
13. Bayesian Inference for Extreme Value Modelling
Supplement

Alec Stephenson

1.8 Model Diagnostics

Any analysis should include some check of the adequacy of the fit of the model to the
data, and of the plausibility of the model for the purposes for which it will be used. In a
Bayesian context, the model refers to both the prior distribution f(θ) and the likelihood
model f(y|θ). In this section we briefly discuss aspects of model checking, sensitivity
analysis, and model comparisons. The description of posterior predictive checking is based
on Gelman et al. (2013). A balanced discussion of the advantages and disadvantages of
this approach is given by Bayarri and Berger (1999, 2000). Further examples are given in
Gelman et al. (1996).

In practice, additional information is often available that is not included formally in the
likelihood or the prior distribution. If this information suggests that posterior inferences
are false, then more effort should be made to incorporate this information within the
model. We can perform informal diagnostic procedures by comparing posterior distribu-
tions and posterior predictive distributions with aspects of reality that are not captured
by the model. If there are any discrepancies, the model should be extended to include
these aspects.

A more formal diagnostic procedure compares the posterior predictive distribution to the
data that have been observed. This is known as posterior predictive checking. This is
a simple technique for checking whether the observed data y looks plausible under the
posterior predictive distribution f(ỹ|y). If the model is appropriate, then data generated
using f(ỹ|y) should be similar to the observed data y. We therefore simulate samples
from the posterior predictive distribution f(ỹ|y). These samples are then compared to
the original data. Systematic discrepancies between the samples and the data correspond
to features that are poorly fitted by the model.

Suppose we simulate ỹ1, ỹ2, ỹ3, . . . , ỹN from the posterior predictive density f(ỹ|y). This
can be achieved using equation (13.3) in Section 13.1.1. Markov chain Monte Carlo output
produces draws θ1, θ2, θ3, . . . , θN from the posterior distribution f(θ|y), and we can then
draw the vector ỹt from f(ỹ|θt) for each t = 1, . . . , N . The length of each vector ỹt is the
same as the length of y.

It can be difficult to compare the N posterior predictive samples ỹt to the actual data y
using only graphical methods. Instead, we can define some function of the data T (·). We
can then calculate the number of samples from the posterior predictive distribution for
which the test statistic T (·) is greater than the value calculated for the actual data. We
define p to be the proportion of the simulations for which T (ỹt) > T (y). If the value of p
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is close to zero or one, the test statistic T (·) corresponds to a feature that is poorly fitted
by the model. The test statistic T (·) should be chosen to reflect aspects of the model
that are relevant to the purposes to which the inference will be applied. In particular,
T (y) = max(y) may be of importance for extreme value models. We can also let the test
statistic depend on the parameters θ, and p can then be defined as the proportion of the
simulations for which T (ỹt, θt) > T (y, θt).

It is often the case that more than one model provides an adequate fit to the data. Sen-
sitivity analysis determines by what extent posterior inferences change when alternative
models are used. Alternative models may differ in the likelihood f(y|θ), or in terms of the
prior specification f(θ). The basic method of sensitivity analysis is to fit several models to
the same problem. Posterior inferences from each model can then be compared. Posterior
inferences for the GEV model will typically include marginal posterior distributions of
the parameters (µ, σ, ξ) and posterior distributions of quantiles. The sensitivity of the
marginal posterior density of the shape parameter ξ is often of particular interest.

If we have a large amount of data we could test predictive accuracy by fitting our model
to only e.g. two-thirds of the data ytrain, randomly selected, and use the remaining third
ytest as a test set. We could then derive a score of predictive accuracy by using ytest to
evaluate a suitable metric. For example, if we have N draws θ1, θ2, θ3, . . . , θN from the
posterior distribution f(θ|ytrain) we could score each value y∗ in ytest using

log

(
1

N

N∑
t=1

f(y∗|θt)

)
.

The scores can be summed over ytest to give a measure of predictive accuracy. This
measure can then be used across different models for the purposes of model comparison,
with larger values indicating better models. Unfortunately we often do not have large
amounts of data and so it is necessary to use all data for model fitting. However we can
extend the above approach in an obvious manner using cross-validation techniques. The
cross-validation approach is often useful in simpler models but can be computationally
demanding.

An alternative approach is to employ information criteria. Various information criteria
have been proposed for comparing different models. These criteria can be regarded as
a simplified approach for the evaluation of predictive accuracy, and they are far less
computationally demanding that the cross-validation methodology outlined above. With
N draws θ1, θ2, θ3, . . . , θN from f(θ|y), one basic approach is to use

log f(y|θ̄)− p∗ (1)

where p∗ represents the effective number of parameters in the model, and θ̄ is the estimated
posterior mean. Different methods have been proposed for estimating p∗. One popular
method is the Deviance Information Criterion (DIC) of Spiegelhalter et al. (2002), which
uses

p∗ = 2

(
log f(y|θ̄)− 1

N

N∑
t=1

log f(y|θt)

)
.

The DIC is defined on the deviance scale, so that (1) is multiplied by minus two, with
smaller DIC values indicating better models. We therefore have

DIC = 2 log f(y|θ̄)− 4

N

N∑
t=1

log f(y|θt). (2)
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Figure 1: Maximum monthly temperatures at the Port Fairy weather station for the
period 1995-2013. The curves give the median, the 5% quantile, and the 95% quantile
from the predictive posterior distribution of the model fitted in this section.

The Markov chain Monte Carlo algorithms in Sections 13.1.3 and 13.1.4 can be adjusted
so that log f(y|θt) is computed and stored at the end of each iteration in the main for
loop. The DIC is then simple to calculate.

An alternative criterion that has been proposed more recently is the Widely Applicable
Information Criterion (WAIC) of Watanabe (2010), given by

WAIC =
n∑

i=1

{
2 log

(
1

N

N∑
t=1

f(yi|θt)

)
− 4

N

N∑
t=1

log f(yi|θt)

}
, (3)

for data y = (y1, . . . , yn). The simplest approach to the calculation of the WAIC is
to adjust the Markov chain Monte Carlo algorithm to compute log f(yi|θt) for every
i = 1, . . . , n at the end of each iteration in the main for loop. For both the DIC and the
WAIC there exist alternative proposals for estimating the effective number of parameters.
See Gelman et al. (2014) for a comparative review.

2.2 Bivariate Extreme Value Modelling

The data we model here consist of monthly temperature maxima recorded at two different
weather stations in Australia over the period from January 1994 to December 2013. The
first weather station (j = 1) is located at Port Fairy, which is on the coastline, approxi-
mately 300 kilometers to the West of Melbourne. The second weather station (j = 2) is
located at Melbourne Airport, which is approximately 25 kilometers North-West of the
centre of Melbourne. Dependence between the temperature maxima at the two sites is to
be expected. The Port Fairy data is shown in Figure 1. We clearly need to account for
the seasonality in the monthly maxima, otherwise the level of dependence between the
sites will be over-estimated.

Bivariate extreme value distributions are a natural way to model this type of data.
The univariate marginal distributions are generalized extreme value, with parameters
(µj, σj, ξj) on the jth margin. There are various ways to parameterize the dependence
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structure of the distribution. We use the logistic dependence structure, which contains
a single parameter 0 < γ ≤ 1. When γ = 1 the two margins are independent. The
dependence increases as γ decreases. The distribution function is given by

F (x1, x2) = exp
{
−
(
y
1/γ
1 + y

1/γ
2

)γ}
, (4)

where

yj = yj(xj) =

(
1 + ξj

(
xj − µj

σj

))−1/ξj

+

(5)

for j = 1, 2, and where h+ = max{h, 0}. For alternative dependence structures, see e.g.
Tawn (1988) and Boldi and Davison (2007).

We let the location parameters of each site depend on the month t, accounting for a
possible linear trend. We also account for seasonality by fitting a single sinusoid with a
frequency of one year, where we estimate both the amplitude and the phase. We could
also investigate similar temporal models for the marginal scale and shape parameters, but
to keep the model simple we take these parameters to be fixed across time. This gives
the model for the jth margin as

µj,t = β
(0)
j + β

(1)
j t+ β

(2)
j cos(2πt/12 + β

(3)
j )

σj,t = σj,

ξj,t = ξj,

for j = 1, 2. The model therefore has 12 parameters in total to be estimated: the six
parameters (β

(0)
j , β

(1)
j , β

(2)
j , β

(3)
j , σj, ξj) on each of the two margins, and the dependence

parameter 0 < γ ≤ 1. We take the time origin t = 0 to be the month of January 2010.

Our first step is to construct the prior. We specify a weakly informative prior on
(β

(0)
j , σj, ξj) using the method given in Section 13.1.6.2, which employs beta distribu-

tions for probability ratios. The parameter β
(0)
j represents the generalized extreme value

location in the autumn and spring seasons when there is no linear trend. Using general
climate information we specify a beta(2,2) prior distribution for the probability that an
autumn monthly maxima exceeds 28 degrees Celsius. Roughly half of the monthly max-
ima that exceed 28 degrees will also exceed 30 degrees, and roughly half of the monthly
maxima that exceed 30 degrees will also exceed 32 degrees. Using the notation of Section
13.1.6.2, this gives a prior distribution with hyperparameters α = (2, 1, 0.5, 0.5), which is
applied independently to both margins.

For convenience we reparameterize our weakly informative prior to (β
(0)
j , νj, ξj), where

νj = log(σj). This gives the following code. The term jac is the Jacobian J(θ) from
Section 13.1.6.2. The inclusion of nu in the returned value ld + jac + nu is due to the
logarithmic transformation of the scale parameter.

log_prior <- function(mu, nu, xi) {

quant <- c(28,30,32)

alpha <- c(2,1,0.5,0.5)

z <- 1 + xi * (quant - mu) / exp(nu)

if(any(z <= 0)) return(-Inf)

z <- z^(-1/xi)

pd <- -diff(c(1, 1-exp(-z), 0))

if(any(pd <= 0)) return(-Inf)
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ld <- sum((alpha-1) * log(pd))

jac <- (z[1]*z[2])^(-xi) * log(z[2]/z[1]) -

(z[1]*z[3])^(-xi) * log(z[3]/z[1]) +

(z[2]*z[3])^(-xi) * log(z[3]/z[2])

jac <- log(abs(jac)) - 2*nu - log(xi^2)

jac <- jac + (1 + xi) * sum(log(z)) - sum(z)

ld + jac + nu

}

For the amplitudes β
(2)
j and the linear trends β

(1)
j we specify vague prior normal distribu-

tions. We expect the phase parameters β
(3)
j to be fairly close to zero since the monthly

maxima are largest in the Australian summer. We therefore take the phase prior distri-
butions as normal with zero mean and a standard deviation of 0.5. For the dependence
parameter γ we take a prior uniform distribution on the interval [0, 1].

Putting the above elements together yields the log post function as given below. The
dbvevd function can be used to calculate the density of the bivariate extreme value dis-
tribution with logistic dependence structure. The function arguments mp1 and mp2 corre-

spond to the parameter vectors (β
(0)
j , β

(1)
j , β

(2)
j , β

(3)
j , σj, ξj) for j = 1, 2 respectively. The

argument dep corresponds to the dependence parameter γ.

log_post <- function(mp1, mp2, dep, data) {

tt <- (1:nrow(data) - 193)/12

if(dep <= 0 || dep > 1) return(-Inf)

m1v <- mp1[1] + mp1[2] * tt + mp1[3] * cos(2*pi*tt + mp1[4])

m1v <- cbind(m1v, exp(mp1[5]), mp1[6])

m2v <- mp2[1] + mp2[2] * tt + mp2[3] * cos(2*pi*tt + mp2[4])

m2v <- cbind(m2v, exp(mp2[5]), mp2[6])

llhd <- dbvevd(data, dep, mar1 = m1v, mar2 = m2v, log = TRUE)

llhd <- sum(llhd, na.rm = TRUE)

lprior1 <- sum(dnorm(mp1[2:4], sd = c(10,10,0.5), log = TRUE))

lprior1 <- lprior1 + log_prior(mp1[1], mp1[5], mp1[6])

lprior2 <- sum(dnorm(mp2[2:4], sd = c(10,10,0.5), log = TRUE))

lprior2 <- lprior2 + log_prior(mp2[1], mp2[5], mp2[6])

lprior1 + lprior2 + llhd

}

There are a small number of missing values in the data. For convenience, if it is missing
at either site we simply ignore the corresponding month. We also rescale the time vector
so that it represents years rather than months. Define βj = (β

(0)
j , β

(1)
j , β

(2)
j , β

(3)
j ) for

j = 1, 2. Numerical optimization suggests that the posterior density has a global optimum
at β̂1 = (27.84, 0.09, 10.03,−0.03), β̂2 = (27.76, 0.09, 10.52, 0.04), ν̂1 = 1.19, ν̂2 = 0.92,
ξ̂1 = −0.34, ξ̂2 = −0.13 and γ̂ = 0.58.

The Markov chain Monte Carlo simulation proceeds as in the previous data example of
Section 13.2.1. The autocorrelations and cross-correlations of the Markov chain simula-
tions are weaker here, and therefore the chain has better mixing properties than in Section
13.2.1. We generate four different chains of length 4 000, combining the last half of each
chain to use the combined 8 000 iterations for estimation purposes.
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0.025 0.25 Median 0.75 0.975

β
(0)
1 27.30 27.67 27.84 28.03 28.36

β
(1)
1 0.03 0.07 0.09 0.11 0.15

β
(2)
1 9.41 9.80 10.00 10.19 10.58

β
(3)
1 -0.08 -0.05 -0.03 -0.01 0.02
ν1 1.11 1.17 1.20 1.23 1.29
ξ1 -0.39 -0.36 -0.34 -0.32 -0.28

β
(0)
2 27.33 27.61 27.76 27.91 28.26

β
(1)
2 0.04 0.08 0.10 0.11 0.15

β
(2)
2 10.00 10.31 10.49 10.67 11.05

β
(3)
2 -0.01 0.02 0.04 0.05 0.08
ν2 0.83 0.89 0.93 0.96 1.04
ξ2 -0.22 -0.16 -0.12 -0.09 -0.02
γ 0.52 0.56 0.58 0.61 0.66

Table 1: Estimated quantiles for marginal posterior distributions for each of the thirteen
model parameters.

We make a slight amendment to the usual simulation algorithm to account for the de-
pendence parameter constraint 0 < γ ≤ 1. We use a logit-normal proposal distribution
for γ. The logit-normal proposal distribution is asymmetric, and therefore the proposal
density term py,j(·|·), as defined in Section 13.1.4, does not cancel in the acceptance ratio.
The code below represents the updating step for the dependence parameter, which is the
last parameter to be updated. The calculation of the acceptance ratio r includes both the
posterior density ratio and the proposal density ratio.

propmn13 <- log(out[t,13]/(1 - out[t,13]))

prop13 <- rnorm(1, mean = propmn13, propsd[13])

prop13 <- exp(prop13)/(1 + exp(prop13))

lpost_prop <- log_post(out[t+1,1:6],out[t+1,7:12],prop13,data)

r <- exp(lpost_prop - lpost_old)

r <- r * (prop13*(1-prop13)) / (out[t,13]*(1-out[t,13]))

if(r > runif(1)) {

out[t+1,13] <- prop13

lpost_old <- lpost_prop

}

else out[t+1,13] <- out[t,13]

Estimated quantiles for the marginal posterior distributions for each of the model param-
eters are given in Table 1. It can be seen from the parameters β

(2)
1 and β

(2)
2 that there is a

strong seasonal component at both Port Fairy and Melbourne Airport. The dependence
between the sites is fairly strong, with the 95% Bayesian confidence interval for γ equal
to (0.52, 0.66). The is also some evidence of an increasing trend on both margins, with
an increase in the location parameters of around 0.1 degrees Celsius per year over the 10
year period.

To investigate the increasing trends in more detail we fit three alternative models and then
use the DIC and WAIC criteria as given in equations (2) and (3) respectively to perform

model comparison. For the first model we specify β
(1)
1 = 0, so that no linear trend is

modelled at Port Fairy. For the second model we specify β
(1)
2 = 0, so that no linear trend
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is modelled at Melbourne Airport. For the third model we specify β
(1)
1 = β

(1)
2 = 0, so that

no linear trend is modelled at either site.

Table 2 gives the information criteria for these models. For each model we generate four
chains with starting values that are dispersed relative to the target distribution, and
we evaluate the information criteria separately for each of the four chains. We discard
the first 2 000 iterations of each chain and therefore the criteria are calculated using the
remaining 2 000 iterations. The variability of the information criteria across the four
chains is reassuringly small. Table 2 corroborates the evidence of an increasing trend on
both margins, with the DIC and WAIC values being smaller for the model that includes
the linear trend components.

Run Full β
(1)
1 = 0 β

(1)
2 = 0 β

(1)
1 = β

(1)
2 = 0

DIC 1 50.48 56.21 58.89 58.35
2 50.68 56.12 59.53 59.03
3 50.75 56.69 59.71 59.07
4 50.50 56.41 59.43 58.60

WAIC 1 51.52 57.47 60.34 59.59
2 51.67 57.41 60.76 60.42
3 51.54 57.64 60.82 60.28
4 51.26 57.67 60.52 60.05

Table 2: Information criteria from various models, calculated from four Markov chain
Monte Carlo simulations using different starting values. For clarity we have removed a
fixed constant of 2200 from each criterion.

Figure 2 illustrates a posterior predictive checking procedure, as described in Section 1.8.
We specify the test statistics for j = 1, 2 to be the average January maxima on the jth
margin, where the average is taken over the dataset period 1994-2013. The average Jan-
uary maxima at Port Fairy is 38.4 degrees Celsius, and the average January maxima at
Melbourne Airport is 39.4 degrees Celsius. The posterior predictive check in Figure 2
compares these data values to values simulated from the posterior predictive distribution.
The 8 000 Markov chain iterations are used to estimate the posterior predictive distri-
butions, as discussed in Section 13.1.2. It can be seen from Figure 2 that the posterior
predictive distribution of the average January maxima is consistent with the data at both
sites. Similar conclusions are reached when using the largest January maxima as the test
statistic.

The posterior predictive distributions derived from the model are plotted against time
in Figure 1 for the Port Fairy weather station. Figure 1 shows both the seasonality and
the small increasing trend. Posterior density estimates can be easily calculated for any
function of the parameters. Figure 3 shows some examples of posterior density estimates
calculated from this model. The left plot of Figure 3 shows the posterior distribution of
the shape parameter at each site. The shape parameter is clearly larger at Melbourne
Airport and has a greater variability than the shape parameter at Port Fairy.

The right plot of Figure 3 shows posterior distributions for conditional upper quantiles at
Port Fairy (for January). The conditional upper quantile is defined here as the monthly
temperature maximum at Port Fairy that is exceeded with probability 0.05, conditioning
on the fact that the monthly maximum at Melbourne Airport exceeds some temperature
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Figure 2: Posterior predictive distributions of the average January temperature maxima
at Port Fairy (left) and Melbourne Airport (right), from the model described in this
section. The solid vertical lines denote the values observed in the data.
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Figure 3: Left: Posterior distributions of shape parameters ξ1 and ξ2 at the Port Fairy and
Melbourne sites respectively. Right: Posterior distributions (for January) for the monthly
temperature maximum that is exceeded at Port Fairy with probability 0.05, conditioning
on the fact that the monthly temperature maximum at Melbourne Airport exceeds 35
degrees Celsius (left curve) or 45 degrees Celsius (right curve).

x. The plot shows the distributions for x = 35 and x = 45. The conditional quantiles
depend on both the dependence structure and the marginal distributions.
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