
ON EXACT SAMPLING OF NONNEGATIVE INFINITELY
DIVISIBLE RANDOM VARIABLES

ZHIYI CHI,∗ University of Connecticut

Abstract

Nonnegative infinitely divisible (i.d.) random variables form an impor-
tant class of random variables. However, when this type of random
variables are specified via Lévy densities that have infinite integrals on
(0,∞), except for some special cases, exact sampling is unknown. We
present a method that can sample a rather wide range of such i.d. random
variables. A basic result is that for any nonnegative i.d. random variable
X with its Lévy density explicitly specified, if its distribution conditional
on X ≤ r can be sampled exactly, where r > 0 is any fixed number, then
X can be sampled exactly using rejection sampling, without knowing the
explicit expression of the density of X. We show that variations of the
result can be used to sample various nonnegative i.d. random variables.
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1. Introduction

Nonnegative infinitely divisible (i.d.) random variables are important in many regards,
however, their sampling in general is an involved issue. By the Lévy-Khintchine formula, a
nonnegative i.d. random variable can be represented as a series of jump times of a Poisson
process [4, 33]. On the one hand, the series representation is the basis of many exact or
approximate sampling methods [3, 8, 11, 32]. On the other, if an i.d. random variable has
an infinite Lévy measure on (0,∞), then with probability one, its series representation has
infinitely many positive random terms, which cannot be summed in closed form but have to
be added one by one. This rules out exact sampling of the random variable in a finite number
of steps.

Conceptually, it is important and interesting to see what nonnegative i.d. random variables
can be sampled exactly. As a matter of fact, there are many such random variables, the most
familiar ones including Gamma, Pareto, Fisher, F , Gumbel, Weibull, log-normal, and half-
Cauchy variables [33–35]. It is known that positive random variables which have log-convex
densities or are mixtures of Gamma random variables with the same shape parameter in (0, 2]
are i.d. [6, 33, 35]. Since these random variables have analytically tractable density functions,
they can be sampled exactly. A special class of i.d. random variables, known as Vervaat
perpetuities, can also be sampled exactly by carefully exploiting their structures [15–17, 22].
It is also well known that nonnegative stable random variables and their exponentially tilted
versions can be sampled exactly [8, 10, 13, 20, 21, 32]. These random variables have not only
explicit density functions, but also explicit Lévy measures. Generally speaking, in view of the

∗ Postal address: Department of Statistics, Glenbrook Road, U-4120, Storrs, CT 06269, USA.
∗ Email address: zhiyi.chi@uconn.edu

1



2 Z. Chi

Lévy-Khintchine formula, it is natural to specify an i.d. random variables via its Lévy measure;
however, other than the aforementioned cases and perhaps a few others, for variables specified
in this way, exact sampling is lacking.

In this paper, we show that sampling is achievable for a rather wide range of nonnegative
i.d. random variables specified via Lévy measures. Henceforth, by sampling we mean exact
sampling, and we shall speak interchangeably of the sampling for a Lévy density, the sampling
from the i.d. distribution with the Lévy density, and the sampling of an i.d. random variable
with the Lévy density. To start with, suppose we wish to sample a nonnegative i.d. random
variable X with an upper truncated Lévy density λ(x)1 {x ≤ r}, where r > 0 is fixed and λ
itself is a Lévy density on (0,∞). Many functional relationships between the distribution of X
and that associated with λ are known, which can be used to evaluate the (probability) density
of X [11]. However, it is practically (and conceptually) more satisfactory if sampling can be
done without numerical evaluation of density functions [10]. With this in mind, our goal is to
sample X without knowing its density explicitly.

Our approach starts with the following simple observation: if Y ≥ 0 is an i.d. random
variable with Lévy density λ, then X conditional on X ≤ r and Y conditional on Y ≤ r are
identically distributed. To be sure, represent Y as X + Z, where Z consists of jump times
greater than r. Because Z is compound Poisson and independent of X, P{Z = 0} > 0 and
P{X ≤ x |X ≤ r} = P{X ≤ x, Z = 0 |X ≤ r, Z = 0}. Since for any x ≤ r, the events
{X ≤ x, Z = 0} and {Y ≤ x} are the same, we get P{X ≤ x |X ≤ r} = P{Y ≤ x |Y ≤ r}.
Consequently, if we can choose λ appropriately so that we know how to sample Y , then we can
sample X conditional on X ≤ r by simpling Y conditional on Y ≤ r, using, say, the rejection
method (cf. [13, 18, 19, 27]).

The above observation is crucial, however, it alone cannot lead to the sampling of X. There
are two issues. First, P{X ≤ r} is often unknown, and hence the density of X on (0, r] is
known only up to a multiplicative factor. The second issue appears to be more serious. That
is, there is little direct knowledge about the density of X on (r,∞). Since X only consists of
jump times less than r, we have little use of the density of Y on (r,∞), as it involves large
jump times nonexistent in X. Instead, we need to rely on certain relations between the density
of X on (0, r] and its density on (r,∞) which are applicable for sampling.

To address the issues, in Section 3, we establish an integral series expansion of the density
of X on (r,∞) in terms of its density on (0, r] and Lévy density. While the expansion contains
infinitely many integrals, it allows exact sampling. In Section 4, a general procedure that
applies rejection sampling to the integral series expansion is presented. Together, the two
sections deliver the following method to sample a nonnegative i.d. random variable. First,
decompose its Lévy density into ϕ+ χ, such that on some (0, r] 6= ∅, ϕ is identical to a Lévy
density λ which we know how to sample for, and χ ≥ 0 is integrable. Indeed, for ϕ, we only
need ϕ(t) = [1+O(t)]λ(t) as t→ 0. Once such a decomposition is found, we can sample for ϕ
using the procedure in Section 4. Meanwhile, since the i.d. distribution with Lévy density χ
is compound Poisson, its sampling is more or less standard, although efficient algorithms can
be found for special cases [13, 18]. The sum of the values independently sampled from the two
i.d. distributions then follows the i.d. distribution we wish to sample.

We note that rejection sampling has long been used to sample i.d. random variables (cf.
[12, 13, 15]). Unlike in the procedures of the above-cited works, we do not rely on explicit
approximations to distributions; however, we do require we know how to sample for some
i.d. distribution using the distributions at hand. That is, if sampling for a Lévy density is
available then it can be incorporated into our procedure to sample for a whole class of Lévy
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densities without the need to derive new formulas for the densities. Therefore, our procedure
is complementary to available sampling procedures, such as those in [10, 13, 18].

In Sections 5 and 6, we consider two general designs for our procedure and illustrate them
with examples. The first example deals with the Lévy density ϕ(t) = ct−α−11 {0 < t ≤ r} with
α ∈ (0, 1) and r ∈ (0,∞). While the sampling for the stable Lévy density ct−α−11 {t > 0} is
well known [10, 13, 21, 32], to my best knowledge, the sampling for ϕ is unknown. We will
utilize the sampling of the stable distribution to sample for ϕ. As a more concrete example, we
next consider Lévy density ϕ(t) = ψ(t)(et−1)−1−α1 {t > 0} with α ∈ (0, 1) and ψ(t) = 1+O(t)
as t → 0. When ψ(t) = eβt with β < α + 1, ϕ gives rise to a Lamperti-stable distribution
[9, 25]. In the third example, we apply the procedure to Gamma distributions. Since efficient
sampling of Gamma distributions has long been known (cf. [13, 18]), the point here is that the
procedure can be exploited to get some interesting theoretical results. The above examples
are used to illustrate the first design. For the second design, we give two examples. In the
first example, we consider the sampling of Vervaat perpetuities. Recently, efficient sampling
procedures for Vervaat perpetuities have been discovered [16, 17, 22]. These procedures employ
sophisticated coupling techniques for Markov chains and, depending on the parameter value
of the distribution being sampled, their expected numbers of iterations range from 1 to ∞.
We show that for any parameter value of the distribution, by using the second design, the
expected number of iterations can be arbitrarily close to 1. In the second example, we consider
the Lévy density ce−t(1− ta)1 {0 < t ≤ r} /[t ln(1/t)]. We show that its sampling can be done
by incorporating the sampling of Vervaat perpetuities and the trick of subordination. In all
but the theoretical example, we provide some analysis on the complexity of the procedure.

Finally, for the integral series expansion in Section 3, local boundedness of probability
density is a required condition. Section 7 gives a simple criterion to check the condition.

2. Preliminaries

2.1. Notation

Henceforth, by Lévy densities we mean those of nonnegative i.d. random variables, which
coincide with measurable functions ϕ ≥ 0 with support in [0,∞) and

∫

(1 ∧ t)ϕ(t) dt <∞ (cf.
[4, 33]). By i.d. random variable with Lévy density ϕ, we mean specifically a random variable
X with Laplace transform E(e−θX) =

∫

(e−θt − 1)ϕ(t) dt, θ > 0. We denote by ID(ϕ) the
distribution with the Laplace transform. We call X strictly positive if P{X > 0} = 1. Under
the setup, X ∼ ID(ϕ) is strictly positive if and only if

∫

ϕ = ∞ [11, 30], and in this case, X
has a density with support being the entire [0,∞) [33, Theorems 24.10 & 27.10]. On the other
hand, if

∫

ϕ <∞, then X ∼ ID(ϕ) is compound Poisson, with P{X = 0} > 0.

For brevity, if there is no confusion, a probability density will be referred to as a density.
Denote by Unif(0, 1) the uniform distribution on (0, 1), and for r > 0, a > 0, b > 0,
Gamma(a, r) the distribution with density xa−1e−x/r1 {x > 0} /[raΓ(a)], and Beta(a, b) the
one with xa−1(1 − x)b−11 {0 < x < 1} /B(a, b), where B(a, b) = Γ(a)Γ(b)/Γ(a + b). Also,
denote Gamma(1, r) by Exp(r). For p ∈ (0, 1), denote by Binomial(n, p) the law of the sum of
n i.i.d. ξi with P{ξi = 0} = 1− P{ξi = 1} = 1− p.

2.2. Decomposition and exponential tilting

Sampling for a Lévy density can often be built upon the sampling for other Lévy densities.
Suppose we know how to sample for a Lévy density ϕ. If a Lévy density ϕ1 can be decomposed
into ϕ+χ, with χ ≥ 0 being integrable, then we can sample for ϕ1 by generating X+ ξ, where
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X ∼ ID(ϕ) and ξ ∼ ID(χ) are independent. A standard method to sample for χ is as follows.
Sample a Poisson process with intensity χ, which has a finite number of points with probability
1. The sum of the coordinates of the points then follows ID(χ) (cf. [13, 18]).

On the other hand, if ϕ1 ≤ ϕ, then even if χ = ϕ− ϕ1 is integrable, in general it is unclear
how to sample for ϕ1 based on ϕ. However, suppose for some b > 0, ϕ1(t) = e−btϕ(t), i.e.,
ϕ1 is an exponentially tilted version of ϕ. It is a standard result that exponential tilting of a
Lévy density induces the same exponential tilting of the corresponding i.d. distribution (up to
a normalizing constant; cf. [1, 4, 8, 20]). We state the result as follows for later use.

Lemma 2.1. Let ϕ and ϕ1 be two Lévy densities, such that, for some b > 0, ϕ1(t) = e−btϕ(t).
Then for X1 ∼ ID(ϕ1) and X ∼ ID(ϕ), P{X1 ∈ dx} = e−bxP{X ∈ dx}/E(e−bX).

Sampling of exponentially tilted distributions is well known (cf. [18]). More generally, suppose
for some b ≥ 0, e−btϕ(t) ≤ ϕ1(t) ≤ ϕ(t). Let χ(t) = ϕ1(t) − e−btϕ(t). We have χ ≥ 0 and by
χ(t) ≤ (1− e−bt)ϕ(t) ≤ [(bt) ∧ 1]ϕ(t), χ ∈ L1(0,∞). Then ID(ϕ1) can be sampled as follows.

1. Keep sampling (U,X) until U ≤ e−bX , where U ∼ Unif(0, 1) and X ∼ ID(ϕ) are
independent.

2. Sample ξ ∼ ID(χ). Return X + ξ.

3. An integral series expansion of density

In this section, let ϕ be a Lévy density with
∫

ϕ = ∞. According to Section 2, ID(ϕ) has
a density that has the entire [0,∞) as support. We shall derive an integral series expansion
that expresses the density of ID(ϕ) on (r,∞) for a given r > 0 in terms of its density on (0, r]
and Lévy density. Denote by g the density of ID(ϕ) and ̺(t) = tϕ(t)1 {t > 0}.
3.1. Main result

Recall that a function is said to be locally bounded on A ⊂ R if it is uniformly bounded on
any compact subset of A.

Theorem 3.1. Fix r > 0. Suppose for some M > r, g is locally bounded on (0,M). Define

h(v, x) = 1 {x > 0} ̺(x− v)/x (3.1)

and for each k ≥ 1,

hk(v, x) =

∫

1 {v1 > r}h(v, v1)h(v1, v2) · · ·h(vk, x) dv1 · · · dvk. (3.2)

Then for x ∈ (r,M),

g(x) =

∫ r

0
g(v) dv

[

h(v, x) +
∞
∑

k=1

hk(v, x)

]

. (3.3)

Remark. From h(v, x) = 0 for x < v, it follows that hk(v, x) = 0 for k ≥ 1 and x ≤ r.

Proof. We start with the following known result ([34], Corollary 4.2.2; [33], Theorem 51.1).

Lemma 3.1. For any x > 0, g(x) =
∫ x
0 g(v)h(v, x) dv.
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Equipped with the lemma, we first show that given x ∈ (r,M), for each n ≥ 1,

g(x) =

∫ r

0
g(v) dv

[

h(v, x) +

n
∑

k=1

hk(v, x)

]

+Rn(x), (3.4)

with Rn(x) =

∫

1 {v > r} g(v)h(v, v1)h(v1, v2) · · ·h(vn, x) dv dv1 · · · dvn.

By Lemma 3.1 and noting h(v, x) = 0 for v > x,

g(x) =

∫ ∞

0
g(v)h(v, x) dv =

∫ r

0
g(v)h(v, x) dv +

∫ ∞

r
g(v)h(v, x) dv. (3.5)

For g(v) in the last integral, as v > r, the expansion (3.5) can be iterated once to yield

g(x) =

∫ r

0
g(v)h(v, x) dv +

∫ ∞

r

[
∫ r

0
g(w)h(w, v) dw +

∫ ∞

r
g(w)h(w, v) dw

]

h(v, x) dv.

Make some changes in symbol and regroup the integrals to get

g(x) =

∫ r

0
g(v)dv

[

h(v, x) +

∫ ∞

r
h(v, v1)h(v1, x) dv1

]

+

∫ ∞

r

∫ ∞

r
g(v)h(v, v1)h(v1, x) dv dv1

=

∫ r

0
g(v)dv[h(v, x) + h1(v, x)] +R1(x),

which shows (3.4) for n = 1. In general, for g(v) in the integral expression of Rn(x), as v ≥ r,
we can iterate the expansion (3.5) to get

Rn(x) =

∫

1 {v > r}
[
∫ r

0
g(w)h(w, v) dw +

∫ ∞

r
g(w)h(w, v) dw

]

× h(v, v1)h(v1, v2) · · ·h(vn, x) dv dv1 · · · dvn

=

∫ r

0
g(w) dw

[
∫

1 {v > r}h(w, v)h(v, v1)h(v1, v2) · · ·h(vn, x) dv dv1 · · · dvn
]

+

∫

g(w)1 {w > r}1 {v > r}h(w, v)h(v, v1) · · ·h(vn, x) dw dv dv1 · · · dvn.

The right hand side is exactly
∫ r
0 g(w)hn+1(w, x) dw + Rn+1(x). Then by induction, (3.4)

holds.
By the expression of h(v, x),

Rn(x) ≤ sup
v∈[r,x]

g(v)× In(x) (3.6)

where, writing v0 = v, vn+1 = x,

In(x) =

∫

1 {r < v0 < v1 < . . . < vn < x}
n
∏

i=0

̺(vi+1 − vi)

vi+1
dvi.

Let si = vi − vi−1 for i = 1, . . . , n + 1. Then vi = x − si+1 − · · · − sn+1, i = 0, . . . , n and
1 {r < v0 < v1 < · · · < vn < x} = 1 {all si > 0, s1 + · · ·+ sn+1 < x− r}. As a result,

In(x) ≤ r−n−1

∫

1 {s1 + · · ·+ sn+1 < x− r}
n+1
∏

i=1

̺(si) dsi.
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Letting µ =
∫ x−r
0 ̺, ψ(s) = ̺(s)1 {0 < s < x− r} /µ is a probability density. Let ξ, ξ1, ξ2, . . .

be i.i.d. ∼ ψ. Then by the above inequality and Markov inequality, for any t > 0,

In(x) ≤ (µ/r)n+1P{ξ1 + · · ·+ ξn+1 < x− r}
≤ (µ/r)n+1E[et(x−r−ξ1−···−ξn+1)] = et(x−r)[µE(e−tξ)/r]n+1.

Since Ee−tξ → 0 as t → ∞, we can find t > 0 such that µE(e−tξ)/r < 1. Fixing such t and
letting n → ∞, it is seen In(x) → 0 as n → ∞. By assumption, supv∈[r,x] g(v) < ∞, so by
(3.6), Rn(x) → 0. This together with (3.4) and monotone convergence yields (3.3).

3.2. Formulation toward rejection sampling

Let g be locally bounded on (0,∞). By Theorem 3.1, for all x > 0,

g(x) = 1 {x ≤ r} g(x) + 1 {x > r}
∫ r

0
g(v) dv

[

h(v, x) +

∞
∑

k=1

hk(v, x)

]

=

∫ r

0
g(v) dv

[

δ(x− v) + h(v, x)1 {x > r}+
∞
∑

k=1

hk(v, x)

]

,

where δ is the delta function and the second equality is due to hk(v, x) = 0 whenever x ≤ r.
Suppose we know how to sample X conditional on X ≤ r, i.e. from the density

p(x) = a−1g(x)1 {x ≤ r} , (3.7)

where a =
∫ r
0 g. The value of a is often unavailable. Since the support of g is [0,∞), the

conditional density is well defined. Using the above formula, we can rewrite g as

g(x) = a

∫

p(v) dv

[

δ(x− v) + h(v, x)1 {x > r}+
∞
∑

k=1

hk(v, x)

]

. (3.8)

The question is how to use (3.8) to sample from g. In the expansion, δ and h should be easy
to handle; however, h1, h2, . . . are defined by integrals. In general, for sampling, it is desirable
not to evaluate integrals. With this in mind, we shall first consider densities of the form

g(x) = a

∫

p(v) dv

[

∑

i

∫

qi(v, x, wi) νi(dwi)

]

for some constant a > 0, (3.9)

where the sum on the right hand side has at most countably many terms, qi ≥ 0 are known
functions, and νi are σ-finite measures on some measurable spaces that may be different from
each other. Besides including (3.8) as a special case, the expansion in (3.9) provides more
flexibility for sampling. For example, if the integral that defines hk in (3.8) is complicated,
then we may consider using (3.9) to reformulate hk as the sum of several integrals over disjoint
regions that are easier to handle. This perspective will be incorporated in the following
discussion.

4. Rejection sampling

4.1. Procedures for general densities

Rejection sampling is an exact sampling method [13, 18, 19, 27]. Let π be a density with
respect to a σ-finite measure ν. Suppose π is specified as π ∝ q, where q ≥ 0 is a known
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function. In standard rejection sampling, an “instrumental” density function φ with respect
to ν and a constant C > 0 have to be identified, such that φ can be sampled and q(x) ≤ Cφ(x)
for all x. Then the sampling for π proceeds as follows.

• Keep sampling X ∼ φ, U ∼ Unif(0, 1) independently until CUφ(X) ≤ q(X). Then
output X.

We now turn to the density in (3.9). Suppose we can find constants Ci ≥ 0 and instrumental
functions φi(·, ·, ·) ≥ 0, such that for all v with p(v) > 0 and i,

C :=
∑

i

Ci <∞, qi(v, ·, ·) ≤ Ciφi(v, ·, ·), and

φi(v, ·, ·) is a probability density with respect to ℓ× νi,

where ℓ is the Lebesgue measure on R. Under the setup, consider the procedure in the following
algorithm.

Algorithm 4.1. (Rejection sampling for densities of the form (3.9).)

1. Sample Z ∼ p and κ independently, with P{κ = i} = Ci/C.

2. Given Z and κ, sample (X,W ) from the density φκ(Z, ·, ·) with respect to ℓ× νκ.

3. Sample U ∼ Unif(0, 1). If CκUφκ(Z,X,W ) ≤ qκ(Z,X,W ), then output X and stop,
else go back to step 1 and start a new, independent iteration.

Proposition 4.1. Algorithm 4.1 eventually terminates with probability 1, and its random
output follows g in (3.9).

Proof. First, by integrating (3.9) over x and Fubini Theorem,

1 =

∫

g(x) dx = a

∫

p(v) dv

[

∑

i

∫

qi(v, x, wi) dx νi(dwi)

]

≤ a

∫

p(v) dv

[

∑

i

Ci

∫

φi(v, x, wi) dx νi(dwi)

]

= aC.

Therefore C > 0 and the sampling of κ in step 1 is well defined.

Given a measurable set A ⊂ R, for each iteration,

P{X ∈ A is output}

=

∫

∑

i

P{Z ∈ dv, κ = i}P
{

X ∈ A, U ≤ qi(v,X,W )

Ciφi(v,X,W )
Z = v, κ = i

}

=

∫

p(v) dv
∑

i

Ci

C

[
∫

φi(v, x, wi)1 {x ∈ A} dx νi(dwi)P

{

U ≤ qi(v, x, wi)

Ciφi(v, x, wi)

}]

.

Because qi(v, x, wi) ≤ Ciφi(v, x, wi), whether or not Ciφi(v, x, wi) is positive,

Ciφi(v, x, wi)P

{

U ≤ qi(v, x, wi)

Ciφi(v, x, wi)

}

= qi(v, x, wi).
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As a result,

P{X ∈ A is output} =
1

C

∫

p(v) dv

[

∑

i

∫

qi(v, x, wi)1 {x ∈ A} dx νi(dwi)

]

=
1

C

∫

A
dx

{

∫

p(v) dv

[

∑

i

∫

qi(v, x, wi) νi(dwi)

]}

=
1

aC

∫

A
g,

where the last equality is due to (3.9). In particular, letting A = R, for each iteration, the
probability that X is output (and hence the procedure stops) is 1/(aC) > 0. This shows that,
on the one hand, in each iteration, P{X ∈ A |X is output} =

∫

A g, and on the other, with
probability 1, the procedure eventually terminates. Because the iterations are independent,
P{X ∈ A at termination} =

∫

A g. Since this is true for all measurable A, we get X ∼ g.

4.2. A procedure for positive i.d. random variables

Let ϕ be a Lévy density with
∫

ϕ = ∞ such that the density g of ID(ϕ) is locally bounded on
(0,∞). Our goal is to sample for ϕ. We have in (3.8) an integral series expansion of g in terms
of ̺(t) = tϕ(t) and its conditional version on some (0, r] 6= ∅, i.e., p(x) = g(x)1 {x ≤ r} /a, with
a =

∫ r
0 g. To apply Proposition 4.1 to the integral series expansion, our working hypothesis in

this section is, for a given r > 0, p can be sampled exactly .

Observe that in the integral series expansion of g, given v, both h(v, x) and hk(v, x) are
defined in terms of the increments x − v, vi − vi−1. This suggests that we may sample X
by sampling the increments. As noted after (3.9), the domains of the increments may be
partitioned into subregions, so that each can be treated conveniently in certain way.

For k ≥ 1, let ℓk denote the Lebesgue measure on R
k. Suppose for k ≥ 1, we can find

constants Ck1, . . . , Cknk
≥ 0 and measurable instrumental functions φkj(·, ·) on R × R

k,
j = 1, . . . , nk, such that the following conditions are satisfied. First,

∞
∑

k=1

nk
∑

j=1

Ckj <∞. (4.1)

Second, for each v with p(v) > 0 and k ≥ 1,

φkj(v, ·) are probability densities with respect to ℓk, such that

{s : φkj(v, s) > 0}, j = 1, . . . , nk, are disjoint, and
(4.2)

qk(v, s) := 1 {s1 + v > r}
k
∏

i=1

̺(si)

v + s1 + · · ·+ si
≤

nk
∑

j=1

Ckjφkj(v, s). (4.3)

Due to condition (4.3), φkj should be designed according to ̺(s) = sϕ(s). Naturally, it is
desirable to have φkj that are easy to handle. Let

C0 = 1, Ck =

nk
∑

j=1

Ckj , k ≥ 1, and C =

∞
∑

k=0

Ck.

A rejection sampling procedure for g under the setup is given in the following algorithm.

Algorithm 4.2. (Rejection sampling for a positive i.d. random variable.)
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1. Sample Z ∼ p and κ, such that P{κ = k} = Ck/C, k ≥ 0.

2. If κ = 0, then output X = Z and stop, else sample η such that P{η = j} = Cκj/Cκ,
j = 1, . . . , nκ.

3. Given Z, κ, and η, sample S = (S1, . . . , Sκ) from the density φκη(Z, ·).
4. Sample U ∼ Unif(0, 1). If CκηUφκη(Z, S) ≤ qκ(Z, S), then output X = Z+S1+ · · ·+Sκ

and stop, else go back to step 1 and start a new, independent iteration.

Theorem 4.1. Algorithm 4.2 terminates eventually with probability 1, and its random output
follows g in (3.8).

Proof. Given a measurable set A ⊂ R, in each iteration,

P{X ∈ A is output} = P{Z ∈ A, κ = 0}+
∫ ∞
∑

k=1

nk
∑

j=1

P{Z ∈ dv, κ = k, η = j}Qkj(v),

where

Qkj(v) = P

{

v + S1 + · · ·+ Sk ∈ A, U ≤ qk(v, S)

Ckjφkj(v, S)

}

, S ∼ φkj(v, ·).

We have

P{Z ∈ A, κ = 0} =
1

C

∫

1 {v ∈ A} p(v) dv

and, for each v with p(v) > 0, k ≥ 1 and j = 1, . . . , nk,

P{Z ∈ dv, κ = k, η = j} =
Ckj

C
p(v) dv.

By (4.2) and (4.3), for each s, if qk(v, s) > 0, then there is exactly one j ∈ {1, . . . , nk}, such
that φkj(v, s) > 0, and conversely, if φkj(v, s) > 0 for some j, then qk(v, s) ≤ Ckjφkj(v, s) and
φkl(v, s) = 0 for all l 6= j. Thus, if Ckj > 0, then

Qkj(v) =

∫

φkj(v, s)1 {v + s1 + · · ·+ sk ∈ A}P
{

U ≤ qk(v, s)

Ckjφkj(v, s)

}

ds

=
1

Ckj

∫

qk(v, s)1 {φkj(v, s) > 0}1 {v + s1 + · · ·+ sk ∈ A} ds,

which leads to

P{Z ∈ dv, κ = k, η = j}Qkj(v)

=
p(v) dv

C

∫

qk(v, s)1 {φkj(v, s) > 0}1 {v + s1 + · · ·+ sk ∈ A} ds.

If Ckj = 0, then P{Z ∈ dv, κ = k, η = j} = 0 and qk(v, s) = 0 for any s with φkj(v, s) > 0.
Therefore, the above equality still holds. As a result,

∫ nk
∑

j=1

P{Z ∈ dv, κ = k, η = j}Qkj(v)

=
1

C

∫

p(v) dv

∫

qk(v, s)

nk
∑

j=1

1 {φkj(v, s) > 0}1 {v + s1 + · · ·+ sk ∈ A} ds

=
1

C

∫

p(v) dv

∫

qk(v, s)1 {v + s1 + · · ·+ sk ∈ A} ds, (4.4)
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where the last line is again due to conditions (4.2) and (4.3). Let x = v+ s1+ · · ·+ sk, and for
1 ≤ i < k, vi = v + s1 + · · ·+ si. If k = 1, then q1(v, s) = 1 {x > r}h(v, x), and so by change
of variable and Fubini Theorem, the iterated integral (4.4) is equal to

1

C

∫

1 {x ∈ A}
[
∫

p(v)1 {x > r}h(v, x) dv
]

dx.

If k > 1, then it is easy to check qk(v, s) = 1 {v1 > r}h(v, v1) · · ·h(vk−2, vk−1)h(vk−1, x) and
hence by change of variable and Fubini Theorem, the iterated integral (4.4) is equal to

1

C

∫

p(v) dv

∫

1 {x ∈ A}1 {v1 > r}h(v, v1) · · ·h(vk−1, x) dv1 · · · dvk−1 dx

=
1

C

∫

1 {x ∈ A}
[
∫

p(v)hk−1(v, x) dv

]

dx.

Combining the above results and using (3.8), in each iteration, P{X ∈ A is output} =
(aC)−1

∫

A g. The proof is then complete following the argument for Proposition 4.1.

4.3. Conditional density vs. upper truncated Lévy density

We consider several implications of the results in Section 4.2. The statement below follows
directly from Theorem 4.1.

Proposition 4.2. Let X be a strictly positive i.d. random variable with its Lévy density being
known. Given r > 0, if we can sample X conditional on X ≤ r, then we can sample X using
Algorithm 4.2. Conversely, as is well known, if we can sample X, then for any r > 0, we can
sample X conditional on X ≤ r by rejection sampling.

Basically, the result says that the sampling of an i.d. random variable boils down to the
sampling of its conditional density on some (0, r]. The question is, how to identify such r and
how to sample from the corresponding conditional density.

Proposition 4.3. Let ϕ1 and ϕ2 be Lévy densities with
∫

ϕi = ∞. Suppose that we can find
r > 0, such that ϕ1 = ϕ2 on (0, r]. Then, provided we can sample for one of them, we can
sample for the other one using Algorithm 4.2.

Proof. By assumption, ϕ1 and ϕ2 share an upper truncated version ψ(t) = ϕ1(t)1 {t ≤ r}.
Let Xi ∼ ID(ϕi), i = 1, 2, and Y ∼ ID(ψ). We have seen from Introduction that for i = 1, 2,
the density of Xi conditional on Xi ≤ r is identical to that of Y conditional on Y ≤ r. Thus,
the conditional densities of Xi are equal to each other. If we can sample, say, X1, then we can
sample X1 conditional on X1 ≤ r, and hence sample X2 conditional on X2 ≤ r. Then from
Proposition 4.2, we can sample X2 by applying Algorithm 4.2 to ϕ2.

The proof provides the following answer to the question raised before Proposition 4.3. Given
ϕ, find r > 0 and another Lévy density λ which we know how to sample for, such that ϕ = λ
on (0, r]. Sample X ∼ ID(λ) conditional on X ≤ r. The sampled value then follows the
conditional distribution of ID(ϕ) on (0, r].

As a further development along this line, suppose that, instead of sharing a common upper
truncated version, ϕ1 and ϕ2 satisfy

ϕ2(t) = [1 +O(t)]ϕ1(t) as t→ 0+. (4.5)

Notice that under the much stronger condition e−b1tϕ1(t) ≤ ϕ2(t) ≤ eb2tϕ1(t) for some b1,
b2 ≥ 0, the methods in Section 2 can be used to sample for one of ϕi based on the other.
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Proposition 4.4. For Lévy densities ϕ1 and ϕ2 that satisfy (4.5) with
∫

ϕi = ∞, if we can
sample for one of them, then we can also sample for the other using Algorithm 4.2, with
possibly an extra step of sampling from a compound Poisson distribution.

Proof. Since (4.5) is equivalent to ϕ1(t) = [1 +O(t)]ϕ2(t) as t→ 0+, by symmetry, assume
without loss of generality that we can sample for ϕ1. We can find constants a1 ≥ 0, a2 ≥ 0,
and r0 > 0, such that (1 − a1t)ϕ1(t) ≤ ϕ2(t) ≤ (1 + a2t)ϕ1(t) for 0 < t ≤ r0. Fix b ≥ a1 and
0 < r ≤ r0, such that e−bt ≤ 1− a1t for 0 < t ≤ r. If a1 = 0, we can just let b = 0 and r = r0.
Define ψ(t) = e−btϕ1(t)1 {t ≤ r}. Then it is straightforward to check ψ(t) ≤ ϕ2(t)1 {t ≤ r}.
Let χ(t) = ϕ2(t)− ψ(t). Consider the following procedure.

• Sample X ∼ ID(ψ) and ξ ∼ ID(χ) independently. Return X + ξ.

From Proposition 4.3, we can sample for ϕ1(t)1 {t ≤ r}. Then by exponential tilting, we can
sample for ψ(t); see Section 2.2. On the other hand,

0 ≤ χ(t) = ϕ2(t)1 {t ≤ r} − ψ(t) + ϕ2(t)1 {t > r}
≤ (1 + a2t)ϕ1(t)1 {t ≤ r} − ψ(t) + ϕ2(t)1 {t > r}
= (1 + a2t− e−bt)ϕ1(t)1 {t ≤ r}+ ϕ2(t)1 {t > r}
≤ (a2 + b)tϕ1(t)1 {t ≤ r}+ ϕ2(t)1 {t > r} .

Therefore, χ ∈ L1(0,∞), giving rise to a compound Poisson distribution.

Finally, notice that if ϕ1(t) can be decomposed into

ϕ1(t) = [1 +O(t)]ϕ2(t) + χ(t),

where ϕ2 is a Lévy density with
∫

ϕ2 = ∞ that we know how to sample for, and χ ≥ 0 is
integrable, then by Proposition 4.4, we can also sample for ϕ1.

In subsequent sections, all examples are based on Propositions 4.3 and 4.4. In most of
the examples, the sampling for an upper truncated Lévy density takes the center stage. This
is natural. A generic approach to the sampling for a Lévy density ϕ is by sampling for
ϕ(t)1 {t ≤ r} and ϕ(t)1 {t > r} independently. After all, it is ϕ(t)1 {t ≤ r} that determines
the conditional density of ID(ϕ) on (0, r], whose sampling is the crucial starting point of
Algorithm 4.2. On the other hand, in principle, as long as we know how to sample from
the conditional density, Algorithm 4.2 can be used whether or not the Lévy density is upper
truncated. This observation is useful sometimes; see Section 5.4 for an example.

4.4. Some corollaries on complexity

The complexity of an algorithm can be measured in many ways (cf. [28]). For Algorithm 4.2,
a useful measure is the number of iterations it needs to generate one output.

Proposition 4.5. The number of iterations of Algorithm 4.2 follows the geometric distribution
with mean value C

∫ r
0 g.

Proof. From the last line of the proof of Theorem 4.1, at each iteration, P{X is output} =
(aC)−1, and by (3.7), a =

∫ r
0 g.

The amount of time required to generate one output is an important measure of complexity
(cf. [13]). Denote by ω the vector of random values sampled in a single iteration of Algo-
rithm 4.2, including Z, κ, and, provided κ ≥ 1, η, S and U . Let D(ω) be the amount of time
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to generate and process ω. For example, the computation of φκη(Z, S) and qκ(Z, S) in step 4
is part of the processing of ω. Note that, after each iteration, whether or not the algorithm
stops is determined by ω.

Proposition 4.6. Let T denote the total time taken for Algorithm 4.2 to generate a random
output. Then ET = EN × E[D(ω)] = (C

∫ r
0 g)E[D(ω)].

Proof. For k ≥ 1, let ωk denote the vector of random values sampled in iteration k. Then
ωk are i.i.d. ∼ ω. Let N be the number of iterations. Then T =

∑N
k=1D(ωk). Since N is a

stopping time with respect to ω1, ω2, . . ., ET = E[D(ω)]×EN (cf. [7], p. 101). Then the result
follows from Proposition 4.5.

5. A general design

5.1. Description of the design

Let ϕ be a Lévy density such that
∫

ϕ = ∞ and the density of ID(ϕ) is locally bounded
on (0,∞). In order to use Algorithm 4.2 to sample for ϕ, we need to find constants Ckj and
instrumental functions φkj satisfying conditions (4.1)–(4.3) that are easy to compute and use.
The following design is immediate from Theorem 4.1.

Proposition 5.1. Let qk be the functions in (4.3). Suppose there are constants bk ≥ 0 with
∑∞

k=1 bk <∞ and functions q̄k(·, ·), such that qk(v, ·) ≤ q̄k(v, ·) for each v with p(v) > 0 and

bk ≥ sup
p(v)>0

Qk(v) with Qk(v) =

∫

q̄k(v, s) ds.

Then in Algorithm 4.2, one can set nk = 1, Ck1 = bk and φk1(v, ·) = q̄k(v, ·)/Qk(v) for k ≥ 1.

Remark. Under the design, step 4 of Algorithm 4.2 needs to compare U ∼ Unif(0, 1) and
ζ := [Qκ(Z)/bκ]qκ(Z, S)/q̄κ(Z, S), which is hard if Qk(·) is difficult to compute. However,
given ζ, the whole purpose of the comparison is to stop the algorithm with probability ζ. As
shown next, alternative methods to stop the algorithm can be found.

5.2. An example on upper truncated stable Lévy density

Let α ∈ (0, 1). We consider how to apply Proposition 5.1 to sample for the Lévy density

ϕ(t) = ct−α−11 {0 < t ≤ r} ,

where c, r ∈ (0,∞). It can be shown that the density of ID(ϕ) is smooth and bounded on R (cf.
[33], p. 190). Let X ∼ ID(ϕ). By Laplace transform, X ∼ c1/αX ′, where X ′ has Lévy density
t−1−α1

{

0 < t ≤ rc−1/α
}

. Thus, without loss of generality, assume c = 1 in the following.
Let λ(t) = t−α−11 {t > 0}. The sampling of ID(λ) is well known [10, 13, 21, 32]. This

combined with Proposition 5.1 leads to the following algorithm to sample for ϕ.

Algorithm 5.1. Set b0 = 1 and for k ≥ 1, bk = αθkΓ(kα)/Γ(k) with θ = Γ(1− α)/(rαα).

1. Sample Z ∼ ID(λ) conditional on Z ≤ r and κ such that P{κ = k} = bk/
∑

i≥0 bi, k ≥ 0.

2. If κ = 0, then output X = Z and stop.

3. Sample T1 ∼ Beta(κα, 1 − α) conditional on T1 < Z/r. Set S1 = Z(1/T1 − 1). If
κ > 1, then, sequentially, for i = 2, . . . , κ, sample Ti ∼ Beta((κ− i+ 1)α, 1− α) and set
Si = (Z + S1 + · · ·+ Si−1)(1/Ti − 1).
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4. Sample U ∼ Unif(0, 1) and T ∼ Beta(κα, 1 − α). If Si ≤ r for all i ≤ κ and U ≤
[(r−rT )/(r−ZT )]α, then output X = Z+S1+ · · ·+Sκ and stop, else go back to step 1.

Remark 5.1. (i) In step 3, if an Si > r is generated at any time point, we can terminate
the current iteration right away and start a new one. Although this modification improves
efficiency, for clarity, we do not implement it in what follows.

(ii) Using Laplace transform, if r ∈ (0, 1), then X ∼ r(Y1 + · · ·+ Ym), where m = ⌈r−α⌉ ≥ 1,
Y1, . . . , Ym are i.i.d. with Lévy density t−α−11 {0 < t ≤ r′}, with r′ = rm1/α ≥ 1. While this
suggests that it may suffice to only consider r ≥ 1, for now we shall consider any r > 0.

5.2.1. Justification. In step 1, it is clear that Z conditional on Z ≤ r is identically distributed
as X conditional on X ≤ r. To justify the sampling of κ, we need some calculations. For
v ∈ (0, r] and s = (s1, . . . , sk), since ̺(si) = siϕ(si) = 1 {0 < si ≤ r} s−α

i , by (4.3),

qk(v, s) = 1 {s1 + v > r}
k
∏

i=1

1 {0 < si ≤ r} s−α
i

v + s1 + · · ·+ si
.

To apply Proposition 5.1, let

q̄k(v, s) = 1 {s1 + v > r}
k
∏

i=1

1 {si > 0} s−α
i

v + s1 + · · ·+ si
.

Then qk(v, s) ≤ q̄k(v, s). To get Qk(v) =
∫

q̄k(v, s) ds, we use

∫ ∞

0

s−α ds

(z + s)1+β
= z−α−β Γ(1− α)Γ(α+ β)

Γ(β + 1)
, z > 0, α ∈ (0, 1), β ≥ 0,

which can be verified by change of variable s = z(u−1 − 1) and properties of Beta functions.
By integrating over sk, sk−1, . . . , s1 one by one, we can get, for k ≥ 1 and j = 1, . . . , k − 1,

∫

q̄k(v, s) dsk · · · dsk−j+1 =

j
∏

i=1

Γ(1− α)Γ(iα)

Γ(1 + (i− 1)α)

× 1 {s1 + v > r}
(

k−j
∏

i=1

1 {si > 0} s−α
i

v + s1 + · · ·+ si

)

1

(v + s1 + · · ·+ sk−j)jα
(5.1)

and

Qk(v) =
k−1
∏

i=1

Γ(1− α)Γ(iα)

Γ(1 + (i− 1)α)

∫

1 {s1 + v > r} s−α
1 ds1

(v + s1)1+(k−1)α

=

k−1
∏

i=1

Γ(1− α)Γ(iα)

Γ(1 + (i− 1)α)

∫ ∞

0

(r − v + u)−α du

(r + u)1+(k−1)α
, (5.2)

where the last equality is by change of variable s1 = r − v + u. It follows that

Qk(v) ≤ Qk(r) = r−αk
k
∏

i=1

Γ(1− α)Γ(iα)

Γ(1 + (i− 1)α)
=
r−αk[Γ(1− α)]kΓ(kα)

αk−1Γ(k)
=
αθkΓ(kα)

Γ(k)
.
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Clearly bk = Qk(r). By 0 < α < 1,

∞
∑

k=1

bk =
∞
∑

k=1

αθk

(k − 1)!

∫ ∞

0
xkα−1e−x dx = α

∫ ∞

0
θxα−1e−x

∞
∑

k=0

θkxαk

k!
dx

= α

∫ ∞

0
θxα−1e−xeθx

α
dx =

∫ ∞

0
ez−(z/θ)1/α dz =

∫ ∞

0
ez−r[αz/Γ(1−α)]1/α dz <∞. (5.3)

Then by Proposition 5.1, we obtain the sampling of κ in step 1.
Step 2 directly follows from the general procedure in Algorithm 4.2. To justify step 3,

according to Algorithm 4.2, given Z ∈ (0, r] and κ ≥ 1, we need to sample from the density

φκ(Z, s) =
q̄κ(Z, s)

Qκ(Z)
= C1 {s1 + Z > r}

κ
∏

i=1

1 {si > 0} s−α
i

Z + s1 + · · ·+ si
,

where C is the normalizing constant. The exact value of C is not important and may change
from line to line in the following. Let S = (S1, . . . , Sκ) ∼ φκ(Z, ·). From (5.1), S1 has
density C1 {x > r − Z}x−α(Z+x)−1−(κ−1)α at x ∈ R. By calculation, Z/(Z+S1) has density
C1 {0 < x < Z/r} (1 − x)−αxκα−1, the same as that of T1 ∼ Beta(κα, 1 − α) conditional on
T1 < Z/r. Thus, S1 can be sampled as Z(1/T1 − 1). For i > 1, conditional on S1, . . . , Si−1, it
can be seen likewise that Si has density C1 {x > 0}x−α(Z+S1+ · · ·+Si−1+x)

−1−(κ−i)α and
thus can be sampled as (Z + S1 + · · ·+ Si−1)(1/Ti − 1), with Ti ∼ Beta((κ − i+ 1)α, 1 − α).
Step 3 is then established.

Finally, as remarked after Proposition 5.1, given Z, κ, and S = (S1, . . . , Sκ), all we need
to do in step 4 is to stop the iteration with probability [Qκ(Z)/bκ]qκ(Z, S)/q̄κ(Z, S), which
is equal to 1 {all Si ≤ r}Qκ(Z)/Qκ(r). However, Qκ(Z) is not easy to compute. To get
around the problem, make change of variable u = r(t−1 − 1) in (5.2). Then we can get
Qκ(Z)/Qκ(r) = Eξ, where ξ = [(r−rT )/(r−ZT )]α with T ∼ Beta(κα, 1−α). Note 0 ≤ ξ ≤ 1.
Since Eξ = P{U ≤ ξ} for any ξ independent of U with P{0 ≤ ξ ≤ 1} = 1, it is seen that step 4
is correct.

5.2.2. Complexity. Let N be the number of iterations required by the algorithm to sample one
X ∼ ID(ϕ). By Proposition 4.5, EN = P{X ≤ r}∑k≥0 bk. Let χ(t) = t−α−11 {t > r} and
ξ ∼ ID(χ) be independent of X. Then Z ∼ X + ξ and P{X ≤ r} = P{Z ≤ r}/P{ξ = 0}.
The expression of P{Z ≤ r} is known [10], while P{ξ = 0} = exp(−

∫∞
r χ) = exp(−r−α/α).

Together with (5.3), this gives

EN = exp(r−α/α)P{Z ≤ r}
{

1 +

∫ ∞

0
ez−r[αz/Γ(1−α)]1/α dz

}

.

By Proposition 4.6, ET = ED × EN , where T is the amount of time required to sample
one X ∼ ID(ϕ), and D that required by a single iteration. Each iteration has to sample
1) one Z ∼ ID(λ) conditional on Z ≤ r, 2) one κ from a distribution that depends on r, and
3) provided κ ≥ 1, one T1 ∼ Beta(κα, 1− α) conditional T1 ≤ Z/r, and for each i = 1, . . . , κ,
a value from Beta(iα, 1 − α). These samplings account for most of D. Denote by D1(r) the
amount of time required for the conditional sampling of Z, D2(r) the amount of time required
for the sampling of κ, and for k ≥ 1, z ∈ (0, 1], D3(k, z) the amount of time required to sample
ζ ∼ Beta(kα, 1−α) conditional on ζ ≤ z. In Appendix 1, we show that it is possible to bound
ED1(r), ED2(r), and ED3(k, z) uniformly for r > 0, k ≥ 1 and z > 0. Consequently, ED is of
the same order as

∑

k≥0(1 + k)bk/
∑

k≥0 bk.
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It is easy to see that as r → ∞, EN → 1 and ET → ED1(∞), the expected amount of time
to sample one Z ∼ ID(λ). On the other hand, as r → 0, it can be shown EN ≍ exp(r−α/α),
where for two functions f and g, f ≍ g stands for f = O(g) and g = O(f); see Appendix 1.
Therefore, if we directly apply the algorithm to ϕ(t) = t−α−11 {t ≤ r}, then EN is extremely
large for small r. However, by remark 2) following the algorithm, we can instead sample
O(r−α) i.i.d. random variables with Lévy density t−α1 {t ≤ r′} for some r′ ≥ 1 and then take
their weighted sum. In this way, both EN and ET are lowered to the order of O(r−α).

5.3. An application to a class of i.d. distributions

As an application of the result in Section 5.2, consider Lévy densities of the form

ϕ(t) = ψ(t)(et − 1)−α−11 {t > 0} , α ∈ (0, 1)

where ψ(t) ≥ 0 is a measurable function on (0,∞) such that
∫∞
c ψ(t)e−(α+1)t dt < ∞ for any

c > 0 and ψ(t) = 1 +O(t) as t→ 0+. An algorithm to sample for ϕ is as follows.

Algorithm 5.2. Set r ∈ (0,∞] and β < α+ 1, such that ψ(t) ≥ eβt for t ∈ (0, r]. Note r can
be ∞.

1. Keep sampling (U,Z) until U ≤ e(β−α−1)Z , where U ∼ Unif(0, 1) and Z ∼ ID(ϕ1) with
ϕ1(t) = t−α−11 {t ≤ r} are independent.

2. Sample ξ ∼ ID(χ), with χ(t) = ϕ(t) − e(β−α−1)tϕ1(t) ≥ 0 being integrable. Return
X = Z + ξ.

If ψ(t) = ect, where c < α+1, then ID(ϕ) belongs to Lamperti-stable distributions [9], which
arise from positive self-similar Markov processes and related processes (cf. [5, 9, 24–26]). In
this case, we can simply set r = ∞ and β = c. Although the sampling of Lamperti-stable
distributions with α ∈ (0, 1) is quite simple, somewhat surprisingly, it seems that it has not
been explicitly stated in the literature.

More generally, if there is c < α + 1, such that ect ≤ ψ(t) for all t > 0, then we can
set r = ∞ and β = c. However, it is easy to find simple functions ψ, such that for any c,
inft>0[e

−ctψ(t)] = 0, for example, e−t2 , et[1− sin(t)], (1− t)2. For these functions, we need to
select r <∞ and β < α+ 1 accordingly.

5.3.1. Justification. Since ψ(t) = 1 +O(t) as t→ 0+, we indeed can find r and β to meet the
requirement of the algorithm. From Section 2, the random variable Z sampled by step 1 has
Lévy density e(β−α−1)tt−α−11 {t ≤ r}. From the choice of r and β, if t > r, then χ(t) = ϕ(t) ≥
0, and if 0 < t ≤ r, then, by 1− e−t < t for all t > 0,

χ(t) = e−(α+1)t[ψ(t)(1− e−t)−α−1 − eβtt−α−1]

≥ e(β−α−1)t[(1− e−t)−α−1 − t−α−1] > 0,

showing χ is a Lévy density. Following the proof of Proposition 4.4, it can be shown that χ is
integrable. Thus the correctness of step 2 is established.

5.3.2. Complexity. We consider steps 1 and 2 separately. By Proposition 4.6, the expected
amount of time required by step 1 is ET × EN , where T is the amount of time to sample
one observation from ID(ϕ1) and N the total number of iterations required by the step. The
analysis on ET is identical to Section 5.2. On the other hand, since in each iteration, the
probability of acceptance is P{U ≤ e(β−α−1)Z} = E[e(β−α−1)Z ] = exp{

∫

[e(β−α−1)t−1]ϕ1(t) dt},
we have EN = exp{

∫ r
0 [1− e(β−α−1)t]t−α−1 dt} ≤ exp{(α+ 1− β)r1−α/(1− α)}.
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In step 2, ξ can be sampled as the sum of coordinates of the points in a Poisson process with
intensity χ. Let K be the number of points in the process. Then the expected amount of time
required by step 2 is of the same order as EK =

∫

χ =
∫

[ψ(t)− e(β−α−1)tt−α−11 {t ≤ r}] dt.
5.4. A theoretical application

As a theoretical application of Proposition 5.1, we evaluate, for c > 0 and r > 0,

B :=
∞
∑

k=1

ckE

(

k
∏

i=1

1

r + S1 + · · ·+ Si

)

, S1, S2, . . . i.i.d. ∼ Exp(1)

Recall the Gamma(c, 1) distribution has density g(x) = xc−1e−x1 {x > 0} /Γ(c) and Lévy
density ϕ(t) = ct−1e−t1 {t > 0} (cf. [30]). Using the design in Proposition 5.1 with ̺(t) =
tϕ(t) = ce−t1 {t > 0}, Algorithm 4.2 can be reformulated as follows.

Algorithm 5.3. Define, for k ≥ 1, 0 < v ≤ r, s = (s1, . . . , sk), si > 0,

qk(v, s) = 1 {s1 + v > r}
k
∏

i=1

̺(si)

v + s1 + · · ·+ si
= 1 {s1 + v > r}

k
∏

i=1

ce−si1 {si > 0}
v + s1 + · · ·+ si

.

Set φk(v, s) = qk(v, s)/Qk(v), where Qk(v) =
∫

qk(v, s) ds. Set b0 = 1 and for k ≥ 1, bk =
Qk(r). (We will show Qk(r) > Qk(v) for all v ∈ (0, r)).

1. Sample Z ∼ Gamma(c, 1) conditional on Z ≤ r and κ from {0, 1, 2, . . .}, such that
P{κ = k} = bk/

∑∞
i=0 bi.

2. If κ = 0, then output X = Z and stop, else continue.

3. Given Z and κ ≥ 1, Sample S = (S1, . . . , Sκ) from the density φk(Z, ·).
4. Sample U ∼ Unif(0, 1). If bkUφk(Z, S) ≤ qk(Z, S), then output X = Z + S1 + · · · + Sκ

and stop, else go back to step 1.

Algorithm 5.3 cannot be actually used to sample from Gamma(c, 1), since its step 1 relies
on the sampling of Gamma(c, 1) itself. Nevertheless, by Proposition 5.1, its random output X
follows Gamma(c, 1). We use this fact to compute B.

First, we need to get Qk(v). Let s
′
1 = s1 + v − r. Then

qk(v, s) = ck1
{

s′1 > 0, all si > 0
}

e−(r−v)−(s′1+s2+···+sk)
k
∏

i=1

1

r + s′1 + s2 + · · ·+ si
.

Integrating over s′1, s2, . . . , sk, it follows that for k ≥ 1,

Qk(v) = e−(r−v)Qk(r), with Qk(r) = ckE

(

k
∏

i=1

1

r + S1 + · · ·+ Si

)

. (5.4)

In each iteration, if κ = 0, then the procedure stops and outputs X = Z. This is the only
case where the procedure outputs a value in (0, r]. If κ ≥ 1, then, in order for the procedure
to stop, there has to be bκUφκ(Z, S) ≤ qκ(Z, S) in step 4. Since the event is equivalent to
U ≤ Qκ(Z)/bκ = Qκ(Z)/Qκ(r), by (5.4), it has probability e−(r−Z) conditional on Z and κ.
Observe B =

∑∞
k=1Qk(r). Consequently,

P{X ≤ r} =
P{κ = 0}

P{κ = 0}+∑∞
k=1 P{κ = k}E[e−(r−Z) |Z ≤ r]

=
1

1 +BE[e−(r−Z) |Z ≤ r]
.
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Since X ∼ Z, P{X ≤ r} = P{Z ≤ r}. Then, after some calculation,

B =
P{Z > r}

E[e−(r−Z)1 {Z ≤ r}] = cΓ(c)r−cerP{Z > r} =

∫ ∞

1
er(1−t1/c) dt.

6. Another general design

6.1. Description of the design

Let ϕ be a Lévy density such that
∫

ϕ = ∞ and the density of ID(ϕ) is locally bounded on
(0,∞). In this section, we consider a design for Algorithm 4.2 that employs two φkj to handle
each qk, k ≥ 1. In contrast, the design in Section 5 uses one φkj for each qk. Let r > 0 be
fixed such that we know how to sample from the conditional density of ID(ϕ) on (0, r]. By
upper truncating ϕ if necessary, assume

∫

̺ <∞, where ̺(t) = tϕ(t). Moreover, by decreasing
r if necessary, assume

∫ r
v ϕ > 0 for any v < r. Indeed, F (s) =

∫ r
s ϕ is differentiable almost

everywhere and by
∫ r
0 ϕ = ∞, the set of s ∈ (0, r] with F ′(s) = −ϕ(s) < 0 is nonempty [31].

We can reset r to any such s if necessary. Suppose we can find a suitable Lévy density λ with
support in [0,∞), such that

ϕ(t) ≤ λ(t), M :=

∫

tλ(t) dt <∞. (6.1)

While λ = ϕ clearly satisfies (6.1), to facilitate sampling, we sometimes need λ 6= ϕ. Let

ψ(t) = tλ(t)/M. (6.2)

Then ψ is a probability density with support in [0,∞). With a little abuse of notation, for
a > 0, denote by ψ(· |V > a) the density of a generic variable V ∼ ψ conditional on V > a. By
the assumptions on ϕ and λ, for any a < r, P{V > a} > 0 and hence the conditional density
is well defined. For α ∈ (0, 1), denote by θα the α-th quantile of the distribution with density
ψ. Then for V ∼ ψ, P{V < θα} = α. Denote mk = ⌊k/2⌋ for k ≥ 1.

Proposition 6.1. Fix α ∈ (0, 1/2] with 2(M/r)
√

α(1− α) < 1. Denote

N(s) =
k
∑

i=2

1 {si < θα} , s = (s1, . . . , sk), k ≥ 1.

Then Algorithm 4.2 can sample for ϕ if we set, given v ∈ (0, r), for k = 1 and s ∈ R,

n1 = 1, C1 = C11 =M/r, φ11(v, s) = ψ(s |V > r − v), (6.3)

and for k > 1 and s = (s1, . . . , sk),

nk = 2, Ck1 = (M/r)k[4α(1− α)]mk , Ck2 =
(M/r)k(r/θα)

mk

mk!
, (6.4)

φk1(v, s) = D−1
k1 ψ(s1 |V > r − v)

k
∏

i=2

ψ(si)1 {N(s) ≥ mk} , (6.5)

φk2(v, s) = D−1
k2 ψ(s1 |V > r − v)

k
∏

i=2

ψ(si)1 {N(s) < mk} , (6.6)

where Dk1 = P{ηk ≥ mk} and Dk2 = P{ηk < mk}, with ηk ∼ Binomial(k − 1, α).
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Remark 6.1. (i) In step 1 of Algorithm 4.2 we need to sample κ. From (6.3) and (6.4),
P{κ = 1 |mκ = 0} = 1, and for k ≥ 1, P{κ = 2k |mκ = k} = 1 − P{κ = 2k + 1 |mκ = k} =
1/(1 +M/r). Therefore, once mκ is sampled, κ can be sampled conditional on mκ. On the
other hand, mκ follows a mixture of the degenerate distribution at 0, a geometric distribution
and a Poisson distribution, with the latter two conditional on positive integers. It is known
that using rejection sampling, the distributions can be sampled with the expected number of
iterations uniformly bounded for all the parameters involved [13, 14, 19].

(ii) In step 3 of Algorithm 4.2 we need to sample from φkj . As seen below, h(s2, . . . , sk) =

D−1
k1

∏k
i=2 ψ(si)1 {N(s) ≥ mk} is a density. Given v ∈ (0, r], to sample from φk1(v, ·), we can

sample S1 ∼ ψ(· |V > r − v) and T = (S2, . . . , Sk) ∼ h independently. To sample T , first
sample ηk ∼ Binomial(k − 1, α) conditional on ηk ≥ mk; then, given ηk, sample ξ1, . . . , ξk−1

independently, such that ξi ∼ ψ(· |V < θα) for i ≤ ηk and ξi ∼ ψ(· |V ≥ θα) for i > η; finally
set T as a random permutation of ξ1, . . . , ξk−1. We can sample from φk2(v, ·) similarly, except
that we should sample ηk ∼ Binomial(k − 1, α) conditional on ηk < mk instead.

(iii) In step 4 in Algorithm 4.2 we need to check, given U ∼ Unif(0, 1) and S ∼ φkj(v, ·), if
CkjUφkj(v, S) ≤ qk(v, S). It can be seen the inequality is equivalent to

U ≤ AkjP{V > r − v}
k
∏

i=1

rϕ(Si)/λ(Si)

v + S1 + · · ·+ Si
, (6.7)

where A11 = 1, Ak1 = Dk1[4α(1 − α)]−mk , Ak2 = Dk2mk!(θα/r)
mk for k ≥ 2, and V ∼ ψ.

Note that, since S is a sampled value, factors such as 1 {S1 > r − v} and 1 {N(s) ≥ mk} are
unnecessary in (6.7) as they are equal to 1 (with probability 1).

(iv) Let N denote the number of iterations required by Algorithm 4.2 under the design. Then
by Proposition 4.5,

EN ≤ 1 + (M/r) +
∞
∑

k=2

[

(M/r)k[4α(1− α)]mk +
(M/r)k(r/θα)

mk

mk!

]

= (1 +M/r)

[

4M2α(1− α)/r2

1− 4M2α(1− α)/r2
+ eM

2/(rθα)

]

. (6.8)

Proof. We first check that φkj satisfy condition (4.2). The proof for φ11 is trivial. Let k ≥ 2.
Since ψ(· |V > r − v) is a probability density and N(s) only depends on s2, . . . , sk,

∫

ψk1(v, s) ds = D−1
k1

∫ k
∏

i=2

ψ(si)1 {N(s) ≥ mk} ds2 · · · dsk = D−1
k1 P{ζ ≥ mk},

where ζ =
∑k

i=2 1 {Si < θα}, with Si i.i.d. ∼ ψ. Since ζ ∼ Binomial(k − 1, α), the above
integral is 1 and ψk1(v, ·) is a probability density. Similarly, ψk2(v, ·) is a probability density.
Since ψk1(v, s) and ψk2(v, s) clearly cannot both be positive, condition (4.2) is satisfied.

We next check that condition (4.3) is satisfied. By definition, ̺(t) ≤ tλ(t) = Mψ(t). For
k = 1 and v with p(v) > 0, by v ≤ r,

q1(v, s) = 1 {s+ v > r} ̺(s)

v + s

≤ 1 {s+ v > r} ̺(s)
r

≤ M1 {s > r − v}ψ(s)
r

≤ M

r
ψ(s |V > r − v).
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Therefore, one can choose n1, C11 and φ11 as in (6.3). For k > 1, by (4.3),

qk(v, s) = 1 {s1 + v > r}
k
∏

i=1

̺(si)

v + s1 + · · ·+ si

≤ 1 {s1 + v > r} ̺(s1)
r

k
∏

i=2

̺(si)

r + s2 + · · ·+ si
≤ Mkψ(s1 |V > r − v)

r
ψ̄(s), (6.9)

where

ψ̄(s) =
k
∏

i=2

ψ(si)

r + s2 + · · ·+ si
.

First, if N(s) ≥ mk, then by ψ̄(s) ≤ r−k+1
∏k

i=2 ψ(si)1 {N(s) ≥ mk}, (6.5) and (6.9),

qk(v, s) ≤ (M/r)kψ(s1 |V > r − v)
k
∏

i=2

ψ(si)1 {N(s) ≥ mk} = Dk1(M/r)kφk1(v, s).

Since ηk ∼ Binomial(k − 1, α), by Markov inequality, for t ≥ 0, Dk1 = P{ηk ≥ mk} ≤
E[et(ηk−mk)] = (1 − α + αet)k−1e−tmk ≤ (1 − α + αet)2mke−tmk . Letting t = ln(1/α − 1),
which is nonnegative since α ≤ 1/2, Dk1 ≤ [4α(1 − α)]mk . Thus, with Ck1 as in (6.4),
qk(v, s)1 {N(s) ≥ mk} ≤ Ck1φk1(v, s).

Second, suppose N(s) < mk. For each i, r + s2 + · · ·+ si ≥ r + niθα, where ni is the total
number of 2 ≤ j ≤ i with sj ≥ θα. If sij , j = 1, . . . , k − 1−N(s), are the members among s2,
. . . , sk that are no less than θα, then nij = j. As a result,

ψ̄(s) =
∏

si<θα

1

r + s2 + · · ·+ si

∏

si≥θα

1

r + s2 + · · ·+ si

k
∏

i=2

ψ(si)

≤ r−N(s)

k−1−N(s)
∏

j=1

1

r + jθα

k
∏

i=2

ψ(si) = r−(k−1)

k−1−N(s)
∏

j=1

1

(1 + jθα/r)

k
∏

i=2

ψ(si)

(a)

≤ r−(k−1)
mk
∏

j=1

1

(1 + jθα/r)

k
∏

i=2

ψ(si) ≤
r−(k−1)(r/θα)

mk

mk!

k
∏

i=2

ψ(si),

where (a) is due to k − 1−N(s) ≥ mk. Therefore, by (6.6) and (6.9),

qk(v, s) ≤
Mkψ(s1 |V > r − v)

r
× r−(k−1)(r/θα)

mk

mk!

k
∏

i=2

ψ(si) = Ck2Dk2φk2(v, s).

Since Dk2 ≤ 1, (4.3) is satisfied.

From the selection of α,
∑

k Ck1 < ∞. It is straightforward to verify
∑

k Ck2 < ∞.
Therefore, (4.1) is satisfied. Thus, Algorithm 4.2 can be used to sample for ϕ.

6.2. An application to Vervaat perpetuity

We begin with some background. A Vervaat perpetuity with parameter c > 0 is an i.d.
random variable Z with Lévy density ct−11 {0 < t ≤ 1} (cf. [36]). From Laplace transform,
rZ has Lévy density ct−11 {0 < t ≤ r}. Efficient sampling methods for Vervaat perpetuities
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are available [16, 17, 22]. For the procedure in [17], it is shown that as c → ∞, the expected
number of iterations is exp(c ln c+O(c)) as c→ ∞, while as c→ 0, the expected number tends
to 1. In [16], for the special case c = 1, a procedure is discovered that has the expected number
of iterations no greater than 2.32. These sampling procedures all use the coupling-from-the-
past paradigm for Markov chains [29]. Since a Vervaat perpetuity Z with parameter c > 1
has the same distribution as the sum of ⌊c⌋ independent Vervaat perpetuities with parameter
1 and, when c is noninteger, one independent Vervaat perpetuity with parameter c− ⌊c⌋, the
results imply that Z can actually be sampled with the expected total number of iterations no
greater than 2.32⌊c⌋+ c0, where c0 is a constant.

We show that, by using the design in Proposition 6.1, the expected number of iterations
required to sample a Vervaat perpetuity can be arbitrarily close to 1. As a trade-off, we have
to sample from an increasingly complicated compound Poisson distribution. However, the
treatment of the latter is standard.

The idea is quite simple. First, as noted above, to sample for ct−11 {0 < t ≤ 1}, we can
instead sample for ct−11 {0 < t ≤ r} and return ζ/r, where ζ is the sampled value. Here, the
artificial parameter r is introduced to control the expected number of iterations. Second, we
decompose ct−11 {0 < t ≤ r} = ϕ(t) + χ(x), where

ϕ(t) = ct−1e−t1 {0 < t ≤ r} , χ(t) = ct−1(1− e−t)1 {0 < t ≤ r} .

We then apply Proposition 6.1 to ϕ. It perhaps is not surprising that when r is large, the
expected number of iterations needed is close to 1. Intuitively, this is because ID(ϕ) is so
close to Gamma(c, 1), that with large probability, a single step to sample from Gamma(c, 1)
would be enough. The Lévy density χ on the other hand gives rise to a compound Poisson
distribution. The algorithm we shall verify is the following.

Algorithm 6.1. Set r = Lmax(c2, 1) and ϕ, χ accordingly, where L ≥ 1 is a parameter. Set

M = c(1− e−r), θ = ln 2− ln(1 + e−r),

Set C0 = 1, C1 = C11 =M/r and for k ≥ 2, set mk = ⌊k/2⌋ and

Ck1 = (M/r)k, Ck2 = (M/r)k(r/θ)mk/mk!, Ck = Ck1 + Ck2.

Set C =
∑∞

k=0Ck. Set A11 = 1 and for k ≥ 2, letting τ ∼ Binomial(k − 1, 1/2), set

Ak1 = P{τ ≥ mk}, Ak2 = P{τ < mk}mk!(θ/r)
mk .

1. Sample Z ∼ Gamma(c, 1) conditional on Z ≤ r and κ such that P{κ = k} = Ck/C.

2. If κ = 0, then set X = Z and go to step 5. If κ = 1, set η = 1. Otherwise sample
η ∈ {1, 2}, such that P{η = j} = Cκj/Cκ.

3. Sample S1 ∼ Exp(1) conditional on S1 ∈ (r−Z, r). If κ > 1, then do the following steps.

(a) If η = 1, then sample τ ∼ Binomial(κ − 1, 1/2) conditional on τ ≥ mκ, otherwise
sample τ ∼ Binomial(κ− 1, 1/2) conditional on τ < mκ.

(b) Sample S2, . . . , Sκ independently, such that for i ≤ τ , Si ∼ Exp(1) conditional on
Si < θ and for i > τ , Si ∼ Exp(1) conditional on θ ≤ Si < r. Then randomly
permute S2, . . . , Sκ.
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4. Sample U ∼ Unif(0, 1). If

U ≤ Aκη
eZ − 1

er − 1

κ
∏

i=1

r

Z + S1 + · · ·+ Si
,

then set X = Z + S1 + · · ·+ Sκ, otherwise go back to step 1.

5. Sample ξ ∼ ID(χ). Then return (X + ξ)/r.

6.2.1. Justification. It suffices to show that steps 1–4 of Algorithm 6.1 indeed sample for
ϕ. The sampling of Z in step 1 follows from the fact that Gamma(c, 1) has Lévy density
ct−1e−t1 {t > 0}. To implement the design in Proposition 6.1, let λ = ϕ in (6.1). Then
tλ(t) = ce−t1 {0 < t ≤ r}, giving M =

∫

tλ(t) dt = c(1− e−r) as in the setup of the algorithm
and ψ(t) = e−t1 {0 < t ≤ r} /(1 − e−r). Note ψ is the density of W ∼ Exp(1) conditional on
W ≤ r. By letting α = 1/2, θ in the setup of the algorithm is the median θα of ψ. Moreover,
since 2(M/r)

√

α(1− α) = M/r < c/r ≤ 1/L ≤ 1, (M,α) = (M, 1/2) satisfies the very first
assumption of Proposition 6.1. The values of Ck and Ckj are set according to (6.3) and (6.4).
Then steps 1 and 2 follow from the general procedure in Algorithm 4.2. By (6.3), for any
v ∈ (0, r) and s,

φ11(v, s) =
1 {r − v < s < r} e−s

e−(r−v) − e−r

and by (6.5) and (6.6), for k ≥ 2,

φk1(v, s) = D−1
k1 φ11(v, s1)

k
∏

i=2

e−si1 {0 < si ≤ r}
1− e−r

1 {N(s) ≥ mk} ,

φk2(v, s) = D−1
k2 φ11(v, s1)

k
∏

i=2

e−si1 {0 < si ≤ r}
1− e−r

1 {N(s) < mk} ,

where Dk1 = 1 − Dk2 = P{ηk ≥ mk} with ηk ∼ Binomial(k − 1, 1/2). From the remark
after Proposition 6.1, it can be seen that step 3 samples from φ11(v, ·), φk1(v, ·) and φk2(v, ·).
Finally, step 4 follows from (6.7).

6.2.2. Complexity. We consider the samplings of X and ξ separately. Let N and T be respec-
tively the number of iterations and amount of time required to generate X. Since α = 1/2, by
(6.8),

1 ≤ EN ≤ C = (1 +M/r)

[

M2/r2

1−M2/r2
+ eM

2/(rθα)

]

.

From M/r < c/r ≤ 1/L and M2/(rθα) < c2/(rθα) < 1/(Lθα), it is seen EN → 1 as L→ ∞.
By Proposition 4.6, ET = ED × EN , where D is the amount of time required by an

iteration. Each iteration has to sample 1) one Z ∼ Gamma(c, 1) conditional on Z ≤ r,
2) one κ, and 3) provided κ ≥ 1, κ observations from various conditional distributions of
Exp(1). Denote by Di, i = 1, 2, 3, respectively, the amounts of time required by the samplings.
Then D ≈ D1 + D2 + D3. First, if we use rejection sampling for 1), the expected number
of iterations is mc = 1/P{Z ≤ r}, with Z ∼ Gamma(c, 1). Since r ≥ max(c2, 1) and both
the mean and variance of Z are equal to c, it is not hard to see that mc is bounded for
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c > 0. On the other hand, the expected amount of time required to sample one Z can be
uniformly bounded for c [13]. Then ED1 = O(mc) = O(1). Second, the sampling of κ is
standard, with ED2 uniformly bounded; see remark 1) following Proposition 6.1. Finally,
since ζ ∼ Exp(1) conditional on 0 ≤ a < ζ < b ≤ ∞ can be sampled as − ln[(1−U)e−a+Ue−b]
with U ∼ Unif(0, 1), it is seen E(D3 |κ) is proportional to κ, and thus ED3 is of the same
order as C1/C +

∑

k≥2 k(Ck1 + Ck2)/C, which is o(1) as r → 0.

Now consider the sampling for χ. For t ∈ [0, 1], χ(t) ≤ c, for t ∈ [1, r], χ(t) ≤ c/t, and for
t > r, χ(t) = 0. It is then easy to sample a Poisson process with intensity χ. The sum of
the coordinates of the sampled points follows ID(χ). The number of points follows a Poisson
distribution with mean

∫ r

0
χ(t) dt ≤

∫ 1

0
c dt+

∫ r

1
ct−1 dt = c(1 + ln r) = c[1 + lnL+ lnmax(c2, 1)].

Therefore, even for quite large L and c, the amount of time required by the sampling for χ is
manageable.

6.3. Another application

Fix c > 0. We next apply Proposition 6.1 to sample for the Lévy density

ϕa(t) =
ce−t(1− ta)1 {0 < t ≤ r}

t ln(1/t)
, a > 0.

Based on the sampling for ϕa, we can sample for a variety of Lévy densities ϕ, such as
ϕ(t) = c(1−ta)1 {0 < t ≤ r} /[t ln(1/t)], provided ϕ−ϕa ≥ 0 is integrable. Also, for b ∈ (a,∞],

ϕb(t)− ϕa(t) = ce−t(ta−1 − tb−1)1 {0 < t ≤ r} / ln(1/t)

is the Lévy density of a compound Poisson distribution. Therefore, if we can sample for ϕa

for 0 < a ≤ 1, then we can do so for all 0 < a ≤ ∞. Thus, we shall only consider 0 < a ≤ 1.

For simplicity, let r ≤ e−c. This condition is restrictive if we directly sample for ϕa with
large c. However, note ID(ϕa) can be represented by Y1 + · · · + Ym, where Yi are i.i.d. each
having Lévy density (c/m)e−t(1 − ta)1 {0 < t ≤ r} /[t ln(1/t)]. By sampling instead for the
latter with m large enough, the condition on r becomes mild.

Let W be an i.d. random variable with Lévy density

ψ(t) = cΓ(t)1 {0 < t ≤ a} .

We will see in a moment that W can be sampled using the sampling of a Vervaat perpetuity.
An algorithm to sample for ϕa is given next.

Algorithm 6.2. Set cr = c/ ln(1/r) andM = cr(1−e−r). Then set θ, Ck, Ckj , C, Akj exactly
as in the algorithm in Section 6.2.

1. Keep sampling (W,Z) until Z ≤ r, where, conditional onW , Z ∼ Gamma(W, 1). Sample
κ such that P{κ = k} = Ck/C.

2. If κ = 0, then output X = Z and stop. If κ = 1, set η = 1. Otherwise sample η ∈ {1, 2},
such that P{η = j} = Cκj/Cκ.

3. Sample (S1, . . . , Sκ) exactly as step 3 of the algorithm in Section 6.2.
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4. Sample U ∼ Unif(0, 1). If

U ≤ Aκη
eZ − 1

er − 1

κ
∏

i=1

cr(1− Sa
i )/ ln(1/Si)

v + S1 + · · ·+ Si
,

then output X = Z + S1 + · · ·+ Sκ and stop. Otherwise go back to step 1.

An algorithm to sample W is as follows. Recall that 0 < a ≤ 1.

1. Keep sampling (U, V ) until U ≤ e−3aV/2, where U and V are independent, such that
U ∼ Unif(0, 1) and V > 0 is a Vervaat perpetuity with parameter c.

2. Sample ξ ∼ ID(χ), with χ(t) = ψ(t)− ct−1e−3t/21 {0 < t ≤ a}. Return aV + ξ.

6.3.1. Justification. First, consider the algorithm to sample for ϕa. Let G(s) be a Gamma
process independent of W with G(s) ∼ Gamma(s, 1), s > 0. Denote by gs the density of G(s).
By the properties of subordination (cf. [33]), G(W ) is i.d. with Lévy density

∫

gs(t)cΓ(s)1 {0 < s ≤ a} ds = c

∫ a

0
ts−1e−t ds =

ce−t(1− ta)

t ln(1/t)
, t > 0.

Since Z ∼ G(W ), the sampling of Z in step 1 follows. Since r ≤ e−c, by letting cr =
c/ ln(1/r), we get ϕa(t) ≤ crt

−1e−t1 {0 < t ≤ r}. Then, to apply Proposition 6.1, set λ(t) =
crt

−1e−t1 {0 < t ≤ r} in (6.1) to get M = cr(1− e−r) and ψ(t) = e−t1 {0 < t ≤ r} /(1− e−r).
SinceM/r = cr(1−e−r)/r < 1, we can set α = 1/2 and get the same θα and all other constants
as in the algorithm in Section 6.2, and execute its steps 2 and 3 without any change. Finally,
step 4 follows from (6.7).

To justify the algorithm for W , let ψ0(t) = ct−11 {0 < t ≤ a}. From Section 6.2, if V is a
Vervaat perpetuity with parameter c, then aV has Lévy density ψ0. Due to the exponential
tilting implemented by step 1, the value of aV it generates has Lévy density e−3t/2ψ0(t).
On the other hand, recall Γ(t) is convex on (0,∞), Γ(t) ≤ Γ(1) = 1 for t ∈ [1, 2], and
Γ′(1) = −γ, where γ < 3/5 is Euler’s constant (cf. [2]). Then, as a ≤ 1, 0 ≤ ψ0(t) − ψ(t) =
ct−1[1 − Γ(1 + t)]1 {0 < t ≤ a} ≤ γtψ0(t), giving ψ0(t) ≥ ψ(t) ≥ (1 − γt)ψ0(t) ≥ e−3t/2ψ0(t).
From this step 2 follows.

6.3.2. Complexity. First, consider the algorithm to sample for ϕa. Let N and T be respectively
the number of iterations and amount of time required by the algorithm to generate an output.
By (6.8),

1 ≤ EN ≤ (1 +M/r)

[

M2/r2

1−M2/r2
+ eM

2/(rθ)

]

.

As r → 0, since M/r = cr(1 − e−r)/r = c(1 − e−r)/[r ln(1/r)] ∼ c/ ln(1/r) and r/θ =
r/ ln[2/(1 + e−r)] ∼ 2, we get EN → 1 as r → 0.

By Proposition 4.6, ET = EN × ED, where D is the amount of time required by an
iteration in the algorithm. Let D1, D2 and D3 be respectively the amounts of time to sample
1) one (W,Z) conditional on Z ≤ r, 2) one κ, and 3) provided κ ≥ 1, S1, . . . , Sκ. Then
D ≈ D1 + D2 + D3. Let ∆ be the amount of time to sample a pair (W,Z). Then ED1 =
E∆/P{Z ≤ r}. A bound for E∆ will be given below. In Appendix 2, it is shown that given
c > 0, as r → 0, P{Z ≤ r} = (1 + o(1))e−cA[ln(1/r)]−c, where A = A(a) is a constant. Then
ED1 ∼ ecA[ln(1/r)]cE∆. The sampling of κ is standard, with ED2 uniformly bounded; see
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remark 1) following Proposition 6.1. Finally, as in Section 6.2, ED3 is of the same order as
C11/C +

∑

k≥2 k(Ck1 + Ck2)/C. It follows that ED3 → 0 as r → 0.

Next, consider the algorithm to sample W . Let TW be the time it needs to generate one
output. If TV (c) denotes the amount of time required to sample a Vervaat perpetuity with
parameter c, then the expected amount of time required by step 1 of the algorithm is

ETV (c)

E(e−3aV/2)
= exp

{

c

∫ 1

0
(1− e−3at/2)t−1 dt

}

ETV (c) ≤ e3ac/2ETV (c)

while the expected amount of time required by step 2 is of the same order as

∫

χ = c

∫ a

0
[Γ(t)− t−1e−3t/2] dt ≤ c

∫ a

0
t−1(1− e−3t/2) dt ≤ 3ac/2.

As a result, ETW = ETV (c)/E(e
−3aV/2) +O(

∫

χ) ≤ e3ac/2ETV (c) +O(ac).

We now can get a bound for E∆. In order to sample one pair of (W,Z), we first sample W ,
and then Z ∼ Gamma(W, 1). Since the expected amount of time to sample from Γ(r, 1) can
be uniformly bounded for r > 0 [13], this gives E∆ = ETW +O(1).

7. Conditions for local boundedness

Let ϕ be a Lévy density with
∫

ϕ = ∞. Recall that in order to get the integral series
expansion in Theorem 3.1, the density g of ID(ϕ) has to be locally bounded. In some cases,
the local boundedness can be directly checked using the explicit expression of g. Following the
argument in Section 1, if X ∼ ID(ϕ) with ϕ(t) = λ(t)1 {t ≤ r}, where λ is a Lévy density that
gives rise to a locally bounded density, then the density of X is locally bounded in (0, r]. This
is the case in all the examples in Sections 5 and 6. Thus, to apply Algorithm 4.2 to X, all we
need to do is to make sure its density is locally bounded outside (0, r]. The following result
provides a simple criterion for this.

Proposition 7.1. (Local boundedness of density.)

Let 0 < M <∞. Suppose ̺(t) = tϕ(t) is locally bounded on (0,M) and g is locally bounded
in (0, r] for some r > 0.

(a) g is locally bounded on (0,M). Moreover, if ̺ is bounded on [a,∞) for any a > 0, then
g is bounded on [a,∞) for any a > 0.

(b) Under the extra assumption that ̺ is continuous on (0,M), g is continuous on (0,M).

Proof. Without loss of generality, assume r < M .

a) Fix 0 < ε < r/2 with
∫ ε
0 ̺ < r/2. Fix c ∈ (r,M). By Lemma 3.1, for any x ∈ [r, c],

g(x) =

∫ x

0

̺(v)

x
g(x− v) dv ≤ 1

r

∫ x

0
̺(v)g(x− v) dv

≤ 1

r

∫ ε

0
̺(v)g(x− v) dv +

1

r
sup

v∈[ε,c]
̺(v)

∫ x

ε
g(x− v) dv

≤ 1

r

∫ ε

0
̺(v)g(x− v) dv +

1

r
sup

v∈[ε,c]
̺(v). (7.1)
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Given h > 0, let gh(x) = h−1
∫ x
x−h g. Then gh is continuous on R and from (7.1), for x ∈ [r, c],

gh(x) ≤
1

r

∫ ε

0
̺(v)gh(x− v) dv +

1

r
sup

v∈[ε,c]
̺(v).

Let S = {x ∈ [r, c] : gh(x) > gh(v) for all v ∈ [r − ε, x)}. If S 6= ∅, then for any x ∈ S and
v ∈ [0, ε], x− v ≥ r − ε, and so the above inequality yields

gh(x) ≤
gh(x)

r

∫ ε

0
̺+

1

r
sup

v∈[ε,c]
̺(v) ≤ gh(x)

2
+

1

r
sup

v∈[ε,c]
̺(v).

It follows that for any x ∈ [r, c], gh(x) ≤ (2/r) supv∈[ε,c] ̺(v). On the other hand, if S = ∅, then
for h < r/6 and x ∈ [r, c], gh(x) ≤ supv∈[r−ε,r] gh(v) ≤ supv∈[r−ε−h,r] g(v) ≤ supv∈[r/3,r] g(v).
In any case, for all small h > 0 and x ∈ [r, c],

gh(x) ≤
2

r
sup

v∈[ε,c]
̺(v) + sup

v∈[r/3,r]
g(v).

Let h→ 0. Since gh → g a.e. with respect to the Lebesgue measure, g is bounded on [r, c] \A
for some set A that has zero Lebesgue measure. Then by the integral relation in Lemma 3.1,
g is uniformly bounded on [r, c]. Since c ∈ (r,M) is arbitrary and by assumption g is locally
bounded on (0, r], g is locally bounded on (0,M). Furthermore, from the above inequality,
gh(x) ≤ (2/r) supv≥ε ̺(v) + supv∈[r/3,r] g(v) for x ≥ r. If ̺ is bounded on [a,∞) for any a > 0,
then it is not hard to see that g is bounded on [a,∞) for any a > 0.

b) Fix x ∈ (0,M). Given a ∈ (0,min(x,M − x)/2), by Lemma 3.1, for any δ ∈ (−a, a),

|(x+ δ)g(x+ δ)− xg(x)| =
∣

∣

∣

∣

∫ x+δ

0
̺(v)g(x+ δ − v) dv −

∫ x

0
̺(v)g(x− v) dv

∣

∣

∣

∣

≤
∫ a+δ

0
̺(v)g(x+ δ − v) dv +

∫ a

0
̺(v)g(x− v) dv

+

∣

∣

∣

∣

∫ x+δ

a+δ
̺(v)g(x+ δ − v) dv −

∫ x

a
̺(v)g(x− v) dv

∣

∣

∣

∣

≤ 2 sup
|u−x|≤a

g(u)

∫ 2a

0
̺+

∫ x

a
|̺(v + δ)− ̺(v)|g(x− v) dv.

By dominated convergence,

lim
δ→0

|(x+ δ)g(x+ δ)− xg(x)| ≤ 2 sup
|u−x|≤a

g(u)

∫ 2a

0
̺ ≤ 2 sup

u∈[x/2,(x+M)/2]
g(u)

∫ 2a

0
̺.

Since a is arbitrary, the limit is 0. By x > 0, this implies g is continuous at x.
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[4] Bertoin, J. (1996). Lévy processes. Cambridge Tracts in Mathematics, Vol. 121. Cambridge
University Press, Cambridge.

[5] Bertoin, J. and Yor, M. (2002). The entrance laws of self-similar Markov processes and
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[19] Hörmann, W., Leydold, J., and Derflinger, G. (2004). Automatic nonuniform random
variate generation. Statistics and Computing. Springer-Verlag, Berlin.

[20] Hougaard, P. (1986). Survival models for heterogeneous populations derived from stable
distributions. Biometrika 73, 2, 387–396.



Exact sampling of nonnegative i.d. variables 27

[21] Kanter, M. (1975). Stable densities under change of scale and total variation inequalities. Ann.
Probab. 3, 4, 697–707.

[22] Kendall, W. S. and Thönnes, E. (2004). Random walk CFTP. Tech. rep., University of
Warwick, Department of Statistics.

[23] Kolassa, J. E. (1997). Series approximation methods in statistics , Second ed. Lecture Notes in
Statistics, Vol. 88. Springer-Verlag, New York.

[24] Kuznetsov, A., Kyprianou, A. E., Pardo, J., and van Schaik, K. (2011). A Wiener-Hopf
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Appendix 1

In Section 5.2, for fixed α > 0, we made the following claims,

1) ED1(r) is uniformly bounded for r > 0, with D1(r) the amount of time required to
sample Z ∼ ID(λ) conditional on Z ≤ r, with λ(t) = t−α−11 {t > 0};

2) ED2(r) is uniformly bounded for r > 0, with D2(r) the amount of time required to
sample κ from probability mass function pk = bk/

∑

i≥0 bi, k ≥ 0, where b0 = 1, and for

k ≥ 1, bk = αθkΓ(kα)/Γ(k) with θ = Γ(1− α)/(rαα);
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3) ED3(k, z) is uniformly bounded for k ≥ 1 and z ∈ (0, 1], where D3(k, z) denotes the
amount of time required to sample ζ ∼ Beta(kα, 1− α) conditional on ζ ≤ z;

4) EN ≍ exp(r−α/α) as r → 0, where N is the number of iterations of the algorithm in the
section.

We establish the claims in the order of 2), 3), 4), and 1), where the proof of 1) depends on
part of the proof of 4).

Claim 2). Define pk = 0 for k < 0. All we need is pk being log-concave, i.e., p2k ≥ pk−1pk+1

for any k, as it allows rejection sampling of pk with no more than 5 iterations on average
[14, 19]. One issue here is the difficulty to evaluate the normalizing constant C = C(r) =
∑

k bk. However, it is relatively easy to find Ci = Ci(r), i = 1, 2, such that C1 < C < C2

and 0 < infr(C1/C) < supr(C2/C) < ∞. Then the rejection sampling can be modified by
using bk/C2 < pk < bk/C1, while still achieving a uniformly bounded expected number of
iterations. For example, the dominating function in Section 3 of [14] can be modified to
(bm/C1)min(1, e1−(bm/C2)(|x|−1/2)), where m = argmaxk bk.

Let f(x) = Γ(αx)/Γ(x), x > 0. By Γ(x) ∼ 1/x as x→ 0+, f can be continuously extended
to 0 with f(0) = 1/α, yielding bk = αθkf(k) for all k ≥ 0. Thus, to show pk is log-concave, it
suffices to show (ln f)′′(x) < 0 for x > 0. We have (ln f)′′(x) = α2ψ(αx)− ψ(x), where ψ is a
polygamma function [2]. From the integral representation of ψ,

(ln f)′′(x) =

∫ ∞

0

α2te−αxt dt

1− e−t
−
∫ ∞

0

te−xt dt

1− e−t
=

∫ ∞

0
te−xt

(

1

1− e−t/α
− 1

1− e−t

)

dt,

which is indeed negative since α < 1.

Claim 3). The particular parametrization of the Beta distributions is not important. Let
Ta,b(r) denote the amount of time to sample ζ ∼ Beta(a, b) conditional on ζ ≤ r. Evidently,
D3(k, r) = Tkα,1−α(r). Given a0 and b ∈ (0, 1), consider the following procedure.

• Fix c ∈ (0, a0). If r ≥ 1 − c/a, then keep sampling ζ ∼ Beta(a, b) until ζ ≤ r; else keep
sampling U , V i.i.d. ∼ Unif(0, 1) until V ≤ [(1− r)/(1− ζ)]1−b, where ζ = rU1/a.

We show that ETa,b(r) is uniformly bounded for a ≥ a0 and r ∈ (0, 1] by using the procedure.
First, it is clear that P{ζ ≤ 1 − c/a} is a positive continuous function in a ≥ a0. As a → ∞,
B(a, b) = Γ(a)Γ(b)/Γ(a+ b) ∼ Γ(b)a−b, giving

P{ζ ≤ 1− c/a} ∼ ab

Γ(b)

∫ 1−c/a

0
xa−1(1− x)b−1 dx

=
1

Γ(b)

∫ θ

c
(1− t/a)a−1tb−1 dt→ 1

Γ(b)

∫ ∞

c
e−xtb−1 dt > 0.

Thus, letting p0 = infa≥a0 P{ζ ≤ 1−c/a}, we have p0 > 0. If r ≥ 1−c/a, then in each iteration
of the rejection sampling, the probability of acceptance is P{ζ ≤ r} ≥ P{ζ ≤ 1 − c/a} ≥ p0,
which leads to ETa,b(r) ≤ p−1

0 ETa,b(1). It is known that, using suitable rejection sampling,
supa,b ETa,b(1) < ∞ [13]. As a result, ETa,b(r) is bounded for a ≥ a0, r ≥ 1 − c/a. On the

other hand, if r ∈ (0, 1 − c/a), then, as the density of rU1/a is 1 {0 < t ≤ r} ata−1/ra, the
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rejection sampling indeed generates ζ ∼ Beta(a, b) conditional on ζ ≤ r. In each iteration, the
probability of acceptance is

(1− r)1−b

∫ 1

0
(1− rt1/a)b−1 dt ≥ (1− r)1−b

∫ 1

e−1

(1− rt1/a)b−1 dt

≥ (1− r)1−b(1− e−1)(1− re−1/a)b−1 ≥ (1− e−1)

[

c/a

1− (1− c/a)e−1/a

]1−b

.

The right hand side is a positive continuous function of a ≥ a0 and can be shown to converge
to (1 − e−1)[c/(c + 1)]1−b > 0 as a → ∞. This implies that the probability of acceptance is
uniformly bounded away from 0 for a ≥ a0 and r ∈ (0, c/a). As a result, ETa,b(r) is uniformly
upper bounded.

Claim 4). The proof of the asymptotic of

EN = exp(r−α/α)P{Y ≤ r}
(

1 +

∫ ∞

0
ez−r[αz/Γ(1−α)]1/α dz

)

as r → 0 is an exercise of the saddle point method [23]. Denote ε = r[α/Γ(1 − α)]1/α and
M = (α/ε)α/(1−α). By change of variable z =M(1− t),

∫ ∞

0
ez−r[αz/Γ(1−α)]1/α dz =

∫ ∞

0
ez−εz1/α dz =M

∫ 1

−∞
eM(1−t)−εM1/α(1−t)1/α dt

=M

∫ 1

−∞
eM [(1−t)−α(1−t)1/α] dt.

The function f(t) = 1− t−α(1− t)1/α is smooth on (−∞, 1) and maximized uniquely at t = 0
with f(0) = 1 − α and f ′′(0) = 1 − 1/α < 0. As r → 0, M → ∞. Then by the saddle point
method,

M

∫ 1

−∞
eM [(1−t)−α(1−t)1/α] dt =M × [1 + o(1)]

√

2π

M |f ′′(0)|e
Mf(0)

= [1 + o(1)]

√

2πM

1/α− 1
eM(1−α).

Next, since Y has Lévy density λ(t) = t−α−11 {t > 0}, Y ∼ [Γ(1 − α)/α]1/αS, where S has
Laplace transform exp(−θα). Then by [10],

P{Y ≤ r} = P{S ≤ ε} =
1

π

∫ π

0
exp

{

−ε−α/(1−α)h(t)
}

dt

=
1

π

∫ π

0
exp

{

−Mα−α/(1−α)h(t)
}

dt,

where h is a function defined as

h(0) = (1− α)αα/(1−α), h(t) =
sin((1− α)t)[sin(αt)]α/(1−α)

(sin t)1/(1−α)
1 {0 < t < π} , t 6= 0.
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By concavity, sin(at) > a sin(t) for a ∈ (0, 1) and t ∈ (0, π). Thus h is minimized uniquely at
t = 0. Using sin t = t−t3/3!+ · · · , it is straightforward to check that h ∈ C∞[0, π), h′(0+) = 0,
and h′′(0+) > 0. Noticing the integral for P{Y ≤ r} is over an interval to the right of 0, by
the saddle point method,

P{Y ≤ r} = [1 + o(1)]

√

αα/(1−α)

2πMh′′(0+)
e−Mα−α/(1−α)h(0)

Since α−α/(1−α)h(0) = 1− α, we then get EN ≍ exp(r−α/α), as claimed.

Claim 1). Let S be the same as above. By scaling, it suffices to show that the expected
time to sample S conditional on S ≤ r is uniformly bounded for r > 0. From [10], S can
be embedded into a random vector (ξ, S), such that ξ ∼ Unif(0, 1) and conditional on ξ,
P{S ≤ r | ξ} = exp{−r−α/(1−α)h(ξ)} and S ∼ [h(ξ)/W ](1−α)/α, with W ∼ Exp(1). Therefore,
to sample S conditional on S ≤ r, we can first sample ξ conditional on S ≤ r, and then, given
ξ, sample W ∼ Exp(1) and set

S = r

[

h(ξ)

h(ξ) +Wrα/(1−α)

](1−α)/α

.

To establish claim 1), it suffices to show that Kr, the expected number of iterations required
to sample ξ conditional on S ≤ r, is bounded for r > 0. By Bayes formula, conditional
on S ≤ r, the density of ξ is in proportion to qr(t) := exp{−r−α/(1−α)h(t)}. It is easy
to see that using rejection sampling, we can have supr≥r0 Kr < ∞ for any fixed r0 > 0.
Therefore, we only need to show supr≤r0 Kr < ∞ for small r0 > 0. From the proof of
claim 4), there is c > 1/h′′(0+), such that h(t) ≥ h(0) + t2/(2c) for all t ∈ (0, π). Consider
the following procedure: keep sampling X ∼ N(0, crα/(1−α)) and U ∼ Unif(0, 1) until U ≤
exp{−r−α/(1−α)[h(|X|) − h(0) −X2/(2c)]} and then return ξ = |X|. It is seen the procedure
samples ξ conditional on S ≤ r. The probability of acceptance of each iteration is

1√
2πcrα/(1−α)

∫ ∞

−∞
exp{−r−α/(1−α)[h(|t|)− h(0)]} dt

=
1√

2πcrα/(1−α)
× [1 + o(1)]

√

2πrα/(1−α)

h′′(0+)
→ 1
√

ch′′(0+)
> 0, r → 0,

where the second line is due to the saddle point method. It is then easy to get that, by using
the procedure, Kr is uniformly bounded for all small r.

Appendix 2

In Section 6.3, we made the following claim. Let λ(t) = ce−t(1 − ta)1 {t > 0} /[t ln(1/t)]
with c > 0 and a > 0. Let Z ∼ ID(λ). Then for a constant A = A(a), as r → 0 while c is
fixed,

P{Z ≤ r} = [1 + o(1)]e−cAa [ln(1/r)]−c.

To prove the claim, for any r < e−1, Z ∼ ηr+Xr+Y , where ηr, Xr and Y are independent i.d.
random variables with Lévy densities 1 {t ≤ r}λ(t), 1

{

r ≤ t < e−1
}

λ(t), and 1
{

t > e−1
}

λ(t),
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respectively. It is seen P{Z ≤ r} = P{ηr ≤ r}P{Xr = 0}P{Y = 0}. First, by Markov
inequality, for any s > 0,

P{ηr > r} ≤ E(esηr/r−s) = exp

{
∫ r

0
(est/r − 1)

ce−t(1− ta)

t ln(1/t)
dt− s

}

≤ exp

{

c

ln(1/r)

∫ r

0
t−1(est/r − 1) dt− s

}

.

By the convexity of the exponential function,

P{ηr > r} ≤ exp

{

c

ln(1/r)

∫ r

0
(s/r)est/r dt− s

}

= exp

{

c(es − 1)

ln(1/r)
− s

}

.

Letting r → 0 followed by s→ ∞, it is seen P{ηr > r} → 0 and hence P{ηr ≤ r} → 1.
Next, by the property of Poisson process,

P{Xr = 0} = exp

{

−
∫ e−1

r
λ(t) dt

}

= ecI(r) exp

{

−
∫ e−1

r

c dt

t ln(1/t)

}

= ecI(r)[ln(1/r)]−c,

where

I(r) =

∫ e−1

r

1− e−t(1− ta)

t ln(1/t)
dt→ I(0) =

∫ e−1

0

1− e−t(1− ta)

t ln(1/t)
dt <∞.

Finally, P{Y = 0} = e−cJ , where J =
∫∞
e−1 λ <∞. Combining the results, we get P{Z ≤ r} ∼

ec(J−I(0))[ln(1/r)]−c, as claimed.
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