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Abstract

Consolidation of memories during sleep may involve neuronal replay of daytime activity pat-
terns. A precise replay phenomenon was observed in the song system nucleus RA. We developed
statistical pattern filtering to investigate replay in HVc, where spiking activity is more variable.
Long spike sequences during sleep were convolved with filters constructed from exemplar audi-
tory spike sequences. Examining peaks in the filter responses, we found many examples of HVc
spike trains with temporal patterns similar to the exemplars, confirming a replay phenomenon
for HVc. Statistical pattern filtering has general utility for finding spike patterns when a referent
pattern is known.
© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Pattern recognition; Sleep; Birdsong; HVc

1. Introduction

In the zebra finch forebrain nucleus robustus archistriatalis (RA), neurons generate
sequences of spike bursts during spontaneous sleep activity that exhibit similar temporal
patterns as the pre-motor activity during singing and the auditory responses to song
playback in the sleeping animal [2,3]. This sleep replay phenomenon is hypothesized
to play an important role in learning and memory consolidation of the birdsong system
[2,7], which gives rise to the question of whether and how other parts of the song
system participate in replay during sleep. The forebrain nucleus HVc is a sensorimotor
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center of the birdsong system. It projects to RA, and is thought to play an important
role in vocal learning, auditory input integration, and higher level motor command.
State-dependent auditory responses have also been observed for the HVc [9,10]. We
thus investigated whether the replay phenomenon also occurs in spontaneous sleep
activity of HVe.

Instead of searching for individual replayed spike bursts [2], our goal was to find
burst sequences that have similar temporal patterns as pre-motor activity or auditory
responses [6,8]. This is challenging for two reasons. First, unlike pre-motor or auditory
data, for sleep spontancous neuronal data, there are no reliable observables to mark the
occurrence of neuronal events of interest. Second, the neuronal activity in HVc has far
more variability than RA activity.

2. Pattern filtering

We developed a statistical methodology using linear filtering to address the above dif-
ficulty. In general, let S be an exemplar train of spikes registered at s; < s, <--- <5,
sk €[0,0]. Given a small number ¢ > 0, fix two functions K(x) and B(x), with K(x) #
0 only for x € (—¢,¢) and B(x) < 0 for all x. The functions will be referred to as the
“time window function” for a spike and the “background function”, respectively, and
¢ the “window size”. Define F on [0, 0] by

{max1<k<pK(x—sk) if xeJs,
F(x)= , (1)
B(x) otherwise,
where
P
Js = (s — e5x + ). (2)

k=1

Let T be a data sequence of spikes registered at #; < --- < #y. Regard T as a series
of ¢ functions, i.e., T(x) = vazl d(x — t;). Define function R by

R(x)= /6 F(s)T(x 4+ s)ds. 3)
0

We then search for local maximum points of R with super-threshold values and
output them as plausible locations of targets, namely segments of 7 with temporal
patterns similar to S. More specifically, given ry > 0 and 6 > 0, with ry ~ 20 ms
in our study, each target location x satisfies R(x) > 0 and R(x) = R(¢) for all ¢t €
(x — ro,x + r9) and the spike sequence in [x,x + o] is considered a potential target.
To avoid overlapping segments to be output as targets, if xi,...,x, are plausible target
locations with I; = [x;,x; + o] intersecting with each other, we only choose one /;, such
that R(x;) is the largest among R(x),...,R(x,).

The search proceeds rapidly because R is the linear convolution between ®(s) :=
F(—s), s€[ — 0,0] and 7, which in most cases can be computed efficiently by the
fast Fourier transform. We refer to @ as the pattern filter associated with S, and the
convolution pattern filtering.
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In all the cases we studied, K and B also satisfied the following conditions:
(1) K is symmetric on (—¢,¢), and decreases as x increases from 0 to ¢; (2) K(x) >
0 on most part of (—e¢), except for x close to the boundary of the interval;
(3) min{K(x): x €(—¢¢)} = max{B(x)}; and (4) B(x) = ¢ for some constant ¢ < 0.
All the conditions can be justified by an appropriate statistical model and at the same
time simplify the computation.

3. The underlying statistical model

Pattern filtering is a likelihood ratio test, as opposed to likelihood test in the uni-
tary event analysis [4,5]. To illustrate, consider the simplest filter constructed from
the time window function K(x) = o >0, x€(—¢,¢), and the background function
B(x) = —f <0. Then (3) leads to R(x) =#{t,cT N[x,x +0]: t; —xEJs} X a0 —
#{t, e TN[x,x+0]: t; —x &€ Js} x . Because Js C [0, 0], the formula is simplified into

R(x):#{l‘iETZ li—ers}XO(—#{liETi li—ngs}Xﬂ.

Detection using this filter is derived from three statistical assumptions. First, each
spike sequence is generated randomly either by the exemplar sequence S ={si,...,s,}
(“template”) or by the background. Second, spikes in the sequence are conditionally
independent, such that

(1) given the sequence being generated by the template, at any location within distance
¢ from a template spike, the probability of a spiking event is p(, while at any other
location, the probability is go;

(2) given the sequence being generated by the background, the probability of a spiking
event is g everywhere; and

(3) conditioning on either case, the spiking events at different temporal locations are
independent from each other.

Finally, po > ¢ = qo. In other words, compared to background activity, in activity
generated by the template, spikes are more likely to occur around template spikes, and
less likely to occur elsewhere.

Note that the assumption of conditional independence is not one of independent fir-
ing. Also, it can be shown that both the “sliding sweeps” [1,8] and the cross-correlation
approaches [2,6] can be implemented by pattern filtering. Furthermore, it is straight-
forward to generalize pattern filtering to multiple units, incorporating spatial as well as
temporal structure of neural activity.

Returning to the filtering procedure, let 7 be a data spike sequence. Given x, let T,
consist of the spikes of 7' in [x,x+ o]. Shift the spikes in T, by x, so that the sequence
is registered onto [0, ¢], the same time frame as the template S. If n spikes of T fall
inside Jg, and m outside Jg, and the total duration of Js is 7, then it is not hard to get
the following likelihoods

po(T) := P(T; | T generated by §) = e~ 7"~ (=% pig

n+m

pa(Ty) := P(T, | T, generated by background) =e ¢
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Hence the log-likelihood ratio

o Tx 1 m
Po(Ty) _ log Pozo
Ppa(Ty) gmm

L(Ty) :=log + Cs =na — mf + Cs, 4)

where

a:log@>0, ﬂ:logi>0
q q0

and Cs = — pgt — qo(6 — 1) + go is a constant which only depends on the template S.

Therefore, if we define F by (1), with K(x)=o for x € (—¢,¢) and 0 for x & (—¢,¢)
and B(x) = —f, then L(T,) = R(x) + Cs. Since x runs across the entire time interval
of the data spike sequence T', R consists of the log-likelihood ratios plus a constant of
all the segments of 7 with the same duration as the template. Thus, by locating peaks
in R with values larger than a given threshold, one can find all the segments that are
significantly more likely to be a target than be part of the background.

4. Results

We implemented pattern filtering for HVc single unit data recorded during sleep. For
each unit, the spike sequences in response to the bird’s own song (‘BOS”) broadcast to
the sleeping bird in multiple trials were selected as templates. Then, in the subsequent
spontaneous activity of the unit when no acoustical stimulus was presented, segments
with similar temporal patterns as the templates were searched. For the neuronal activity
in HVc, several types of variability have to be taken into account: (1) the across-trial
variability of the auditory response, which leads to differences across the templates; (2)
the possible modulations in the time scale of the neuronal activity [8,2,6], which lead
to time compression or expansion of potential targets; and (3) the transient change in
firing rates, which may lead to false detections. To address the variability, we adopted a
procedure involving multiple filters, time scales, and tests on the statistical significance
of the targets. In most cases, it took less than 5 s to conduct detection for a spike train
of 10 min duration using a single filter, thus the multi-level detection procedure was
still computationally efficient.

In the example illustrated in Fig. 1, the first spike train in each group is a tem-
plate, consisting of all the spikes during a rendition of the same “motif” (sequence
of syllables) which lasted about 650 ms. The templates are aligned at the onsets of
the renditions. The subsequent spike trains in each group are targets detected from
the spontaneous activity, using filters constructed for the template. Since targets were
detected at several time scales to account for possible time compression or expansion,
they might have different durations than the templates. To make comparisons between
the two, the targets are scaled in the plot, according to the scaling factors with which
they were detected. For all the targets, the scaling factors are between 0.8 and 1.25.
This example demonstrates the variability of the auditory response in HVc during sleep
and that such variability may also be exhibited in the presumed “replay” during the
spontaneous sleep activity.



Z. Chi et al. | Neurocomputing 52-54 (2003) 19-24 23

A | 1] I il | (I | |

B e [ 1 | | | | |

LErr e u o [ | | [

C | | | [ ] L 1 I 1 [N

D L T R ol w1 | | |

| I B VR T L | P me e m i
L | I ! | [ RLL NN T Il
e e e L L e I A A B | (]

E [ 1 L L T T 1 1 I Y A 1
[Nl mewer ni | I LR I I
| [ R I RN I T ] m Il |

Fig. 1. Detection for a unit. In each group, the first spike train is a template and the others are targets detected
using the filters for the template. The duration of a time interval (/650 ms) during which a template was
collected is illustrated at the bottom.

Fig. 2. Raster plots of templates (A) and detected targets (B). The targets in this case are not scaled, i.e.,
they have about the same duration as the templates (=580 ms).

The second example is illustrated in Fig. 2. There were 126 responses collected
while the BOS was broadcast to the sleeping bird (Fig. 2A). Again, the templates were
associated with multiple renditions of a motif. While the responses were less variable
than those in the previous example, they exhibited significant systematic change across
the trials. For this unit, the detection was conducted without scaling the filters. From
a total of approximately 25 min of recordings of spontaneous activity, we detected 33
exemplars of spontaneous activity. These are displayed in Fig. 2B. Note the similarity
of matching between the responses to BOS and the spontaneous spike sequences. This
example as well as the previous one is the first quantitative evidence that replay during
sleep occurs in a song system nucleus other than RA.
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