next up previous
Next: About this document ...

ERRATA

(1)
On page 83, Table 3.5 was incorrect. The correct table is given as follows:

TABLE 3.5. Bayes and KM Estimates of $S(y)$.

$u$ in Bayes estimate, $F_0 = 1-\exp(- \theta u)$ KM Estimate
$[0,0.8)$ $\frac{c_0 \exp(-\theta u) + 8}{c_0 + 8}$ 1.0
$[0.8,1.0)$ $\frac{c_0 \exp(-\theta u) + 7}{c_0 + 8}$ 7/8
$[1.0,2.7)$ $\frac{c_0 \exp(-\theta u) + 6}{c_0 + 8} \frac{c_0 \exp(-\theta) + 7}{c_0\exp(-\theta) + 6}$ 7/8
$[2.7,3.1)$ $\frac{c_0 \exp(-\theta u) + 5}{c_0 + 8} \frac{c_0 \exp(-\theta) + 7}{c_0\exp(-\theta) + 6}
\frac{c_0 \exp(- 2.7 \theta ) + 6}{c_0 \exp(-2.7 \theta) + 5}$ 7/8
$[3.1,5.4)$ $\frac{c_0 \exp(-\theta u) + 4}{c_0 + 8} \frac{c_0 \exp(-\theta) + 7}{c_0\exp(-\theta) + 6}
\frac{c_0 \exp(- 2.7\theta) + 6}{c_0 \exp(-2.7\theta) + 5}$ 7/10
$[5.4,7.0)$ $\frac{c_0 \exp(-\theta u) + 3}{c_0 + 8} \frac{c_0 \exp(-\theta ) + 7}{c_0 \exp(-\theta) + 6}
\frac{c_0 \exp(- 2.7 \theta) + 6}{c_0 \exp(-2.7\theta) + 5}$ 21/40
$[7.0,9.2)$ $\frac{c_0 \exp(-\theta u) + 2}{c_0 + 8} \frac{c_0 \exp(-\theta) + 7}{c_0 \exp(-...
...\exp(-2.7 \theta) + 5} \frac{c_0 \exp(-7 \theta) + 3}{c_0 \exp(- 7
\theta) + 2}$ 21/40
$[9.2,12.1)$ $\frac{c_0 \exp(-\theta u) + 1}{c_0 + 8} \frac{c_0 \exp(-\theta) + 7}{c_0 \exp(-...
...\exp(-2.7 \theta) + 5} \frac{c_0 \exp(-7 \theta) + 3}{c_0 \exp(- 7
\theta) + 2}$ 21/80
$[12.1,\infty)$ $\frac{c_0 \exp(-\theta u)}{c_0 + 8} \frac{c_0 \exp(-\theta) + 7}{c_0 \exp(-\the...
...\exp(- 7
\theta) + 2} \frac{c_0 \exp(-12.1 \theta) + 1}{c_0 \exp(-12.1 \theta)}$ Undefined
Source: Susarla and Van Ryzin (1976).

Acknowledgments

We would like to thank Yihui Zhan of Insightful Corp. for pointing out the errors in the above list.





Ming-Hui Chen
2001-11-19