next up previous
Next: About this document ...

Monte Carlo Methods in Bayesian Computation


MING-HUI CHEN, QI-MAN SHAO, AND JOSEPH G. IBRAHIM


Publisher: Springer-Verlag; Publication Date: January, 2000



ERRATA

(1)
On page 30, line -9,

Error:

\begin{displaymath}
\vartheta_1^\ast, \vartheta_1^\ast, \dots, \vartheta_{k-1}^\ast
\end{displaymath}

Correction:

\begin{displaymath}
\vartheta_1^\ast, \vartheta_2^\ast, \dots, \vartheta_{k-1}^\ast
\end{displaymath}

(2)
On page 36, in Equation (2.5.11),

Error:

\begin{displaymath}
L(\beta,\gamma_2,z\vert D)
\end{displaymath}

Correction:

\begin{displaymath}
L(\beta,\gamma,z\vert D)
\end{displaymath}

(3)
On page 41, line -8,

Error: ``Using (2.5.25)"

Correction: ``Using (2.5.26)"

(4)
On page 86, line 16,

Error:

\begin{displaymath}
\hat{E}_{a}(h)=\sum^n_{i=1} w_i h(\theta_i).
\end{displaymath}

Correction:

\begin{displaymath}
\hat{E}_{a}(h)=\frac{1}{n}\sum^n_{i=1} w_i h(\theta_i).
\end{displaymath}

(5)
In Equation (4.3.1) on page 98,

Error:

\begin{displaymath}
\pi(\theta^{\ast (j)}\vert D)=\int_\Omega \pi( \theta^{\ast (j)}\vert
\theta^{(-j)},D) \pi(\theta) d \theta.
\end{displaymath}

Correction:

\begin{displaymath}
\pi(\theta^{\ast (j)}\vert D)=\int_\Omega \pi( \theta^{\ast (j)}\vert
\theta^{(-j)},D) \pi(\theta\vert D) d \theta.
\end{displaymath}

(6)
In Equation (4.3.3) on page 98 and line -11 on page 99,

Error:

\begin{displaymath}
w(\theta^{\ast (j)}\vert\theta^{(-j)})
\end{displaymath}

Correction:

\begin{displaymath}
w(\theta^{(j)}\vert\theta^{(-j)})
\end{displaymath}

(7)
On page 102, second line of the penultimate paragraph,

Error: ``0For"

Correction: ``For"

(8)
In Equation (8.3.6) on page 251,
Error:

\begin{displaymath}
B_{12} = {m(D\vert{\cal M}_1)/m(D\vert{\cal M}_r) \over m(D...
...l M}_2)/\pi({\bf\varphi}= 0\vert{\cal M}_2) }
\;\;\; (8.3.6)
\end{displaymath}

Correction:

\begin{displaymath}
B_{12} = {m(D\vert{\cal M}_1)/m(D\vert{\cal M}_r) \over m(D...
...M}_2)/\pi({\bf\varphi}=0\vert D,{\cal M}_2) }
\;\;\; (8.3.6)
\end{displaymath}

(9)
On page 267, line 8 of the first paragraph,

Error: ``... for these models is now ...''
Correction: ``... for these models are now ...''

(10)
On page 301

Error: `` $\pi(\theta_k\vert{\cal M}_k)$'' in Equation (9.5.1) and `` $\pi(k,\theta_k\vert D)$'' in line 21.
Correction: `` $\pi(\theta^{(k)}\vert{\cal M}_k)$'' in Equation (9.5.1) and `` $\pi(k,\theta^{(k)}\vert D)$'' in line 21.

(11)
In Exercise 9-16 on page 306,
Error: ``Metropolized Chib's method"
Correction: ``Metropolized Carlin-Chib's method"

(12)
On page 310, line -11,
Error:

\begin{displaymath}
\left( \int \frac{1}{f(y_i\vert\theta_l,x_i)}
\pi(\theta\vert D) d\theta \right)^{-1}.
\end{displaymath}

Correction:

\begin{displaymath}
\left( \int \frac{1}{f(y_i\vert\theta,x_i)}
\pi(\theta\vert D) d\theta \right)^{-1}.
\end{displaymath}

(13)
On page 316, line -5,
Error: ``$z_i \sim F$"
Correction: `` $\epsilon_i \sim F$"

(14)
(a) On page 316, line 14; and (b) on page 317, Equations (10.1.26) and (10.1.27),
Error: ``$x_i\beta$"
Correction: ``$x'_i\beta$"

(15)
On page 317, line -15 before Equation (10.1.29),
Error: ``$K > x_i\beta$"
Correction: `` $K> x'_i\beta>0$"

(16)
On page 318, line 11,
Error:

\begin{displaymath}
\hat{E}[ P( \vert\epsilon_i\vert>K\vert \beta, y_i=1)\vert D ]
= {1 \over T}\sum^T_{t=1}
\Phi(-K) /\Phi(x_i'\beta_t).
\end{displaymath}

Correction:

\begin{displaymath}
\hat{E}[ P( \vert\epsilon_i\vert>K\vert \beta, y_i=1)\vert D...
...T}\sum^T_{t=1} P( \vert\epsilon_i\vert>K\vert \beta_t, y_i=1).
\end{displaymath}

(17)
In Chib, S. and Greenberg, E. (1998) on page 359,
Error: ``Bayesian analysis of multivariate probit models"
Correction: ``Analysis of multivariate probit models"

(18)
In Robert, C.P. (Ed.) (1998) on page 370,
Error: ``New York: Wiley"
Correction: ``New York: Springer-Verlag"

(19)
In Ritter and Tanner (1992) on page 370 and in Tanner and Wong (1987) on page 372,
Error: ``Tanner, T.A."
Correction: ``Tanner, M.A."




Acknowledgments

We would like to thank Steven N. MacEachern and Peter Müller for pointing out some errors in the above list.




next up previous
Next: About this document ...
Ming-Hui Chen
2000-09-12