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Abstract

We study a type of non-Normal small jump approximation of infinitely
divisible distributions. By incorporating compound Poisson, Gamma,
and Normal distributions, the approximation has a higher order of
cumulant matching than its Normal counterpart, and hence in many
cases a higher rate of approximation error decay as the cut-off for jump
size tends to 0. The parameters of the approximation are easy to fix, and
its random sampling has the same order of computational complexity
as the Normal one. An error bound of the approximation in terms of
total variation distance is derived. Simulations show empirically the
non-Normal approximation can have significantly smaller error than its
Normal counterpart.
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1. Introduction

Simulation of infinitely divisible (i.d.) random variables has many applications. In most
cases, since exact simulation is either unavailable or computationally costly, good approxima-
tion methods are desired. The Normal approximation of i.d. distributions, which was studied in
[24] and later developed in [1] under the framework of small jump approximation, has received
much attention in the literature [2, 11–13, 17, 20, 22, 23, 34, 35].

Let X be a real-valued i.d. random variable and λ its Lévy measure. Without loss of
generality, we will always assume that X has no Normal component. The Normal (small
jump) approximation starts with the decomposition X = Xr + ∆r given r > 0, where Xr

and ∆r are independent and i.d. with Lévy measures λr(dx) = 1 {|x| < r}λ(dx) and λ − λr,
respectively. As ∆r is compound Poisson, its sampling is standard. The key is to approximate
Xr by a Normal random variable with the same mean and variance [1]. Thus one can regard
the approximation as relying on second-order cumulant matching. By certain measure, the
error of the approximation is bounded by

C|κ|3,Xr/σ
3
Xr
, (1)

where C is a universal constant, σXr the standard deviation of Xr, and for j ≥ 2, |κ|j,Xr =∫
|x|jλr(dx) [1]. Currently, the smallest available C seems to be 0.4748 [33]. In symmetric

cases, since the third cumulants of Xr and the Normal random variable are 0, the bound can
be more or less replaced with C|κ|4,Xr/σ

4
Xr

[1]. The pattern of the bound suggests that, if Xr
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and some Yr have the same cumulants of order 1, . . . , q − 1 with q ≥ 5, then Xr might be
approximated by Yr with the error being bounded by

C(r)(|κ|q,Xr + |κ|q,Yr)/σ
q
Xr
,

where C(r) is nearly constant, at least for small r, or most ideally is a small universal constant.
Since the qth cumulant of a Normal random variable is 0, the bound is consistent with the one
for the Normal approximation.

Even by rough Fourier analysis, there is good reason to expect the above bound to be true,
and elementary calculations indicate that in many cases it vanishes at a strictly higher rate
than the bound for the Normal approximation as r → 0. However, perhaps one need first ask
if an approximation based on higher-order cumulant matching can possibly be implemented
easily. The meaning of the question is twofold. First, the approximating distribution should be
easy to identify and preferably i.d. Second, the approximating distribution should be easy to
sample; preferably, the computational complexity of the sampling is of the same order as the
Normal approximation. If the answer to the question is positive, then another question is how
large q can be. It can be anticipated that the larger q is, the faster the error of approximation
vanishes as r → 0. If both questions are answered, then a wide range of available techniques
can potentially be adapted to establish error bounds.

Clearly, cumulant matching is equivalent to moment matching. In fact, our proof of the
above type of bound ultimately relies on moment matching. However, thanks to the Lévy-
Khintchine representation, it is much more convenient to work on cumulants than moments.
In Section 2.1, we present a simple way to construct approximating i.d. distributions with
matching cumulants up to at least the fourth order, i.e., q ≥ 5. In many important cases, we
get q = 6, and in symmetric cases, q = 10. Each approximating distribution is a convolution
of compound Poisson and Normal distributions, with the former made from Gamma variables.
Importantly, using standard algorithms [14, 21], the computational complexity of sampling for
the approximation is universally bounded, and hence is of the same order as for the Normal
approximation.

We refer to the approximation as Poisson-Gamma-Normal (PGN) approximation, although
a term like “compound Poisson-Normal small jump approximation with Gamma summands
and higher order of cumulant matching” should be more accurate. In Section 2.2, we bound
its error in terms of total variation distance. The bound is non-asymptotic and of the desired
type. Section 2.3 gives some examples of the PGN approximation. The examples show that the
bound yields substantially higher rate of precision than the Normal approximation as r → 0.
However, they also indicate that the bound may be far from being optimal or even practically
useless. Therefore, in Section 3, we conduct large scale simulations to show that empirically,
the PGN approximation can have significantly smaller error than the Normal one.

In Section 4, we prove the error bound by combining Fourier analysis, Lindeberg method,
and a device in [1]. Of course, on modern treatments of Poisson, compound Poisson, and
Normal approximations, there is now an extensive literature, and on Gamma and other types
of approximations, there is also a growing literature; see [3, 4, 7, 8, 18, 25, 26, 30] and references
therein. However, it appears that there has been little work on using convolutions of different
types of simple distributions to improve approximation. We remark that while this paper only
concerns the univariate case, accompanying results on the multivariate case have been reported
elsewhere; see [10].

The rest of the section fixes notations and recalls basic facts. A Borel measure λ on R is the
Lévy measure of an i.d. distribution ⇐⇒ λ({0}) = 0 and

∫
(u2 ∧ 1)λ(du) < ∞ [32, Theorem
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8.1]. Denote by sppt(λ) the support of λ. If X is i.d. with Lévy measure λ, denote by ΨX(t)
and ψX(t) = exp{−ΨX(t)} = E[eitX ] its characteristic exponent and characteristic function,
respectively, and

κj,X =
dj

dtj
ln E[etX ]

∣∣∣∣
t=0

, |κ|j,X =

∫
|u|j λ(du), j ∈ N,

and σX = κ
1/2
2,X . κj,X is known as the jth cumulant of X. It is well-defined if E[etX ] < ∞

for all t in a neighborhood of 0. We refer to |κ|j,X as the jth absolute cumulant of X. For
a > 0, E|X|a < ∞ ⇐⇒

∫
1 {|u| > 1} |u|a λ(du) < ∞ ([32], Theorem 25.3 & Proposition

25.4). If sppt(λ) is bounded, then E[etX ] < ∞ for all t [32, Theorem 25.17]. Since X has no
Normal component, κj,X =

∫
uj λ(du), j > 1, and Var(X) = κ2,X . If in addition ΨX(t) =∫

(1 + itu − eitu)λ(du), then κ1,X = EX = 0. If j is even or sppt(λ) ⊂ R+ := [0,∞),
then κj,X = |κ|j,X . Denote the total variation distance of X and random variable Y by
dTV(X,Y ) = sup{|P{X ∈ A} − P{Y ∈ A}| : A measurable} and their Kolmogorov-Smirnov
(KS) distance by dKS(X,Y ) = sup{|P{X ≤ x} − P{Y ≤ x}| : x ∈ R}.

Henceforth, we set Xr such that

ΨXr(t) =

∫
(1 + itu− eitu)λr(du). (2)

Consequently, EXr = 0 and E|Xr|p <∞ for all p > 0. Let Z ∼ N(0, 1) be independent of ∆r.
Then ∆r and σXrZ+∆r are known as the compound Poisson (CP) and Normal approximations
of X, respectively [1]. We refer to r as the cut-off for jump size for the approximations.

2. PGN approximation

2.1. Cumulant matching

In general, one can decompose X = X+ − X− + Xs, where X± and Xs are independent
and i.d., with the Lévy measures of X± being supported on R+, and Xs being symmetric, i.e.,
Xs ∼ −Xs. Indeed, the Lévy measure of Xs can be any symmetric Borel measure λs such
that for A ⊂ R+, λs(A) ≤ min(λ(A), λ(−A)), and the Lévy measures λ± of X± are defined by
λ±(A) = λ(±A) − λs(A). Although one can always set λs = 0, as seen below, it is useful to
exploit λs 6= 0.

Thus, without loss of generality, we will only consider the asymmetric case where sppt(λ) ⊂
R+ and the symmetric case. First, let sppt(λ) ⊂ R+. Given r > 0 and p ≥ −1, let Yr be an
i.d. random variable independent of ∆r such that

ΨYr(t) =

∫ ∞

0
(1 + itu− eitu) γr(du) with γr(du) = m(r)upe−u/s(r) du, (3)

where m(r) > 0 and s(r) > 0 are constants to be determined. Then let

Tr = Yr + σ(r)Z with Z ∼ N(0, 1) independent of (Yr,∆r), (4)

where σ(r) > 0 is a constant that also needs to be determined.
To use Tr+∆r to approximateX, first a comment on the sampling of Tr, which boils down to

that of Yr. Since Yr = U −EU , where U ≥ 0 is i.d. with Lévy density m(r)1 {u > 0}upe−u/s(r)

and EU = Γ(p+2)m(r)s(r)p+2, the sampling of Yr is reduced to that of U . If p = −1, then U ∼
Gamma(m(r), s(r)), the Gamma distribution with shape parameter m(r) and scale parameter
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s(r), whose sampling has universally bounded complexity ([14], p. 407–420). If p > −1, then
U ∼ ∑N

i=1 ξi, where N ∼ Poisson(a) with a =
∫∞
0 m(r)upe−u/s(r) du = Γ(p + 1)m(r)s(r)p+1,

and ξi are i.i.d. Gamma(p + 1, s(r)) random variables independent of N . The sampling of
Poisson(a) has universally bounded complexity ([15] or [21], p. 228–241). Then, because
conditional on N , U ∼ Gamma(N(p+ 1), s(r)), the sampling of U , and hence that of Tr, has
the same order of complexity as the sampling of N(0, 1).

Due to its Lévy-Khintchine representation, we refer to Tr +∆r as the PGN approximation
of X with cut-off r. To match the cumulants of Xr and Tr, note that ETr = EYr = 0 and

{
κj,Yr = Γ(j + p+ 1)m(r)s(r)j+p+1,

κj,Tr = κj,Yr + 1 {j = 2}σ(r)2.
j ≥ 2. (5)

We next show two results. The first one allows r =∞ and hence applies to any i.d. random
variable with finite 4th cumulant, subject to a mild constraint. However, it only attains 4th-
order matching. The second result asserts that one can obtain 5th-order cumulant matching
provided the existence of a slowly varying Lévy density at 0+.

Proposition 2.1. (Fourth-order cumulant matching.) Let 0 < r ≤ ∞ and 0 < κ4,Xr < ∞.
Suppose λr is not concentrated on a single point. Then

p+ 4

p+ 3
<
κ2,Xrκ4,Xr

κ23,Xr

for all large p. (6)

For any p ≥ −1 satisfying (6), if

s(r) =
κ4,Xr

(p+ 4)κ3,Xr

, m(r) =
κ3,Xr

Γ(p+ 4)s(r)p+4
, (7)

and if Yr is defined by (3), then κ2,Xr > κ2,Yr , and by setting

σ(r) = (κ2,Xr − κ2,Yr)
1/2, (8)

κj,Xr = κj,Tr for 2 ≤ j ≤ 4.

Remark. If λ(R+) =∞, then for any r > 0, λr 6= 0 and is not concentrated on a single point.

Proof. Since λr is not concentrated on a single point and 0 < κ4,Xr < ∞, by Hölder
inequality, 0 < κ23,Xr

< κ2,Xrκ4,Xr <∞, which implies (6). From (5), by setting s(r) and m(r)
as in (7), κj,Xr = κj,Yr for j = 3, 4 and

κ2,Yr = Γ(p+ 3)m(r)s(r)p+3 = Γ(p+ 3)
κ3,Xr

Γ(p+ 4)s(r)
=

(p+ 4)κ23,Xr

(p+ 3)κ4,Xr

.

Then for p ≥ −1 satisfying (6), κ2,Yr < κ2,Xr . The rest of the result is then clear.

Proposition 2.2. (Fifth-order cumulant matching.) Let λ(du) = 1 {u > 0}u−α−1ℓ(u) du,
with α ∈ (0, 2) and ℓ(u) slowly varying at 0+. Let p = p(r) be defined by the equation

1

p+ 4
=
κ3,Xrκ5,Xr

κ24,Xr

− 1.

Then for all small r > 0, p > −1 and satisfies (6). For any r > 0 with such p, set s(r), m(r)
by (7) and σ(r) by (8). Then κj,Xr = κj,Tr , 2 ≤ j ≤ 5.
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Proof. For j ≥ 3, as r → 0+, κj,Xr =
∫ r
0 u

j−1−αℓ(u) du ∼ rj−αℓ(r)/(j − α) [5, Theorem
1.5.11], so

1

p+ 4
∼ (4− α)2

(3− α)(5− α) − 1 =
1

(3− α)(5− α)
=⇒ p ∼ α2 − 8α+ 11 > −1.

As a result, for all small r > 0, p > −1. Furthermore, as

κ2,Xrκ4,Xr

κ23,Xr

∼ (3− α)2
(2− α)(4− α) = 1 +

1

α2 − 6α+ 8
,

combining with the previous display, it is not hard to get (6). By Proposition 2.1, it only
remains to show given r > 0 such that p > −1 and satisfies (6), κ5,Xr = κ5,Yr . However, this
follows from κ3,Xrκ5,Xr/κ

2
4,Xr

= (p+ 5)/(p+ 4) = κ3,Yrκ5,Yr/κ
2
4,Yr

, where the second equality
is due to (5).

Now consider the symmetric case. Let X = X(1) − X(2), where X(i) are i.i.d. with Lévy

measure λ supported in R+. Let Xr = X
(1)
r −X(2)

r and approximate it by Tr = T
(1)
r − T (2)

r ,

where T
(i)
r are i.i.d. defined in (4). Since all the odd-ordered cumulants of Xr and Tr are 0, it

suffices to match their even-ordered cumulants. The next result asserts that in general one can
match their cumulants up to the 7th order, and in some important cases up to the 9th order.

Proposition 2.3. (Symmetric case.) 1) Let 0 < r ≤ ∞ and 0 < κ4,Xr < ∞. Suppose λr is
not concentrated on a single point. Then

(p+ 5)(p+ 6)

(p+ 3)(p+ 4)
<
κ2,Xrκ6,Xr

κ24,Xr

for all large p. (9)

For any p ≥ −1 satisfying (9), if

s(r) =

√
κ6,Xr

(p+ 5)(p+ 6)κ4,Xr

, m(r) =
κ4,Xr

2Γ(p+ 5)s(r)p+5
, (10)

and Yr = Y
(1)
r − Y (2)

r with Y
(i)
r i.i.d. defined by (3), then κ2,Xr > κ2,Yr and by setting σ(r) by

(8), κj,Xr = κj,Tr for 2 ≤ j ≤ 7.

2) Let λ(du) = 1 {u > 0}u−α−1ℓ(u) du, with α ∈ (0, 2) and ℓ(u) slowly varying at 0+. Then
for all small r > 0, there is a unique p = p(r) > 0 satisfying (9) and

(p+ 7)(p+ 8)

(p+ 5)(p+ 6)
=
κ4,Xrκ8,Xr

κ26,Xr

. (11)

Given r > 0 with such p, set s(r), m(r) by (10) and σ(r) by (8). Then κj,Xr = κj,Tr , 2 ≤ j ≤ 9.

Proof. 1) By the assumption and Hölder inequality, 0 < κ24,Xr
< κ2,Xrκ6,Xr < ∞, so (9)

holds for all large p. Since for even j, κj,Yr = 2κ
j,Y

(1)
r

= 2Γ(j + p+ 1)m(r)s(r)j+p+1, it is easy

to see κ4,Xr = κ4,Yr and κ6,Xr = κ6,Yr . On the other hand, for all odd j, κj,Xr = κj,Yr = 0.
Finally, by similar argument for Proposition 2.1, κ2,Yr < κ2,Xr , leading to κj,Xr = κj,Tr for
2 ≤ j ≤ 7.
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2) Following the proof of Proposition 2.2, as r → 0+,

κ4,Xrκ8,Xr

κ26,Xr

∼ (6− α)2
(4− α)(8− α) = 1 +

4

(4− α)(8− α) := h(α).

The function h is strictly increasing on (0, 2). On the other hand,

g(p) :=
(p+ 7)(p+ 8)

(p+ 5)(p+ 6)
=

(
1 +

2

p+ 5

)(
1 +

2

p+ 6

)

is strictly decreasing on (−1,∞), with g(0) > h(2) > h(α) > h(0) > 1 = g(∞). Therefore,
there is a unique p > 0 satisfying (11). We have to show that for this p = p(r), (9) is satisfied
for all small r > 0. By continuity, it suffices to show that for p > 0,

(p+ 7)(p+ 8)

(p+ 5)(p+ 6)
=

(6− α)2
(4− α)(8− α) =⇒ (p+ 5)(p+ 6)

(p+ 3)(p+ 4)
<

(4− α)2
(2− α)(6− α) .

By calculation, the equality is equivalent to 2p2 = 2p(α2 − 12α + 21) + 13α2 − 156α + 356,
while the inequality is equivalent to 2p2 > 2p(α2 − 8α+ 5) + 9α2 − 72α+ 84. Then, by p > 0
and 0 < α < 2, it is not hard to see the implication holds. The rest of the proof then follows
the proof for 1).

Propositions 2.2 and 2.3 immediately lead to the next result on i.d. distributions with
truncated stable Lévy measures. It should be pointed out that simple exact sampling methods
for stable distributions are well-known [14] and i.d. distributions with truncated stable Lévy
measures with α ∈ (0, 1) can be sampled exactly but with high computational complexity [9].

Corollary 2.1. Let λ(du) = c1 {0 < u < r0}u−α−1 du, where c > 0, 0 < r0 ≤ ∞, and α ∈
(0, 2).

1) Let X have Lévy measure λ. If p = α2 − 8α + 11, then p > −1 and for all 0 < r < r0,
by setting (s(r),m(r)) by (7), κ2,Xr > κ2,Yr , and by setting σ(r) by (8), κj,Xr = κj,Tr for
2 ≤ j ≤ 5.

2) Let X = X(1) −X(2), with X(i) i.i.d. with Lévy measure λ. If p is the (unique) solution
to

(p+ 7)(p+ 8)

(p+ 5)(p+ 6)
=

(6− α)2
(4− α)(8− α) , p ∈ (0,∞)

then for all 0 < r ≤ r0, by setting (s(r),m(r)) by (10), κ2,Xr > κ2,Yr , and by setting σ(r) by
(8), κj,Xr = κj,Tr for 2 ≤ j ≤ 9.

2.2. Error bound for PGN approximation

Denote C0 = (sin 1)2/2 = 0.354... Observe that by |κ|j+1,Xr ≤ r|κ|j,Xr , j ≥ 2, for s(r)
defined in (7) or (10), s(r) < r/(p+ 3). The main result is the following.

Theorem 2.1. Fix r ∈ (0,∞) and q ≥ 5. Let Tr be defined by (3)–(4) in the asymmetric case,

or Tr = T
(1)
r − T (2)

r in the symmetric case, where T
(i)
r are i.i.d. defined by (3)–(4). Suppose

s(r) < r/(p+ 3) and σ(r) > 0. For j ≥ 1, define

Qj(r) =

[
Γ(j + 1/2)

2C
j+1/2
0

+ σ2j+1
Xr

∫ ∞

1/r
t2je−2L(t,r) dt

]1/2
,
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where L(t, r) = t2min{C0κ2,X1/|t|
, σ(r)2/2}. Suppose κj,Xr = κj,Tr for 2 ≤ j < q. Then

dTV(X,Tr +∆r) ≤
|κ|q,Xr + |κ|q,Yr

q!σqXr

[qQq−1(r) +Qq(r) +Qq+1(r)]. (12)

Remark.

1. The bound in (12) is on dTV instead of the more commonly used dKS [1, 24]. However, we
have not been able to derive a Berry-Esseen type of bound C(|κ|q,Xr + |κ|q,Yr)/σ

q
Xr

, with
C a universal constant only depending on q. It appears that some key ingredients for the
proof of the Berry-Esseen bound for the Normal approximation cannot hold for higher order
approximations. Also, as seen later, the bound sometimes is quite suboptimal.

2. The bound will be proved by combining Fourier analysis, the Lindeberg method (cf. [6] for
a modern application of it), and a device in [1] (cf. the proof of Theorem 25.18 in [32]).
Although a bound on dKS may be established solely based on Fourier analysis [24], our
proof seems to be more transparent and suitable for generalization.

3. As seen later, in order for the right hand side (RHS) of (12) to be finite, Xr must have
a density, in particular, λ(R) = ∞. The last condition implies that X is not compound
Poisson and has no atom [32, Theorem 27.4]. It also excludes lattice distributions, to which
the Poisson-Charlier approximation applies [3, 24]. Although the condition λ(R) = ∞ is
necessary for X to have a valid Normal small jump approximation, it is not sufficient, which
is a fact with several interesting and important implications [1, 12].

To evaluate the RHS of (12), we need to evaluate σ(r)2 and |κ|q,Yr . Both can be expressed
in terms of the cumulants of Xr. For the asymmetric case, the proof of Proposition 2.1 shows
κ2,Yr = (p+ 4)κ23,Xr

/[(p+ 3)κ4,Xr ]. Then by (8),

σ(r)2 = κ2,Xr −
(p+ 4)κ23,Xr

(p+ 3)κ4,Xr

.

Similarly, for the symmetric case, using (5) and (10),

σ(r)2 = κ2,Xr −
(p+ 5)(p+ 6)κ24,Xr

(p+ 3)(p+ 4)κ6,Xr

.

Furthermore, if κj,Xr = κj,Tr , for 2 ≤ j < q, then |κ|q,Yr can also be expressed in terms of the
absolute cumulants of Xr. In the asymmetric case, by (5),

|κ|q,Yr = κq,Yr = (q + p)s(r)κq−1,Yr = (q + p)s(r)κq−1,Xr .

Similarly, in the symmetric case, if q is even, then

|κ|q,Yr = κq,Yr = (q + p)(q + p− 1)s(r)2κq−2,Yr

= (q + p)(q + p− 1)s(r)2κq−2,Xr .

In the bound (12), the Qj(r)’s look rather technical. The next result gives their asymptotics
as r → 0+.

Proposition 2.4. For b ∈ (0, 1) and q ≥ 3, there is M =M(b, q) > 0, such that if

lim sup
s→0

κ2,Ys

κ2,Xs

< b, lim inf
s→0

κ2,Xs

s2 ln(1/s)
> M, (13)
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then for any 2 ≤ j ≤ q + 1,

Qj(r)
2 =

Γ(j + 1/2)

2C
j+1/2
0

+ o(1), r → 0.

Here is a short proof. By (13), for small r > 0, σ(r)2 = κ2,Xr − κ2,Yr > (1− b)κ2,Xr . Then,
from the increasing monotonicity of κ2,Xr in r, there is a constant c = c(b) > 0, such that
for t ≥ 1/r, L(t, r) ≥ ct2κ2,X1/t

. Consequently, if M ≥ (q + 2)/c, then by (13), for t ≥ 1/r,
L(t, r) ≥Mc ln t ≥ (q + 2) ln t, and hence for all 2 ≤ j ≤ q + 1,

∫ ∞

1/r
t2je−2L(t,r) dt ≤

∫ ∞

1/r
t2(q+1)−2Mc dt = o(1), r → 0.

Since σXr = o(1) as r → 0, the proof is complete.

2.3. Examples

Example 2.1. (Truncated stable Lévy measure.) Let λ(du) = c1 {0 < u < r0}u−α−1 du with
c > 0, 0 < r0 ≤ ∞, and α ∈ (0, 2). By Corollary 2.1, given r ∈ (0, r0), if p = α2− 8α+11, and
s(r), m(r) and σ(r) are set by (7)–(8), then κj,Xr = κj,Tr for 2 ≤ j < q = 6. To apply (12),
we need to know κ2,Xr , κ6,Xr , and κ6,Yr . For j ≥ 2, κj,Xr = crj−α/(j − α). Then

s(r) =
κ4,Xr

(p+ 4)κ3,Xr

=
(3− α)r

(p+ 4)(4− α) =
r

(4− α)(5− α) ,

κ2,Yr =
κ3,Yr

(p+ 3)s(r)
=

κ3,Xr

(p+ 3)s(r)
=

c(4− α)(5− α)r2−α

(3− α)(α2 − 8α+ 14)
,

and κ6,Yr = (6+p)s(r)κ5,Yr = (6+p)s(r)κ5,Xr = cA(α)r6−α, with A(α) = (α2− 8α+17)/(4−
α)(5− α)2. Therefore, by Theorem 2.1,

dTV(X,Tr +∆r) ≤ (2− α)3
[

1

6− α +A(α)

]
× 6Q5(r) +Q6(r) +Q7(r)

6!
× (rα/c)2. (14)

Since 0 < κ2,Yr/κ2,Xr < 1 is a constant independent of r, and λ satisfies Orey’s condition
lim infs→0 κ2,Xs/s

2−α > 0 ([28]; also see [32], Proposition 28.3), the conditions in (13) are
satisfied no matter the value of M . Then by Proposition 2.4, dTV(X,Tr + ∆r) = O(r2α).
This may be compared to the Normal approximation in [1, 24], where dKS between X and its
Normal approximation is O(rα/2) when X is asymmetric. Specifically, by (1),

dKS(X,σXrZ +∆r) ≤
C(2− α)3/2
(3− α) × (rα/c)1/2, C = 0.4748. (15)

Furthermore, if X = X(1) −X(2) is symmetric, where X(i) are i.i.d. with Lévy measure λ,
then by 2) of Corollary 2.1, it can be seen that we can set q = 10 and get dTV(X,Tr +∆r) =
O(r4α), whereas the dKS between X and its Normal approximation in this case is O(rα) [1].

Although the bound in (14) vanishes at a higher rate than the one in (15) as r → 0, the
asymptotic result says little about how the bounds compare if r is not too small. This is
especially the case when α < 1. In Fig. 1, for c = 1 and r0 = ∞, the bounds are plotted as
functions of r. The bound in (14) is evaluated numerically; see Appendix for detail. As seen
from the plots, for α = 1.5, the bound in (14) is smaller than the one in (15) once r < 0.6,
whereas for α = 0.3, this happens only if r < 2 × 10−8. Therefore, (14) may provide little
evidence on whether the PGN approximation is better than the Normal approximation in
practice. To address this issue, we resort to numerical simulation in next section.
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Figure 1: The bounds in (14) and (15) as functions of r, for α = 0.3 and 1.5, respectively, with
λ(dx) = 1 {u > 0}u−α−1 dx. The axes are plotted in logarithmic scale with base 10.
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Example 2.2. (Tempered stable.) Let λ(du) = 1 {u > 0}u−α−1 exp(−uθ) du, where α ∈ (0, 2)
and θ > 0. Then for j ≥ 2,

κj,Xr =

∫ r

0
uj−α−1 exp(−uθ) du =

1

θ

∫ rθ

0
u(j−α)/θ−1e−u du.

The last integral can be numerically evaluated as an incomplete Gamma function [27]. How-
ever, it has no closed formulas. The following method can be used if one wants to avoid the
problem. Recall that for any odd n ≥ 1, e−u ≥ fn(u) for u ≥ 0, where fn(u) =

∑n
i=0(−u)i/i!.

Let n = 2⌊α/(2θ)⌋ + 1, which is the smallest odd number greater than α/θ − 1. Let F (u) =
1 {0 < u < r0} fn(uθ), with r0 = sup{r > 0 : fn(u) > 0 for all 0 ≤ u < rθ}. Decompose
λ = λ1 + λ2, where λ1(du) = 1 {u > 0}u−α−1F (u) du. It is easy to evaluate

∫ r
0 u

jλ1(du).
Then we can apply the PGN approximation to λ1, with all parameters set in closed form.
Meanwhile, since u−α−1[exp(−uθ) − F (u)] = O(u(n+1)θ−α−1) as u → 0+, λ2 has finite mass,
and hence corresponds to a compound Poisson random variable that can be sampled exactly. If
X, X ′, andX ′′ denote i.d. random variables with Lévy measures λ, λ1, and λ2, respectively, and
∆r and Tr the i.d. random variables from the PGN approximation to X ′, then by Proposition
2.2, dTV(X,Tr +∆r +X ′′) ≤ dTV(X

′, Tr +∆r) = O(r2α).

Example 2.3. Let λ(du) = c1 {0 < u < 1}u−1 ln(1/u) du. Since

∫

u<r
u2 λ(du) = c

∫ r

0
u ln(1/u) du =

cr2[2 ln(1/r) + 1]

4
,

by Proposition 2.1 in [1], the Normal approximation is valid in the sense that its error in terms
of dKS tends to 0 as r → 0. However, since for |t| ≫ 1, L(t, r) = C0t

2
∫
u<1/|t| u

2 λ(du) ∼
cC0 ln |t|, it can be seen that the RHS of (12) is finite only when c is large enough, and even
in that case the RHS of (12) decreases to 0 very slowly as r → 0.
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3. A numerical study

As seen in Section 2.3, the bound (12) sometimes is a poor indicator on the precision of
the PGN approximation in practice. To address this issue, we conducted a simulation study
to compare empirically the errors of the PGN and Normal approximations in terms of the KS
distance. We exclusively considered the approximations to stable distributions for two reasons.
First, besides Gamma distributions, they are the only class of non-Normal i.d. distributions
whose Lévy measures and distribution functions are both known (semi-)explicitly. Second,
unlike Gamma distributions, they have valid Normal approximations [1]. The simulations
were implemented in R language [29], with its stabledist package used for all computations
involving stable distributions.

The Lévy measure of a stable distribution with exponent α ∈ (0, 2) was parametrized as

λ(du) = [M+1 {u > 0}+M−1 {u < 0}]|u|−1−α du,

where M± ≥ 0 such that M := M+ +M− > 0. For simplicity, the stable distribution to be
approximated (“target distribution”) was centered in the sense that

ΨX(t) =




γα|t|α [1− i sgn(t)β tan(πα/2)] α 6= 1

γ|t| [1 + i sgn(t) (2/π)β ln |t|] α = 1,

where γ > 0 and β ∈ [−1, 1] ([31], p. 5). Then by [16], p. 568–570

ΨX(t) =

∫
φ(t, u)λ(du) with φ(t, u) =





eitu − 1 0 < α < 1

eitu − 1− itu 1 < α < 2

eitu − 1− it sinu α = 1

and

γ =

[
Mπ

2Γ(α+ 1) sin(πα/2)

]1/α
, β = (M+ −M−)/M.

Given r > 0, Example 2.1 provides all the parameters for the PGN and Normal approxi-
mations to Xr. The PGN approximation was sampled according to the description following
Eq. (4). On the other hand, ∆r was sampled by the representation

∆r ∼ d(r) + r
N∑

i=1

ǫiU
−1/α
i ,

where d(r) is a constant and N , ǫi ∈ {±1}, Ui ∼ Unif(0, 1), i = 1, 2, . . . are mutually
independent, with N being Poisson distributed with mean

∫
|u|≥r λ(du) = Mα−1r−α and

P{ǫi = 1} =M+/M . To determine d(r), use ΨX(t) = ΨXr(t) + Ψ∆r(t). It follows that

id(r)t =

∫
φ(t, u)λ(du)−

∫ r

−r
(eitu − 1− itu)λ(du)−

∫

|u|≥r
(eitu − 1)λ(du),

giving d(r) = (M+ −M−)d0(r), where

d0(r) =





r1−α/(1− α) α 6= 1,
∫ ∞

0
u−2(u1 {u < r} − sinu) du α = 1.
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As in last section, M− = 0 or M− = M+. Equivalently, β = 1 or β = 0. The simulations
became quite numerically unstable for small α, so we started with α = 0.2. Also, for α = 1.0,
the R routines provided by stabledist package appeared to become numerically unstable in
the asymmetric case but showed no serious problems in the symmetric case. Therefore, in
the simulations for the asymmetric case, we chose α = 1.01 instead of α = 1.0, while for the
symmetric case, we chose α = 1.0. With this exception, we let α range from 0.2 to 1.8 at step
size 0.2.

Table 1: Errors of approximations in terms of KS distance from the target distribution at cut-off
r = 5.

β = 1(0), M+ = 1
α r PGN dKS Norm dKS CP dKS

0.2 5(5) 3.84e-02(8.71e-04) 3.99e-02(8.72e-04) 5.72e-02(9.34e-04)
0.3 5(5) 2.82e-03(8.31e-04) 8.75e-03(8.53e-04) 7.00e-02(8.49e-03)
0.4 5(5) 5.14e-03(8.39e-04) 2.08e-02(1.64e-03) 1.50e-01(3.63e-02)
0.5 5(5) 7.45e-03(8.44e-04) 3.33e-02(3.54e-03) 2.35e-01(8.36e-02)
0.6 5(5) 8.96e-03(8.66e-04) 4.47e-02(6.13e-03) 3.05e-01(1.41e-01)
0.8 5(5) 9.60e-03(9.23e-04) 6.14e-02(1.16e-02) 4.10e-01(2.51e-01)
1∗ 5(5) 7.79e-03(9.22e-04) 6.88e-02(1.54e-02) 4.75e-01(3.35e-01)
1.2 5(5) 5.26e-03(8.72e-04) 6.72e-02(1.61e-02) 5.10e-01(3.93e-01)
1.4 5(5) 2.87e-03(8.22e-04) 5.79e-02(1.38e-02) 5.20e-01(4.30e-01)
1.5 5(5) 2.02e-03(8.32e-04) 5.05e-02(1.17e-02) 5.20e-01(4.44e-01)
1.6 5(5) 1.42e-03(8.38e-04) 4.15e-02(9.19e-03) 5.15e-01(4.55e-01)
1.8 5(5) 8.74e-04(8.23e-04) 1.98e-02(3.70e-03) 5.00e-01(4.70e-01)

α P-N dKS Ratio CL0.99(RP-N) N-C dKS Ratio CL0.99(RN-C)
0.2 9.62e-01(9.99e-01) 9.63e-01(1.00e+00) 6.97e-01(9.42e-01) 6.98e-01(9.47e-01)
0.3 3.23e-01(9.77e-01) 3.25e-01(9.80e-01) 1.25e-01(1.01e-01) 1.25e-01(1.03e-01)
0.4 2.47e-01(5.10e-01) 2.47e-01(5.16e-01) 1.39e-01(4.52e-02) 1.39e-01(4.56e-02)
0.6 2.00e-01(1.41e-01) 2.01e-01(1.42e-01) 1.47e-01(4.36e-02) 1.47e-01(4.37e-02)
0.8 1.56e-01(7.92e-02) 1.57e-01(8.03e-02) 1.50e-01(4.64e-02) 1.50e-01(4.65e-02)
1∗ 1.13e-01(6.00e-02) 1.14e-01(6.08e-02) 1.45e-01(4.58e-02) 1.45e-01(4.59e-02)
1.2 7.83e-02(5.41e-02) 7.86e-02(5.49e-02) 1.32e-01(4.10e-02) 1.32e-01(4.11e-02)
1.4 4.96e-02(5.95e-02) 4.99e-02(6.04e-02) 1.11e-01(3.21e-02) 1.11e-01(3.22e-02)
1.5 4.01e-02(7.11e-02) 4.04e-02(7.21e-02) 9.71e-02(2.64e-02) 9.72e-02(2.64e-02)
1.6 3.42e-02(9.13e-02) 3.46e-02(9.27e-02) 8.06e-02(2.02e-02) 8.06e-02(2.02e-02)
1.8 4.42e-02(2.24e-01) 4.48e-02(2.27e-01) 3.96e-02(7.88e-03) 3.96e-02(7.91e-03)

∗ α = 1.01 for β = 1

For each value of α, at a given value of r, we sampled 106 triplets (Tr, σXrZ,∆r). The paired
sums Tr +∆r and σXrZ +∆r formed samples from the PGN and Normal approximations to
X, respectively. Meanwhile, ∆r formed a sample from the CP approximation of X. Denote
by F̂PGN, F̂Norm, and F̂CP the corresponding empirical distributions. For θ ∈ (0, 1), let xθ be
the (unique) quantile of X such that P{X ≤ xθ} = θ. The empirical KS distance between the
PGN approximation and the target distribution was defined as D̂PGN = maxθ |F̂PGN(xθ)− θ|
with θ ∈ {i/200 : i = 1, . . . , 199}. Likewise, D̂Norm and D̂CP were calculated for the Normal
and CP approximations, respectively. This step was repeated 2,500 times. The resulting 2,500
triplets (D̂PGN, D̂Norm, D̂CP) were used to estimate dKS(X,Tr +∆r), dKS(X,σXrZ +∆r), and
dKS(X,∆r), respectively, and their pairwise ratios. The focus here was the ratio of dKS(X,Tr+
∆r) to dKS(X,σXrZ + ∆r). However, to make sure that our implementation of the Normal
approximation was correct, we also estimated the ratio of dKS(X,σXrZ +∆r) to dKS(X,∆r).
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In the following, all errors are in terms of KS distance from target distribution.

Table 2: Errors of approximations, with M+ = 1 and r set so that the empirical KS distance between
the Normal approximation and the target distribution was roughly 1%.

β = 1(0), M+ = 1
α r PGN dKS Norm dKS CP dKS

0.2 4.38e+01(2.00e+03) 9.33e-03(4.38e-03) 9.78e-03(1.00e-02) 5.50e-02(5.61e-02)
0.4 2.34e+00(2.03e+01) 1.70e-03(2.03e-03) 9.55e-03(9.70e-03) 9.00e-02(1.12e-01)
0.6 1.37e+00(7.03e+00) 8.55e-04(1.12e-03) 1.02e-02(1.03e-02) 1.40e-01(1.78e-01)
0.8 1.12e+00(4.69e+00) 8.35e-04(8.74e-04) 1.01e-02(1.05e-02) 1.80e-01(2.42e-01)
1∗ 1.07e+00(3.91e+00) 1.47e-03(8.37e-04) 1.06e-02(1.01e-02) 2.25e-01(3.00e-01)
1.2 1.03e+00(3.71e+00) 8.21e-04(8.29e-04) 9.83e-03(9.67e-03) 2.55e-01(3.54e-01)
1.4 1.12e+00(4.10e+00) 8.24e-04(8.32e-04) 1.02e-02(9.86e-03) 3.10e-01(4.10e-01)
1.6 1.37e+00(5.08e+00) 8.24e-04(8.32e-04) 1.00e-02(9.42e-03) 3.75e-01(4.56e-01)
1.8 2.54e+00(9.38e+00) 8.36e-04(8.38e-04) 1.01e-02(9.70e-03) 4.65e-01(4.90e-01)

α P-N dKS Ratio CL0.99(RP-N) N-C dKS Ratio CL0.99(RN-C)
0.2 9.54e-01(4.37e-01) 1.05e+00(4.81e-01) 1.78e-01(1.78e-01) 1.89e-01(1.87e-01)
0.4 1.78e-01(2.09e-01) 1.79e-01(2.11e-01) 1.06e-01(8.69e-02) 1.06e-01(8.70e-02)
0.6 8.41e-02(1.08e-01) 8.52e-02(1.10e-01) 7.27e-02(5.78e-02) 7.28e-02(5.79e-02)
0.8 8.27e-02(8.34e-02) 8.39e-02(8.46e-02) 5.62e-02(4.33e-02) 5.63e-02(4.33e-02)
1∗ 1.39e-01(8.26e-02) 1.40e-01(8.38e-02) 4.70e-02(3.38e-02) 4.71e-02(3.38e-02)
1.2 8.36e-02(8.58e-02) 8.49e-02(8.71e-02) 3.86e-02(2.73e-02) 3.86e-02(2.74e-02)
1.4 8.10e-02(8.44e-02) 8.22e-02(8.57e-02) 3.29e-02(2.40e-02) 3.29e-02(2.41e-02)
1.6 8.25e-02(8.83e-02) 8.37e-02(8.96e-02) 2.67e-02(2.07e-02) 2.68e-02(2.07e-02)
1.8 8.31e-02(8.64e-02) 8.44e-02(8.77e-02) 2.17e-02(1.98e-02) 2.17e-02(1.98e-02)

∗ α = 1.01 for β = 1

We first compared the approximations with M+ = 1 and the cut-off r fixed at 5. To
compare with Example 2.1, we included α = 0.3 and 1.5 in the simulations. The results are
summarized in Table 1. The top panel of the table displays the sample means of D̂PGN (“PGN
dKS”), D̂Norm (“Norm dKS”), and D̂CP (“CP dKS”), respectively. The bottom panel of the table
displays D̂PGN/D̂Norm (“P-N dKS Ratio”), the upper 99% t-confidence limit of E[D̂PGN/D̂Norm]
(“CL0.99(RP-N)”), D̂Norm/D̂CP (“N-C dKS Ratio”), and the upper 99% t-confidence limit of
E[D̂Norm/D̂CP] (“CL0.99(RN-C)”), respectively. Since all of the standard errors are less than 1%
of the corresponding sample means, they are omitted for brevity. To compare the performances
of the approximations when the distribution is asymmetric (β = 1), and when the distribution
is symmetric (β = 0), the sample means under these two conditions are displayed in pair, with
the results under the symmetric condition put between parentheses. The table shows that,
generally speaking, except for small α, the error of the PGN approximation is significantly
smaller than that of the Normal approximation. For example, in the asymmetric case, for
α = 0.3 and r = 5, the sample mean of D̂PGN is about 1/3 of that of D̂Norm. This may be
compared with Figure 1, which shows that the bound in (14) for the PGN approximation is
smaller than the one in (15) for the Normal approximation only if r is extremely small. The
results for α = 1.5 in the table can also be compared with Figure 1. This indicates that the
bound in (14) is quite conservative.

Table 1 also confirms that the Normal approximation has significantly smaller error than
the CP approximation. In fact, from the confidence limits shown in the table, the ratio of
reduction of error by the Normal approximation as compared to the CP approximation is
greater than that by the PGN approximation as compared to the Normal approximation.
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Also, the bound in (15) for the Normal approximation is quite conservative as compared to
the numerical results. For example, in the asymmetric case, for α = 0.8, the sample mean of
D̂Norm is about .06, whereas the bound in (15) gives .54. In the other sets of simulations, the
greater ratio of reduction of error by the Normal approximation and the conservativeness of
the bound in (15) were observed as well.

Table 3: Errors of approximations, withM+ = 0.1 and r set so that the empirical KS distance between
the Normal approximation and the target distribution was roughly 1%, or as low as possible if this could
not be attained numerically.

β = 1(0), M+ = 0.1
α r PGN dKS Norm dKS CP dKS

0.2 2.44e-01(1.71e-01) 1.47e-01(2.38e-02) 1.73e-01(3.19e-02) 3.70e-01(1.45e-01)
0.4 2.29e-02(6.71e-02) 1.26e-02(2.37e-03) 3.12e-02(1.00e-02) 1.86e-01(1.17e-01)
0.6 2.90e-02(1.46e-01) 8.51e-04(1.08e-03) 9.95e-03(9.79e-03) 1.35e-01(1.74e-01)
0.8 6.10e-02(2.56e-01) 8.39e-04(8.71e-04) 9.56e-03(1.00e-02) 1.70e-01(2.38e-01)
1∗ 1.04e-01(3.91e-01) 1.47e-03(8.37e-04) 9.60e-03(1.01e-02) 2.15e-01(3.00e-01)
1.2 1.53e-01(5.37e-01) 8.35e-04(8.33e-04) 1.00e-02(9.42e-03) 2.55e-01(3.52e-01)
1.4 2.20e-01(7.81e-01) 8.38e-04(8.26e-04) 1.04e-02(9.64e-03) 3.10e-01(4.09e-01)
1.6 3.17e-01(1.27e+00) 8.28e-04(8.28e-04) 9.75e-03(1.03e-02) 3.70e-01(4.59e-01)
1.8 6.84e-01(2.73e+00) 8.33e-04(8.29e-04) 9.74e-03(1.04e-02) 4.60e-01(4.91e-01)

α P-N dKS Ratio CL0.99(RP-N) N-C dKS Ratio CL0.99(RN-C)
0.2 8.53e-01(7.32e-01) 8.54e-01(7.39e-01) 4.66e-01(2.19e-01) 4.66e-01(2.20e-01)
0.4 3.60e-01(2.39e-01) 3.69e-01(2.43e-01) 1.66e-01(8.59e-02) 1.68e-01(8.62e-02)
0.6 8.56e-02(1.10e-01) 8.67e-02(1.11e-01) 7.37e-02(5.63e-02) 7.38e-02(5.64e-02)
0.8 8.79e-02(8.69e-02) 8.92e-02(8.82e-02) 5.62e-02(4.20e-02) 5.63e-02(4.21e-02)
1∗ 1.53e-01(8.26e-02) 1.54e-01(8.38e-02) 4.47e-02(3.38e-02) 4.47e-02(3.38e-02)
1.2 8.35e-02(8.84e-02) 8.47e-02(8.97e-02) 3.93e-02(2.68e-02) 3.94e-02(2.68e-02)
1.4 8.07e-02(8.58e-02) 8.19e-02(8.71e-02) 3.36e-02(2.36e-02) 3.36e-02(2.36e-02)
1.6 8.51e-02(8.07e-02) 8.64e-02(8.19e-02) 2.64e-02(2.24e-02) 2.64e-02(2.24e-02)
1.8 8.58e-02(8.01e-02) 8.70e-02(8.13e-02) 2.12e-02(2.11e-02) 2.12e-02(2.11e-02)

∗ α = 1.01 for β = 1

At cut-off r = 5, the error of the Normal approximation varies with α. One question is
how the PGN compares to the Normal approximation when the error of the latter is fixed at
a specified level. In the second set of simulations, we let r vary according to α, such that
the empirical KS distance between the Normal approximation and the target distribution was
roughly 1%. The value of r was selected as follows. For each r, ten values of D̂Norm were
sampled each based on 106 observations from the Normal approximation at cut-off r. Starting
with a large r, we reduced r by half if the average of the ten sample values of D̂Norm was
greater 1.05%. We kept doing this until the average was within (0.95%, 1.05%) or was less
than 0.95%. In the former case r was selected. In the latter case we got two values of r, one
giving an average greater than 1.05%, the other giving an average smaller than 0.95%. Then a
bisection search was used to get a value of r with the corresponding average of D̂Norm within
(0.95%, 1.05%).

After a value of r was selected, the simulations preceded as the ones for Table 1. The
results are summarized in Table 2, which also reports the selected values of r. The mean
values of D̂Norm realized by the simulations are included to make sure the values of r were
selected appropriately. In general, the mean value of D̂Norm fell into the interval (0.95%, 1.05%).
However, due to random fluctuations, the mean value could fall outside of (0.95%, 1.05%), even
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though during the selection of r, the average of the ten sampled values of D̂Norm fell into the
interval. Similar to Table 1, except for small values of α, the error of the PGN approximation
is significantly smaller than that of the Normal approximation.

In the above simulations, M+ = 1. In the last set of simulations, we set M+ = 0.1 to
see how the approximations performed. The results are summarized in Table 3. Again, we
attempted to set r so that the empirical KS distance between the Normal approximation and
the target distribution was roughly 1%. However, although theoretically the approximation
error vanishes as r → 0, in our simulations, the numerical precision of the approximation
deteriorated for small M+, especially when α was small as well, and the minimum empirical
KS distance for the Normal approximation could be quite larger than 1%. In this case, we set
r so that the empirical KS distance was as small as possible. Table 3 shows that for α ≤ 0.4,
the empirical KS distance for the Normal approximation sometimes could not reach 1%. When
this happened, the empirical KS distance for the PGN approximation did not reach 1% either.
Since in our simulation, each pair (Tr + ∆r, σXrZ + ∆r) shared the same sampled value of
∆r, this suggests that the deterioration of the numerical precision might be largely due to
the error in ∆r. However, a thorough solution to the issue is beyond the scope of the article.
On the other hand, regardless of this issue, Table 3 again shows that the error of the PGN
approximation can be significantly smaller than that of the Normal approximation.

4. Technical details

4.1. Proof of Theorem 2.1

Denote by S the space of smooth and rapidly decreasing functions on R. It is classical that
the Fourier transform h → ĥ(t) =

∫
eitxh(x) dx is an homeomorphism of S onto itself ([19],

p. 103). Let fX be the probability density of X. If it exists, then ψX = f̂X . Let
∫ ∞

0
t2(q+1)e−2L(t,r) dt <∞. (16)

Otherwise, Qq+1 = ∞ and (12) is trivial. We need two lemmas. Note that the second one
does not require matching of cumulants.

Lemma 4.1. 1) Let ξ be i.d. with Ψξ(t) =
∫
(1+ itu− eitu) ν(du) and E|ξ|j <∞ for all j ≥ 1.

Given ǫ > 0, let Z ∼ N(0, ǫ2) be independent of ξ. Then ψξ+Z ∈ S . 2) Under condition (16),

fXr ∈ Cq(R), and for 0 ≤ j ≤ q, f (j)Xr
(x)→ 0 as |x| → ∞.

Lemma 4.2. Let Tr be defined as in Theorem 2.1 with s(r) < 1/(p + 3) and σ(r) > 0. Fix
ǫ > 0. Given A, B ≥ 0 with A+B = 1, letW be i.d. with ΨW (t) = AΨXr(t)+BΨTr(t)+ǫ

2t2/2.
Let ξ =W/ν, where ν =

√
Aκ2,Xr +Bκ2,Tr . Then fξ ∈ S and for j ≥ 1,

∫
|f (j)ξ (x)| dx ≤ jIj−1(r) + Ij(r) + (1 + ǫ2/ν2)Ij+1(r),

where for j ≥ 0,

Ij(r) = νj+1/2

[
Γ(j + 1/2)

2D(r)2j+1
+

∫ ∞

1/r
t2je−2H(t,r) dt

]1/2
,

with D(r) =
√
2AC0κ2,Xr +B(C0κ2,Yr + σ(r)2) and

H(t, r) = AC0t
2

∫

u<1/|t|
u2 λ(du) +

Bσ(r)2t2

2
.
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Assume the lemmas are true for now. Since dTV(X,Tr +∆r) = dTV(Xr +∆r, Tr +∆r) ≤
dTV(Xr, Tr), to show Theorem 2.1, it suffices to show that for any measurable A ⊂ R,

̺(A) ≤ M

q!
(|κ|q,Xr + |κ|q,Yr) (17)

where ̺(A) = |P{Xr ∈ A} − P{Tr ∈ A}| and M = σ−q
Xr

[qQq−1(r) +Qq(r) +Qq+1(r)].

We start with smoothing Xr and Tr while maintaining the same order of cumulant matching.
Let Z, Z ′ be i.i.d. ∼ N(0, 1) and independent of (Xr, Tr). Fix ǫ > 0. Let h be a measurable
function with ‖h‖∞ ≤ 1. The goal now is to bound

∆ǫ = E[h(Xr + ǫZ)− h(Tr + ǫZ ′)].

For n ≥ 2, let Ui = Ui,n and Vj = Vj,n, i, j = 1, . . . , n+ 1, be independent and i.d. with

ΨUi(t) = n−1ΨXr+ǫZ(t), ΨVi(t) = n−1ΨTr+ǫZ′(t).

For k = 1, . . . , n+ 1, let

Wk =
∑

1≤j<k

Vj +
∑

k<j≤n+1

Uj , gk(x) = Eh(Wk + x).

Since Xr + ǫZ ∼W1 and Tr + ǫZ ′ ∼Wn+1, then ∆ǫ = g1(0)− gn+1(0), giving

|∆ǫ| ≤ |E[g1(U1)− gn+1(Vn+1)]|+ |E[g1(U1)− g1(0)]|+ |E[gn+1(Vn+1)− gn+1(0)]|. (18)

We bound the expectations on the RHS separately. By Wk + Vk =Wk+1 + Uk+1,

h(W1 + U1)− h(Wn+1 + Vn+1) =
n+1∑

k=1

[h(Wk + Uk)− h(Wk + Vk)].

For each k, since Wk, Uk, and Vk are independent, by conditioning, Eh(Wk + Uk) = Egk(Uk)
and Eh(Wk + Vk) = Egk(Vk). Then taking expectation on both sides of the displayed identity
yields

E[g1(U1)− gn+1(Vn+1)] =
n+1∑

k=1

E[gk(Uk)− gk(Vk)]. (19)

Denote ν = σXr . Let ξk =Wk/ν. By Lemma 4.1, fξk ∈ S . As a result,

gk(x) = E[h(νξk + x)] =

∫
h(νu)fξk(u− x/ν) du (20)

is smooth. By Taylor expansion around 0,

gk(Uk)− gk(Vk) =
q−1∑

j=1

g
(j)
k (0)

j!
(U j

k − V
j
k ) +

1

q!
[g

(q)
k (θ(Uk)Uk)U

q
k − g

(q)
k (θ(Vk)Vk)V

q
k ],
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where θ(x) ∈ [0, 1]. By assumption, κj,Xr = κj,Tr for 1 ≤ j < q. Since κj,Uk
= n−1κj,Xr+ǫZ =

n−1(κj,Xr + ǫ21 {j = 2}), and likewise κj,Vk
= n−1(κj,Tr + ǫ21 {j = 2}), then κj,Uk

= κj,Vk
for

1 ≤ j < q. As a result, EU j
k = EV j

k for 1 ≤ j < q and hence

E[gk(Uk)− gk(Vk)] =
1

q!
E[g

(q)
k (θ(Uk)Vk)U

q
k − g

(q)
k (θ(Vk)Vk)V

q
k ],

=⇒ |E[gk(Uk)− gk(Vk)]| ≤
‖g(q)k ‖∞
q!

[E|Uk|q + E|Vk|q]. (21)

Since by (20) we have g
(q)
k (x) = (−ν)−q

∫
h(νu)f

(q)
ξk

(u− x/ν) du, then

‖g(q)k ‖∞ ≤ ν−q

∫
|f (q)ξk

(u)| du <∞. (22)

By ΨWk
(t) = (k − 1)ΨV1(t) + (n+ 1− k)ΨU1(t),

ΨWk
(t) =

n+ 1− k
n

ΨXr(t) +
k − 1

n
ΨTr(t) +

ǫ2t2

2
.

Then we can apply Lemma 4.2 with ν2 = κ2,Xr = κ2,Tr , A = (n+1− k)/n and B = (k− 1)/n
therein. By definition of D(r) and H(t, r) in Lemma 4.2,

D(r)2 = 2AC0ν
2 +B(C0κ2,Yr + σ(r)2) ≥ C0ν

2

and

H(t, r) = AC0t
2

∫

u<1/|t|
u2 λ(du) +

Bσ(r)2t2

2

≥ (A+B)t2min

{
C0

∫

u<1/|t|
u2 λ(du), σ(r)2/2

}
= L(t, r).

By definition of Qj(r) in Theorem 2.1 and definition of Ij(r) in Lemma 4.2, Ij(r) ≤ Qj(r). By
condition (16), Qj(r) <∞ for 0 ≤ j ≤ q + 1. Thus (22) and Lemma 4.2 give

‖g(q)k ‖∞ ≤ ν−q
[
qQq−1(r) +Qq(r) + (1 + ǫ2/ν2)Qq+1(r)

]
:=Mǫ <∞.

Since Mǫ is independent of k, by (19) and (21),

|Eg1(U1)− Egn+1(Vn+1)| ≤
Mǫ

q!

n+1∑

k=1

(E|Uk|q + E|Vk|q).

Since the Lévy measure of Xr has bounded support, E|Xr + ǫZ|q <∞. Meanwhile, from (5),
E|Yr + ǫZ|q <∞. Then by Lemma 3.1 in [1],

n+1∑

k=1

E|Uk|q → |κ|q,Xr+ǫZ = |κ|q,Xr ,
n+1∑

k=1

E|Vk|q → |κ|q,Tr+ǫZ′ = |κ|q,Yr .

Thus, for the first term on the RHS of (18),

lim sup
n→∞

|Eg1(U1)− Egn+1(Vn+1)| ≤
Mǫ

q!
(|κ|q,Xr + |κ|q,Yr). (23)
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To bound the other terms on the RHS of (18), first note |E[g1(U1)− g1(0)]| ≤ ‖g′1‖∞E|U1|.
As in (22), ‖g′1‖∞ < ∞. Since g1(x) = Eh(Xr + ǫZ + x), ‖g′1‖∞ is independent of n. On
the other hand, by EU1 = 0 and Cauchy-Schwartz inequality, E|U1| ≤ σU1 = σXr+ǫZ/

√
n, so

E[g1(U1)− g1(0)]→ 0 as n→∞. Likewise, E[gn+1(Vn+1)− gn+1(0)]→ 0. Together with (18)
and (23), this implies

|Eh(Xr + ǫZ)− Eh(Tr + ǫZ ′)| ≤ Mǫ

q!
(|κ|q,Xr + |κ|q,Yr).

Let G be the union of a finite number of (ai, bi) and h(x) = 1 {x ∈ G}. By 2) of Lemma
4.1, P{Xr = ai or bi, some i} = 0. Let ǫ → 0. Then h(Xr + ǫZ) − h(Xr) → 0 a.s. On the
other hand, since Tr is the sum of Yr and an independent non-zero Normal random variable,
by 1) of Lemma 4.1, fTr ∈ S . As a result, h(Tr + ǫZ ′) − h(Tr) → 0 a.s. Finally, Mǫ → M .
Then by dominated convergence, (17) holds for G.

Let A be measurable. Given δ > 0, fix R > 0 such that P{|Xr| ≥ R} + P{|Tr| ≥ R} < δ.
Let B = A∩ (−R,R). Then ̺(A) ≤ ̺(B)+ δ. There is an open G ⊃ B such that ℓ(G\B) < δ,
where ℓ is the Lebesgue measure. G is the union of at most countably many disjoint open
intervals (ai, bi). Let Gk = ∪ki=1(ai, bi). Then ̺(B) ≤ ̺(Gk) + P{Xr ∈ B△Gk} + P{Tr ∈
B△Gk}. From last paragraph, (17) holds for Gk. Next, B△Gk ⊂ (G \ Gk) ∪ (G \ B), and
P{Xr ∈ G \B} ≤ ‖fXr‖∞ℓ(G \B) and a similar inequality holds for Tr. Then

̺(B) ≤ M

q!
(|κ|q,Xr + |κ|q,Yr) + P{Xr ∈ G \Gk}+ P{Tr ∈ G \Gk}+ (‖fXr‖∞ + ‖fTr‖∞)δ.

By Lemma 4.1, ‖fXr‖∞ + ‖fTr‖∞ <∞. Letting k →∞ and then δ → 0, it is seen (17) holds
for A.

4.2. Proofs of Lemmas 4.1 and 4.2

We need an elementary result for the proofs.

Lemma 4.3. 1) 1− cosx ≥ C0x
2 for |x| ≤ 1. 2) infp>0

1
Γ(p)

∫ p
0 u

p−1e−u du = 1/2.

Proof. 1) For x ∈ [0, 1], since sinx is concave, sinx ≥ x sin 1, giving 1−cosx = 2[sin(x/2)]2 ≥
2[(x/2) sin 1]2 = C0x

2. For x ∈ [−1, 0], the proof follows from symmetry.

2) The inequality can be written as infp>0 P{ξp ≤ p} = 1/2, where ξp ∼ Gamma(p, 1).
By Central Limit Theorem, P{ξp ≤ p} → 1/2 as p → ∞. Therefore, it suffices to show
that for every p > 0, P{ξp ≤ p} > 1/2, or equivalently,

∫ p
0 u

p−1e−u du >
∫∞
p up−1e−u du.

Applying change of variable u ← pu to the first integral and u ← p/u to the second one, the
inequality is equivalent to

∫ 1
0 u

−p−1[u2pe−pu − e−p/u] du > 0, which holds if for all u ∈ (0, 1),

u2pe−pu > e−p/u, or equivalently, 2 lnu+1/u−u > 0. The last inequality follows directly from
calculus.

Proof of Lemma 4.1. 1) From the assumption,
∫
|u|j λ(du) <∞ for all j ≥ 2. Then by dom-

inated convergence, Ψξ ∈ C∞(R) with Ψ
(j)
ξ (t) =

∫
(1 {j = 1} − eitu)(iu)j ν(du) for j ≥ 1. By

|1− eix| ≤ |x| for x ∈ R, |Ψ′
ξ(t)| ≤ κ2,ξ|t|. Clearly, |Ψ

(j)
ξ (t)| ≤ |κ|j,ξ for j ≥ 2. Since ψξ+Z(t) =

exp(−Ψξ(t) − ǫ2t2/2), then for j ≥ 0, ψ
(j)
ξ+Z(t) = Pj(Ψ

′
ξ(t), . . . ,Ψ

(j)
ξ (t), t)ψξ(t) exp(−ǫ2t2/2),

where Pj(z) is a multivariate polynomial in z = (z1, . . . , zj+1) of order j. It follows that

|ψ(j)
ξ+Z(t)| = O(|t|je−ǫ2t2/2) and hence for any p ≥ 0, |t|p|ψ(j)

ξ+Z(t)| → 0 as |t| → ∞, which yields
the proof.
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2) For |t| ≥ 1/r,

Re[ΨXr(t)] =

∫

|u|<r
(1− cos tu)λ(du) ≥

∫

|u|<1/|t|
(1− cos tu)λ(du).

Then by Lemma 4.3, 1− cos tu ≥ C0t
2u2 for 0 ≤ u < 1/|t| and hence

Re[ΨXr(t)] ≥ C0t
2

∫

u<1/|t|
u2 λ(du) ≥ L(t, r).

On the other hand, by Cauchy-Schwartz inequality,

∫

|t|≥1/r
|t|q|ψXr(t)| dt ≤

(∫
dt

1 + t2

)1/2
(∫

|t|≥1/r
(1 + t2)t2q|ψXr(t)|2 dt

)1/2

≤
√
π

(∫
(1 + t2)t2qe−2L(t,r) dt

)1/2

Then by (16), |t|q|ψXr(t)| ∈ L1(R) and the proof follows from Proposition 28.1 of [32].

To prove Lemma 4.2, we need a type of inequalities known in the literature (cf. [4], Lemma
11.6). Since the expression of (f̂)(j) becomes complicated rapidly as j increases, the following
specific form is used to reduce the maximum order of derivative involved.

Lemma 4.4. Let f ∈ S and ψ = f̂ . Then for j ≥ 1,

∫
|f (j)| ≤ 1√

2

[(∫
|tjψ(t)|2 dt

)1/2

+ j

(∫
|tj−1ψ(t)|2 dt

)1/2

+

(∫
|tjψ′(t)|2 dt

)1/2
]
.

Proof. By Cauchy-Schwartz and Minkowski inequalities,

∫
|f (j)| ≤

(∫
dx

1 + x2

)1/2(∫
|f (j)(x)|2(1 + x2) dx

)1/2

≤
√
π

[(∫
|f (j)(x)|2 dx

)1/2

+

(∫
|xf (j)(x)|2 dx

)1/2
]
.

Then by Plancherel theorem and the fact that the Fourier transforms of f (j)(x) and xjf(x)
are (−it)jψ(t) and (−i)jψ(j)(t), respectively ([19], p. 100-102),

∫
|f (j)| ≤ 1√

2

[(∫
|tjψ(t)|2 dt

)1/2

+

(∫
|(tjψ(t))′|2 dt

)1/2
]
.

The proof is complete by applying Minkowski inequality to the last integral.

Proof of Lemma 4.2. We only consider the case where sppt(λ) ⊂ R+. The proof for the
symmetric case is similar. For brevity, write f = fξ, ψ = ψξ, and Ψ = Ψξ. By Lemma 4.1, f ,
ψ ∈ S . Write M = ǫ2 +Bσ(r)2. Then

Re[Ψ(t)] = Re[ΨW (t/ν)] =

∫
(1− cos tu/ν)[Aλr(du) +Bγr(du)] +

Mt2

2ν2
.
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If |t| ≤ ν/r, then |tu|/ν ≤ 1 for 0 ≤ u < r, so by Lemma 4.3, 1 − cos tu/ν ≥ C0t
2u2/ν2.

Consequently,

Re[Ψ(t)] ≥ C0t
2

ν2

∫ r

0
u2[Aλr(du) +Bγr(du)] +

Mt2

2ν2

=
AC0κ2,Xr t

2

ν2
+
BC0m(r)s(r)p+3t2

ν2

∫ r/s(r)

0
up+2e−u du+

Mt2

2ν2
.

Since s(r) < r/(p+ 3), by 2) of Lemma 4.3,
∫ r/s(r)

0
up+2e−u du ≥

∫ p+3

0
up+2e−u du ≥ Γ(p+ 3)/2.

Then by Γ(p+ 3)m(r)s(r)p+3 = κ2,Yr ,

Re[Ψ(t)] ≥ AC0κ2,Xr t
2

ν2
+
BC0m(r)s(r)p+3Γ(p+ 3)t2

2ν2
+
Mt2

2ν2

≥ AC0κ2,Xr t
2

ν2
+
BC0κ2,Yr t

2

2ν2
+
Bσ(r)2t2

2ν2
=
D(r)2t2

2ν2
.

If |t| > ν/r, then r > ν/|t| and

Re[Ψ(t)] ≥ AC0t
2

ν2

∫

u<ν/|t|
u2λ(du) +

Bσ(r)2t2

2ν2
= H(t/ν, r).

Therefore, for j ≥ 0,
∫
|tjψ(t)|2 dt = 2

∫ ∞

0
t2je−2Re[Ψ(t)] dt

≤ 2

∫ ν/r

0
t2je−D(r)2t2/ν2 dt+ 2

∫ ∞

ν/r
t2je−2H(t/ν,r) dt

≤ 2

∫ ∞

0
t2je−D(r)2t2/ν2 dt+ 2ν2j+1

∫ ∞

1/r
t2je−2H(t,r) dt

≤ ν2j+1Γ(j + 1/2)

D(r)2j+1
+ 2ν2j+1

∫ ∞

1/r
t2je−2H(t,r) dt = 2Ij(r)

2. (24)

Next, ψ′(t) = −Ψ′(t)ψ(t), with Ψ′(t) = (i/ν)
∫
(1− eitu/ν)u [Aλr(du) +Bγr(du)] +Mt/ν2. By

|1− eix| ≤ |x| for all x ∈ R,

|Ψ′(t)| ≤ t

ν2

∫
u2 [Aλr(du) +Bγr(du)] +

Mt

ν2

=
Aκ2,Xr t

ν2
+
Bκ2,Yr t

ν2
+

(ǫ2 +Bσ(r)2)t

ν2

=
(Aκ2,Xr +Bκ2,Tr)t

ν2
+
ǫ2t

ν2
= (1 + ǫ2/ν2)t.

As a result,
∫
|tjψ′(t)|2 dt =

∫
|tjΨ′(t)ψ(t)|2 dt

≤ (1 + ǫ2/ν2)2
∫
|tj+1ψ(t)|2 dt ≤ 2(1 + ǫ2/ν2)2Ij+1(r)

2. (25)

The proof is complete by combining Lemma 4.4, (24) and (25).
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Appendix A.

To evaluate the RHS of (14), we need to evaluate Qj(r), j = 5, 6, 7, which involves
the integral of t2je−2L(t,r) over t ∈ [1/r,∞). To get good numerical precision, one way is
to employ incomplete Gamma functions [27]. For λ(du) = c1 {u > 0}u−α−1 du, κ2,Xs =∫ s
0 u

2λ(du) = c
∫ s
0 u

1−α du = cs2−α/(2 − α), s > 0. Then it is not hard to get 2L(t, r) =

min{At2, B|t|α}, where A = σ(r)2 and B = 2cC0/(2 − α). Let t0 = (B/A)1/(2−α). Then
2L(t, r) = At21 {|t| ≤ t0}+B|t|α1 {|t| > t0}, and hence, letting t1 = max{1/r, t0},

∫ ∞

1/r
t2je−2L(t,r) dt =

∫ t1

1/r
t2je−At2 dt+

∫ ∞

t1

t2je−Btα dt

=
1

2Aj+1/2

∫ At21

A/r2
uj−1/2e−u du+

1

αB(2j+1)/α

∫ ∞

Btα1

u(2j+1)/α−1e−u du.

The integrals on the last line can be expressed as incomplete Gamma functions. For symmetric
λ(du) = c1 {|u| > 0} |u|−α−1 du, the formula is the same, except that B = 4cC0/(2− α).
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