, as for some of the mixture models it
is not obvious how to prescribe the vector of thresholds which would need to be considered
by default. This is part of ongoing developments of the package.

set.seed(7)
x = rnorm(1000)

# fit normal bulk with GPD upper tail using profile likelihood
fit.bulk = fnormgpd(x, useq = seq(0, 2.5, 0.1), fixedu = TRUE)

# fit normal bulk with GPD upper tail using complete likelihood (default)
fit.comp = fnormgpd(x)

# density histogram
hist(x, freq = FALSE, breaks = seq(-4, 4, 0.025), ylim = c(0, 0.8))

# Overlay population normal distribution
x.to.plot = seq(-4, 4, 0.01)
lines(x.to.plot, dnorm(x.to.plot), col = "red", lwd = 2)

# Overlay fitted normal+GPD densities

fx.bulk = with(fit.bulk, dnormgpd(x.to.plot, nmean, nsd, u, sigmau, xi))
lines(x.to.plot, fx.bulk, col = "blue", lwd = 2)

abline(v = fit.bulk$u, col = "blue", lwd = 2)

# initial value is 907, sample quantile
abline(v = quantile(x, 0.9), col = "red", lwd = 2)

fx.comp = with(fit.comp, dnormgpd(x.to.plot, nmean, nsd, u, sigmau, xi, phiu))
lines(x.to.plot, fx.comp, col = "darkgreen", lty = 2, lwd = 2)
abline(v = fit.comp$u, col = "darkgreen", 1ty = 2, lwd = 2)

-c(fit.bulk$nllh, fit.comp$nllh)
L
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As an example, the above code reuses one of the simulation examples above and compares
the results to those achieved when refit using the (default) complete likelihood approach.
The resultant fitted density function is shown in Figure 3. The initial value for the
threshold parameter in the complete likelihood approach is the 90% sample quantile which
is 1.24 (vertical red line), with the final maximum likelihood estimate of 1.31 (vertical
green line) which has barely changed. The complete likelihood approach’s log-likelihood
(given by the final line of code) is -1398.565 as compared to that obtained when the
threshold is fixed at the value that maximises the profile likelihood of -1398.524. So the
likelihood itself has not much. However, the fit from the complete likelihood is clearly
worse than from profile likelihood. If one repeats this exercise with the set.seed(1) as
used above, the threshold moves even less from it’s initial value.

hhy
.
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X

FI1GURE 3. Density histogram of 1,000 simulated standard normal variates
overlaid with the true density function (red solid line). The fitted density
function of the normal+GPD with bulk model based tail fraction (blue solid
line) using the profile likelihood estimate of the threshold and complete
likelihood (green dashed line). Initial value for the threshold (90% sample
quantile) for complete likelihood as (vertical red line).

4.3. When the Bulk Model is Not Appropriate.

4.3.1. Standard and Poor Returns. The classic extreme value dataset of Standard and
Poor daily log returns spto87 from the evir package neatly demonstrates some of the
issues that arise when using an inappropriate bulk model. The time series is shown
in Figure 4. These exhibit the expected features of financial returns, in particular the
volatility clustering, but these complexities are ignored in the following.
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data(spto87, package = "evir"

# time series plot
plot(attr(spto87, "times"), spto87, type = "1",
xlab = "Date", ylab = "Daily log Returns",
main = "Standard and Poor Daily Closing log Returns from evir Package")

Daily log Returns

T T T T T I
1960 1965 1970 1975 1980 1985

Date

FIGURE 4. Time series plot of the Standard and Poor’s daily log returns
dataset spto87 from the evir package.

The following code fits a normal distribution as well as the the normal+GPD mixture
model, with both specifications of the tail fraction as used with the simulated data in
Section 4.1. The normal parameters are estimated by the usual unbiased estimators via the
mean (spto87) = 0.025 and sd(spto87) = 0.805 functions. The normal distribution is
a very poor fit to this data as shown by the red line in Figure 4, as the tails are much
heavier than those a normal.

As the bulk model is not a good model for the data (including lower tail), the nor-
mal+GPD is also a poor fit. Notice that the bulk model based (blue solid line) and
parameterised tail fraction (green dashed line) provide very different fits, particularly
below the threshold.

As expected the bulk model based tail fraction has a similar fit to the bulk to that of
the normal distribution (blue line close to red line), below the threshold. The estimated
normal bulk parameters are fi = 0.032 and ¢ = 0.782 which are similar to the usually
unbiased estimators of the normal distribution parameters given above. There is no-
rescaling of the bulk model density when the bulk model based tail fraction is used, which
explains why it has barely changed.
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# fit normal bulk with GPD upper tail (bulk model based tail fraction)
fit.bulk = fnormgpd(spto87, useq = seq(0.2, 2, 0.1), fixedu = TRUE)

# fit normal bulk with GPD upper and lower tails (parameterised tail fraction)
fit.para = fnormgpd(spto87, phiu = FALSE, useq = seq(0.2, 2, 0.1), fixedu = TRUE)

# density histogram
hist(spto87, freq = FALSE, breaks = seq(-7, 7, 0.05), ylim = c(0, 0.8),
xlab = "Daily Closing Returns", main = "Normal+GPD Upper Tail")

# Overlay normal distribution with unbiased parameter estimates
x.to.plot = seq(-7, 7, 0.01)
lines(x.to.plot, dnorm(x.to.plot, mean(spto87), sd(spto87)), col = "red", lwd = 2)

# Overlay fitted normal+GPD densities

fx.bulk = with(fit.bulk, dnormgpd(x.to.plot, nmean, nsd, u, sigmau, xi))
lines(x.to.plot, fx.bulk, col = "blue", lwd = 2)

abline(v = fit.bulk$u, col = "blue", lwd = 2)

fx.para = with(fit.para, dnormgpd(x.to.plot, nmean, nsd, u, sigmau, xi, phiu))
lines(x.to.plot, fx.para, col = "darkgreen", 1ty = 2, lwd = 2)
abline(v = fit.para$u, col = "darkgreen", 1ty = 2, lwd = 2)
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Daily Closing Returns

FIGURE 5. Density histogram of Standard and Poor’s daily log returns
dataset spto87 from the evir package. A fitted normal distribution is
shown by (red solid line). The fitted density function of the normal+GPD
with bulk model based (blue solid line) and parameterised tail fraction
(green dashed line).

In contrast, the parameterised tail fraction approach rescales the bulk density, see first
line of equation 5 in the main Chapter. As such an extra degree of freedom is provided,
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which effects both the bulk and tail model fit. In this example, the parameterised tail
fraction provides a much better fit below the selected threshold. Given the tail fraction
is not influenced by the poor bulk model fit, we would also expect the tail performance
would be better than the bulk model based tail fraction.

The following code produces return level plots for the two model fits for comparison of the
tail performance. Both the bulk model based and parameterised tails fraction approaches
produce similar fits for the highest return periods. However, nearer the threshold (hor-
izontal dashed lines) the fit is much better for the parameterised tail fraction approach
(datapoints closer to fitted red line) than for the bulk model based tail fraction. The
extra tail fraction parameter is essentially able to overcome the deficiencies of the bulk
model which cannot provide a good tail fraction estimate, to get the model “back on
track” above the threshold.

par(mfrow = c(2, 1), mar = c(3, 3, 1, 1) + 0.1, mgp = c(2, 1, 0))
rlplot(fit.bulk)
rlplot(fit.para)

Another feature of the poor performance to note here is that the threshold is far lower
(closer to the mode) than one would expect. In fact, the estimated thresholds are on the
lower bound of those considered in the profile likelihood grid search. This unexpected
result is induced by the poor performance of the bulk model. The threshold is biased
downwards to allow the GPD to overcome as much of the poor fit as it is capable. Such
a result is a common indicator of a poor fit (a warning message is provided by the fit-
ting functions) and in particular a poor bulk model, so users should check the model
performance and re-evaluate their choice of model.

For this dataset, a better model is obtained by splicing a GPD for both tails, as it is the
heavy (upper and lower) tailed nature of the data that results in the normal distribution
providing a poor fit. Example code for fitting the GPD+Normal+GPD mixture model is
provide below, with the fitted density in Figure 7. The fit is much better for both tails
and the bulk density between the two thresholds. Hence, the threshold parameter are
bias towards the main mode and so the GPD fits are performing well.

-
# fit normal bulk with GPD upper and lower tails (bulk model based tail fraction)
fit.gng = fgng(spto87, ulseq = seq(-2, -0.2, 0.1), urseq = seq(0.2, 2, 0.1), fixedu = TRUE)

# density histogram
hist(spto87, freq = FALSE, breaks = seq(-7, 7, 0.05), ylim = c(0, 0.8),
xlab = "Daily Closing Returns", main = "Normal+GPD Upper Tail")

# Overlay fitted GNG density

fx.gng = with(fit.gng, dgng(x.to.plot, nmean, nsd, ul, sigmaul, xil, phiul = TRUE,
ur, sigmaur, xir, phiur = TRUE))

lines(x.to.plot, fx.gng, lwd = 2)

abline(v = c(fit.gng$ul, fit.gng$ur), lwd = 2)

# model fit diagnostics
evmix.diag(fit.gng)
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FIGURE 6. Return level plot for normal+GPD model fits with bulk model
based tail fraction (upper plot) and parameterised tail fraction (lower plot).
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FI1GURE 7. Density histogram of Standard and Poor returns from 1960 to
1987 from evir package. The black solid line is the fitted density function of
the GPD+normal+GPD with bulk model based tail fraction. The vertical
lines are the estimated thresholds

4.3.2. Dow Jones Returns. The Dow Jones data dowjones available in the ismev package
provides another good example of the challenges associated with fitting extreme value
mixture models. The following code plots the time series data.

p
data(dowjones, package = "ismev"

par(mfrow = c(2, 1))
# time series plot
plot(dowjones$Date, dowjones$Index, type = "1",
xlab = "Date", ylab = "Daily Closing Price",
main = "Dow Jones Daily Closing Price from ismev Package")

returns = log(dowjones$Index[-1]) - log(dowjones$Index[-length(dowjones$Index)])
plot(dowjones$Date[-1], returns, type = "1",

xlab "Date", ylab = "Daily log Returns",
main "Dow Jones Daily Closing log Returns from ismev Package")

Example code for fitting the normal+GPD mixture models with bulk model based and pa-
rameterised tail fraction approaches is provided below. Similar comments about the poor
bulk and tail model fit to that observed for the Standard and Poor data in Section 4.3.1
also apply to this data, so will not be repeated here. The normal+GPD with parame-
terised tail fraction has a threshold on the boundary of those considered in the profile
likelihood, which is indicative of similar deficiencies. The reason for the deficiency with
this dataset is that there is not only heavier tails than expected for a normal population,
but also there is an excess of zero and near-zero log returns.
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FIGURE 9. Density histogram of Dow Jones daily log returns dataset
dowjones from the ismev package. A fitted normal distribution is shown
by (red solid line). The fitted density function of the normal+GPD with
bulk model based (blue solid line) and parameterised tail fraction (green

dashed line).
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data(dowjones, package = "ismev"

par(mfrow = c(2, 1))
# time series plot
plot(dowjones$Date, dowjones$Index, type = "1",
xlab "Date", ylab = "Daily Closing Price",
main = "Dow Jones Daily Closing Price from ismev Package")

returns = log(dowjones$Index[-1]) - log(dowjones$Index[-length(dowjones$Index)])

plot(dowjones$Date[-1], returns, type = "1",
xlab = "Date", ylab = "Daily log Returns",
main = "Dow Jones Daily Closing log Returns from ismev Package")

# fit normal bulk with GPD upper tail (bulk model based tail fraction)
fit.bulk = fnormgpd(returns, useq = seq(0, 0.02, 0.001), fixedu = TRUE)

# fit normal bulk with GPD upper and lower tails (parameterised tail fraction)
fit.para = fnormgpd(returns, phiu = FALSE, useq = seq(0, 0.02, 0.001), fixedu = TRUE)

# density histogram

par(mfrow = c(1, 1))

hist(returns, freq = FALSE, breaks = seq(-0.1, 0.1, 0.001), ylim = c(0, 80),
xlab = "Daily Closing Returns", main = "Normal+GPD Upper Tail")

# Overlay normal distribution with unbiased parameter estimates
x.to.plot = seq(-0.1, 0.1, 0.001)
lines(x.to.plot, dnorm(x.to.plot, mean(returns), sd(returns)), col = "red", lwd = 2)

# Overlay fitted normal+GPD densities

fx.bulk = with(fit.bulk, dnormgpd(x.to.plot, nmean, nsd, u, sigmau, xi))
lines(x.to.plot, fx.bulk, col = "blue", lwd = 2)

abline(v = fit.bulk$u, col = "blue", 1lwd = 2)

fx.para = with(fit.para, dnormgpd(x.to.plot, nmean, nsd, u, sigmau, xi, phiu))
lines(x.to.plot, fx.para, col = "darkgreen", lty = 2, lwd = 2)
abline(v = fit.para$u, col = "darkgreen", 1ty = 2, lwd = 2)

The excess zeroes are not well captured by the bulk model, so even the two-tailed
GPD+Normal+GPD fitted with the following code struggles to provide a good fit as
shown in Figure 10. It may provide an adequate fit for application, but it is clearly not
ideal. The obvious solution is to consider a bulk model which allows for excess zero (and
near-zero) returns, but no such model has yet been considered in the literature on extreme
value mixture models.

-

# fit normal bulk with GPD upper and lower tails (bulk model based tail fraction)

fit.gng = fgng(returns, ulseq = seq(-0.02, 0, 0.001), urseq = seq(0, 0.02, 0.001), fixedu = TRUE
)

# density histogram
hist(returns, freq = FALSE, breaks = seq(-0.1, 0.1, 0.001), ylim = c(0, 80),
xlab = "Daily Closing Returns", main = "Normal+GPD Upper Tail")

# Overlay fitted GNG density

fx.gng = with(fit.gng, dgng(x.to.plot, nmean, nsd, ul, sigmaul, xil, phiul = phiul,
ur, sigmaur, xir, phiur = phiur))

lines(x.to.plot, fx.gng, col = "darksalmon", lwd = 2)

abline(v = c(fit.gng$ul, fit.gng$ur), col = "darksalmon", lwd = 2)
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F1GURE 10. Density histogram of Dow Jones returns from evir package.
The black solid line is the fitted density function of the GPD-+normal4+GPD
with bulk model based tail fraction. The vertical lines are the estimated
thresholds

4.4. Don’t Forget the Tail Fraction! The alternative forms of extreme value mixture
models which do not include the tail fraction scaling show the weak performance for
general application, as discussed in Section 3.2 and 3.3 of the main Chapter. Essentially,
these models treat the GPD as an unconditional model, which is used (almost) directly
to capture the tail. In this Section, the hybrid PAreto is used as an example of the issues
that arise when the tail fraction is ignored.

The following code compares the following models:

e hybrid Pareto (no tail fraction scaling), which includes constraints of continuity
in the zeroth and first derivative;

e hybrid Pareto with single continuity constraint (no tail fraction); and

e normal+GPD with bulk model based tail fraction with single continuity constraint.

The only difference between the latter two models is that the former excludes the tail
fraction scaling of the GPD (although the density it is renormalised to unity) and the
latter included the tail fraction scaling (so does not require renormalisation to unity).
Comparison of the latter two models therefore allows us to directly compare the effect of
ignoring the tail fraction scaling of the GPD tail.

The hybrid Pareto has no explicit threshold parameter as this is constrained based on
the model parameters, to satisfy the two continuity constraints. However, the implied
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threshold can be calculated based on the parameter constraints given in Carreau and
Bengio (2009). The implied threshold for the hybrid Pareto is included on the plot as
vertical lines, similar to the explicit threshold of the normal+GPD.

p
set.seed(123)
x = rnorm(1000)

# Hybrid Pareto provides reasonable fit for some asymmetric heavy upper tailed distributions
# but not for cases such as the normal distribution
fit.hpd = fhpd(x, std.err = FALSE)

# HPD with only one constraint, with profile likelihood grid search over thresholds
fit.hpdcon = fhpdcon(x, useq = seq(-1, 3, 0.1), fixedu = TRUE)

# Notice that if tail fraction is included a better fit is obtained
fit.bulk = fnormgpdcon(x, useq = seq(-1, 3, 0.1), fixedu = TRUE)

# density histogram
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4), main="")

# Overlay population normal distribution
x.to.plot = seq(-4, 4, 0.001)
lines(x.to.plot, dnorm(x.to.plot), col = "red", lwd = 2)

# Overlay fitted hybrid Pareto density

fx.hpd = with(fit.hpd, dhpd(x.to.plot, nmean, nsd, xi))
lines(x.to.plot, fx.hpd, col = "blue", lwd = 2)

abline(v = fit.hpd$u, col = "blue", lwd = 2) # implied threshold

# Overlay fitted hybrid Pareto with single continuity constraint density
fx.hpdcon = with(fit.hpdcon, dhpdcon(x.to.plot, nmean, nsd, u, xi))
lines(x.to.plot, fx.hpdcon, col = "black", lwd = 2)

abline(v = fit.hpdcon$u, col = "black", lwd = 2) # implied threshold

# Overlay fitted normal+GPD densities

fx.bulk = with(fit.bulk, dnormgpdcon(x.to.plot, nmean, nsd, u, xi))
lines(x.to.plot, fx.bulk, col = "green", lwd = 2)

abline(v = fit.bulk$u, col = "green", lwd = 2)

legend("topright", c("Standard Normal", "Hybrid Pareto (HPD)",

"HPD - Continuous Only ", "Normal+GPD Continuous"),
rep(1, 4), 1lwd = rep(2, 4),
c("red", "blue", "black", "green"))

1ty
col

The domination of the GPD in the hybrid Pareto variants, due to the lack of tail fraction
scaling of the GPD is evident, and the poor fit is very clear in Figure 12. The implied
threshold for the hybrid Pareto is biased down to allow the GPD to dominate the density,
with 63% of the density above the threshold in this case. The following code demonstrates
that the upper tail fraction is just the reciprocal of the normalisation constant v =
1 + ®(**~) needed to ensure the hybrid Pareto is proper:

# normalisation constant to unity
hpd.gamma = with(fit.hpd, 1 + pnorm(u, nmean, nsd))

# Upper tail fraction is reciprocal of gamma
c(1/hpd.gamma, fit.hpd$phiu, with(fit.hpd, phpd(u, nmean, nsd, xi, lower = FALSE)))
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FI1GURE 11. Density histogram of 1,000 simulated standard normal variates
overlaid with the true density function (red solid line). The fitted density
function of the hybrid Pareto (blue line) normal+GPD, hybrid Pareto with
single continuity constraint (black line) and normal+GPD with bulk model
based fraction (green line).

Similar results are obtained using the condmixt package, which is demonstrated with the
following code. Be careful to detach(package:condmixt) and detach(package:evd)
after running this example, to prevent any confusion caused by overlapping functions
between the condmixt, evd and evmix libraries.

# Reproduce HPD fit using condmixt package
library(condmixt)
params.init = hpareto.mme(x)

fit.condmixt = hpareto.fit(params.init, x)

# density histogram
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4), main="")

# Overlay fitted hybrid Pareto density
lines(x.to.plot, fx.hpd, col = "blue", lwd = 2)
abline(v = fit.hpd$u, col = "blue", lwd = 2) # implied threshold

fx.condmixt = dhpareto(x.to.plot, fit.condmixt[1], fit.condmixt[2], fit.condmixt[3],
trunc = FALSE)
lines(x.to.plot, fx.condmixt, col = "red", lwd = 2, 1lty = 2)

legend("topright", c("condmixt", "evmix"), 1ty = c(2, 1), 1lwd = rep(2, 2),
col = c("red", "blue"))
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FIGURE 13. Same as Figure 11, comparing the hybrid Pareto fit from the
condmixt (red dashed line) and evmix package (blue solid line).
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APPENDIX - REPRODUCE FIGURES IN MAIN CHAPTER

The figures in the main Chapter are reproducible with the following code.

Figure 1:

# Figure 1
library(evmix)

par (mfrow = c(1, 2))

x = seq(-5, 5, 0.001)

y = dnormgpd(x, u = 1.5, sigmau = 0.4)

plot(x, y, xlab = "x", ylab = "Density f(x)", type = "1",
cex.lab = 2, cex.axis = 1.5)

abline(v = 1.5, 1ty = 2)

text(-4,0.25,"bulk model",cex=2);arrows(-4,0.22,-1,0.1)

text(3,0.25,"tail model",cex=2);arrows(2.5,0.22,2,0.02)

mtext("u",1,0.5,at=1.5,cex=2)

y = pnormgpd(x, u = 1.5, sigmau = 0.4)

plot(x, y, xlab = "x", ylab = "Distribution F(x)", type = "1",
cex.lab = 2, cex.axis = 1.5)

abline(v = 1.5, 1ty = 2)

mtext("u",1,0.5,at=1.5,cex=2)

L

Figure 2:

# Figure 2

set.seed(123)

x = rnorm(1000)

xx = seq(-4, 4, 0.01)
y = dnorm(xx)

# Hybrid Pareto provides reasonable fit for some asymmetric heavy upper tailed distributioms,
# but not for cases such as the normal distribution
fithpd = fhpd(x, std.err = FALSE)

# HPD with only one constraint
fithpdcon = fhpdcon(x, useq=seq(-1,3,0.1), fixedu=TRUE, std.err = FALSE)

# Notice that if tail fraction is included a better fit is obtained
fit = fnormgpdcon(x, useq=seq(-1,3,0.1), fixedu=TRUE, std.err = FALSE)

par(mfrow = c(1, 1))
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4), main="")
lines(xx, y)

with(fithpd, lines(xx, dhpd(xx, nmean, nsd, xi), lwd = 2, 1ty = 1))
abline(v = fithpd$u, lwd = 2, 1ty = 1)

with(fithpdcon, lines(xx, dhpdcon(xx, nmean, nsd, u, xi), lwd
abline(v = fithpdcon$u, lwd = 2, lty = 2)

2, 1ty = 2))

with(fit, lines(xx, dnormgpdcon(xx, nmean, nsd, u, xi), lwd = 2, 1ty = 3))
abline(v = fit$u, lwd = 2, 1ty = 3)

legend("topright", c("Standard Normal", "Hybrid Pareto (HPD)",
"HPD - Continuous Only ", "Normal+GPD Continuous"),
1ty = c(1, 1:3), 1wd = c(1, rep(2, 3)))
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Figure 3:

e
# Figure 3

xx = seq(0.001, 5, 0.01)
f = ddwm(xx, wshape = 2, wscale = 1/gamma(1.5), cmu = 1, ctau = 1, sigmau = 1, xi = 0.5)

plot(xx, f, ylim = c(0, 1), xlim = c(0, 5), type = '1l', 1lwd = 2,
ylab = "density", main = "Plot example in Frigessi et al. (2002)")
lines(xx, dgpd(xx, xi = 1, sigmau = 0.5), lty = 2, 1lwd = 2)
lines(xx, dweibull(xx, shape = 2, scale = 1/gamma(1.5)), 1ty = 3, lwd = 2)
lines(xx, pcauchy(xx, location = 1, scale = 1), 1ty = 1)
legend('topright', c('DWM', 'Weibull', 'GPD', "Cauchy TF"),
1ty = c(1, 3, 2, 1), lud = c(rep(2,3), 1), bg = "white")

-

REFERENCES

Carreau, J. (2012), condmizt: Conditional Density Estimation with Neural Network Con-
ditional Mixtures, R package version 1.0.

Carreau, J. and Bengio, Y. (2009), “A hybrid Pareto model for asymmetric fat-tailed
data: The univariate case,” Extremes, 12, 53-76.

Coles, S. G. (2001), An Introduction to Statistical Modelling of Extreme Values, Springer
Series in Statistics, Springer-Verlag, London.

Hu, Y. (2013a), “Extreme value mixture modeling with simulation study and applications
in finance and insurance,” MSc thesis, University of Canterbury, New Zealand, http:
//ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go.

— (2013Db), “User’s guide for evmix package in R,” Available from http://www.math.
canterbury.ac.nz/~c.scarrott/evmix.

Hu, Y. and Scarrott, C. J. (2013), “evmix: An R package for extreme value mixture
modelling, threshold estimation and boundary corrected kernel density estimation,”
Submitted, available from http://www.math.canterbury.ac.nz/~c.scarrott/evmix.

Jones, M. C. (1993), “Simple Boundary Correction for Kernel Density Estimation,” Sta-
tistics and Computing, 3, 135—146.

Lee, D., Li, W. K., and Wong, T. S. T. (2012), “Modeling insurance claims via a mixture
exponential model combined with peaks-over-threshold approach,” Insurance: Mathe-
matics and Economic, 51, 538-550.

MacDonald, A. (2012), “Extreme Value Mixture Modelling with Medical and Industrial
Applications,” PhD thesis, University of Canterbury, New Zealand.

MacDonald, A., Scarrott, C. J., Lee, D., Darlow, B., Reale, M., and Russell, G. (2011), “A
Flexible Extreme Value Mixture Model,” Computational Statistics and Data Analysis,
55, 2137-2157.

MacDonald, A., Scarrott, C. J., and Lee, D. S. (2013), “Boundary correction, consistency
and robustness of kernel densities using extreme value theory,” Submitted, available
from: http://www.math.canterbury.ac.nz/~c.scarrott.

Nadarajah, S. (2013), CompLognormal: Functions for actuarial scientists, R package
version 3.0.

R Core Team (2013a), R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria.

— (2013b), R: A Language and Environment for Statistical Computing, R Foundation for
Statistical Computing, Vienna, Austria.



SUPPLEMENTARY MATERIALS FOR UNIVARIATE EXTREME VALUE MIXTURE MODELLING 27

Scarrott, C. J. and Hu, Y. (2015), “evmix 0.2.5: Extreme Value Mixture Modelling,
Threshold Estimation and Boundary Corrected Kernel Density Estimation,” Available
on CRAN.

Scarrott, C. J. and MacDonald, A. (2012), “A Review of Extreme Value Threshold Esti-
mation and Uncertainty Quantification,” REVSTAT: Statistical Journal, 10, 33-60.

Stephenson, A. G. (2002), “evd: Extreme Value Distributions,” R News, 2, 31-32.

— (2014), ismev: An Introduction to Statistical Modeling of Extreme Values, r package
version 1.40.

Teodorescu, S. and Vernicu, R. (2009), “Some composite exponential-Pareto models for
actuarial prediction,” Romanian Journal of Economic Forecasting, 4, 82-100.

SCHOOL OF MATHEMATICS AND STATISTICS, UNIVERSITY OF CANTERBURY, NEW ZEALAND

E-mail address: carl.scarrott@@canterbury.ac.nz



