SUPPLEMENTAL MATERIALS

By ZHuryr CHI

In this note we collect proofs of the theoretical results stated in the
manuscript. For convenience of reference, all the equations and statements
that appear in the main text will be indexed as in there.

We will denote by Bern(p) the Bernoulli distribution with mean p, Bin(n,
p) the binomial distribution for n iid trials with success rate p, Unif(a, b) the
uniform distribution on (a, b), and Exp(c) the exponential distribution with
mean c. The distribution of a random variable X is denoted by £(X). The
total variation distance between two distributions ¢ and v on Z is denoted
drv(p,v) = 2 [ — vkl

Given unadjusted marginal p-values pi,...,pn, one for a different null
hypothesis, let p,.1 < --- < pu., be their order statistics. Set p,.0 = 0 and
Prnnt1 = 1. Given target FDR control level a € (0,1), the BH procedure
rejects all hypotheses with p-values < p.r, , where

(S_l) Rn:max{jEOZPn:j < ﬂ}
n
As a result, R = R,. The number of false rejections and power are
Ve =#{j < < the jth null is true} Hin — Vo
= n:p; . e null is true ower, = ——————
n J = Pj = Pn:R,> J y P n (n—N)\/l’

respectively.

The p-values are assumed to be sampled from a random effects model as
follows. Let the population fraction of false nulls among all the nulls be a
fixed 7 € (0,1). Then (p1,61), (p2,62), ...are iid, such that

6; := 1 {the jth null is false} ~ Bern(r)
Pr{p; <u|0; =0} =u, Pr{p; <u|0; =1} =G(u), wuel0,1].

Let 1,79, .. id Unif(0, 1) be independent of py,pa,.... Then under the
random effects model, 01,05, ... can be represented by

1—m

(S-2) 0; =1{n; > p(p;)}, where p(z)= T rtrF (@)

The following representation will be used repeatedly. Under the random
effects model,

(S-3) &1 = F(p1), & = F(pa), ... ~ Unif(0,1),

and p; = F*(§;), where F*(t) = inf{z : t < F(x)} (cf. [5], pp5-8). Given
n>1,let &1 < ... < &u.n be the order statistics of £1,...,&, and &,.0 =0
1
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and &p:pt1 = 1. Then py,.; = F*(&,:;). Because F*(u) < v if and only if
u < F(v) for any u,v € (0, 1), therefore,

(8'4) R, = max {] <n: fn:j < Zn:j}v
where henceforth we denote
Zn = Flag/n).

Henceforth denote the uniform empirical distribution and its inverse by
1 n
Up(z) = - Z 1{{, <z}, Up(t) =inf{z:t <Uy(z)}.
j=1

We will also use Poisson representations for £i1,&s,.... For this reason,

Y1,72, . . . will always denote a sequence of random variables i Exp(1) inde-
pendent of pq,po,.. ..
Henceforth for x > 1, denote logsx = log log x,

L(z) = Vzlogyzr, D(z)=L(x)/x = Vlogyx/x.
1. Proof of Theorem 2.1. Recall the theorem is stated as follows.

THEOREM 2.1. Suppose a € (0, ). Let ¢ = aF’(0). Then, as n — oo,
RngT::max{j:Sj < 0},

the last time of excursion into (—o0,0) by the random walk Sop = 0, S; =
Sj—1+vj —c, j =1, with y1,72,... itid ~ Exp(l) with density e=*, x > 0.
The distribution of T is

Lk
(2.5) Pr{r =k} = y(l —c)cfe ke k=0,1,....

Consequently, the power of the BH procedure is of order Op(1/n). Further-
more,

(2.6) pFDR — §,

and
(2.7) > drv (L(Vy| Ry = k), Bin(k,B,)) Pr{R, =k} — 0,
k=1

where dpv(p, V) := > i |k — V| denotes the total variation distance of two
distributions p and v on Z, and L(Vy, | Ry, = k) the conditribution distribu-
tion of V,,.
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1.1. Proof of Eq. (2.5). From the conditions of Theorem 2.1, 2., =
F(aj/n) < j/n. Recall ¢ = F(p;). In order to prove (2.5), we need the
following two lemmas.

LEMMA S-1. There is M = M(a/ay) > 0, such that 3, Pr{R, >
Mlogn} < co and hence a.s., forn > 1, R, < M logn.

LEMMA S-2. Forn > 1, define

an = (fn]_gnjfl)(’}/l—i__'_q/ﬂﬂrl)v ]: 1,,71
Then gn:h R Cn:n-‘rl 1’1\(’1 EXp(l), and gn:j = Zgzl an/zzg_ll an

PROOF OF THEOREM 2.1. Fix k > 1. Given M > 0 as in Lemma S-1, let
an = | Mlogn]. From the definition of R,, and Lemma S-2,

an

(R, <k} = () {&nj > znij} = ) {Cm Gy Zn:j}mBna

An

where B,, = {R,, < an}. Then by Lemma S-1, |Pr{R, < k} — Pr{4,}| <
Pr{BS} — 0.
Let

Hy={m+ - +m<n-2L(n)}
Lo = {1+ 47 > aF(0)j —n '/}

forn > 1,1 < j < n. Let C > 0 such that |F(at) — aF'(0)t| < Ct? for
0 <t <« 1. Then for n > 1 and j < a,, we have

Znj > aF'(0)j/n — C(j/n)?,
and hence

Pr{A, N H;}

S Pr { ﬁ {Cn:l + -4 Cn:j 2 [1 - QD(H)] (aF/(O)] - CTﬂ) }}

J=k

Qn
<Prq() Ty
j=k

with the second inequality due to Lemma S-2. Let
Enj={m+-+v>aF(0)j} CTy;

Qn
Ty = ZPr{aF'(O)j —n 3 <y +ooo 4 < aF'(O)j}.
j=k
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Then E,.; C I';.; and

an, an
ogPr{ﬂ rn;j} —Pr{ﬂ En]} < Tn.

=k =k

13 0.

Since the density of 71 + --- 4+ «; is bounded by 1, z,, < apn™
Following the proof for Lemma S-1, it can be seen that

i z": Pr{E; ;} < oco.

n=1j=an+1

By the Law of Iterated Logarithm (LIL), Pr{H,} — 0 as n — co. Combining
these results,

lim Pr{R, <k} = lim Pr{4,} = lim Pr{4,NHS}

n—oo
o Qan - o
< TLILHOIO Pr ﬂ En;o = nlglgo Pr ﬂ E,.;

i=k I=k
=Pr{y1+--+; > aF'(0)j, for all j >k}
=Pr{r <k}.

Similarly, lim, Pr{R,, < k} > Pr{r < k} and hence Pr{R, < k} —
Pr{r < k}. O

PROOF OF LEMMA S-1. By definition, for ¢ < n,

{Rn > Z} = U {gn:j < Zn:j} .

j=i

Let gn; = Pr{&.; < zn;} and Zy,...,2Z, id Bern(zy.j). Then ¢,.; =
Pr{>>7" 1 Z; > j}. Since j — z,,jn > 0, by Hoeffding’s inequality (cf. Ap-
pendix),

qn:j < exp {_2n(.7/n - Zn:j)2} .
Fix €,0 > 0, such that a := a/a, +6 € (0,1), b :=infyc (o) F(t)/t > 0, and
fort € (0,¢), F(t) < (a/a)t. By assumption, d := inf{t — F(at) : t > €} > 0.
Therefore, for j > en, gn.; < exp{—2nd?*}, yielding

Y Pr{R,>i} < ) Zn:Pr{ﬁn:j > Znij }

en<i<n en<i<n j=t

(S-1) < Z ne 2" 0, n— .

en<i<n
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For j < en, c = F(aj/n) € [b(aj/n), aj/n], so abj < cn and j —cn >
(1/a — 1)en > 0. Let p(t) = (1 +t)log(1 4+ t) — t. By Bennett’s inequality
(cf. Appendix),

Gn:j < exp {—1cn @ (] — Cn)} <e P, with p = abp(1/a—1) > 0.
—C cn

Therefore, for any i < n,

Pr{R, > i} =Pr { LnJ {&nyy < Zn:j}}

len] n
< Z Pr{fn:j < Zn:j} + Z Pr{gn:j < Zn:j}
7=t j=len]+1

<(1—e ) te P4 ne~2nd*
Then >, Pr{R, > 2logn/p} < co. By Borel-Cantelli lemma,
R, <2logn/p, as.
The proof is complete by letting M = 1/p. O

PROOF OF LEMMA S-2. The joint density of X; = &,.;, 1 < j < n and
Y = Z?illfy] is G(x1,...,2p,y) = 1{0< 21 < ... <y <1}y e Y. Be-
cause (Cu:1y- -+ Cnoms Cunt1) = (X1, ..., Xpn,Y), where

d)(xla v 7xn>y) = (371% (x2 - xl)ya ceey (xn - xn—l)ya (1 - xn)y)7

Cnity - - -, Cuinr1 have joint density e~ (1 +2011) and therefore are 9 Exp(1).
O

1.2. The other statements of Theorem 2.1. We only prove (2.7). Eq. (2.6)
follows immediately. Let 6.1, ..., 6,., be the re-ordered 64,...,6, corre-
sponding to py.;. Then by (S-2),

Ry d Ry
Vi, = Z(l - enzj) = Z 1 {779‘ < p(pn:j)} :
= =1

Given k > 1, almost surely, as n — 00, pp.s — 0 and hence p(py.;) — [« for
all ¢ < k. Then

(1 {Ul < p(pn:l)} P | {Uk < p(pn:k)})
225 (1{UL < Bu}, ... 1{Uk < B.})

and hence by n’s and R,, being independent,
dTv(ﬁ(Vn ’ Rn = k), Bern(k,ﬁ*)) — 0.

Since R, 9, 7, by dominant convergence, (2.7) is proved.
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2. Proof of Theorem 2.3. We shall prove Theorem 2.3 before Theo-
rem 2.2, since some of the ideas for the proof of the former can be applied
to the latter. Recall

THEOREM 2.3. Suppose F is twice differentiable at 0 and F'(0)u > F(u)
for w > 0. Then a,, = 1/F’(0). Suppose I = {z >1: F0(0) # O} # (). Let
f=minl. If @ = a, then

1 20 -2
(2.10) lim 0g i _ =1 = :

n—oo logn

20— 1
The upper bound of Ry, can be strengthened to

R, <{£'v 2(1 4 vo) F'(0 )3}21 " a.s

(2.11) lim FO(0)]

n—oo nYo (log n)l vo —

Furthermore, a.s., V, /R, — B« and true discoveries Ry, —V, ~ (1 — ()R

2.1. Upper limit. The proof of Eq. (2.11) relies on Lemma S-2 and the
following two Lemmas.

LEMMA S-1. Let m,, € N such that m, — 0o as n — oco. Given ¢ > 1
and § > 0,

Pr{ O (71+ + <j—v20(5+1)jlogj>}

Jj=mn
<m;°/8, foralln> 1.
LEMMA S-2. Ifa=1/F'(0), then there is constant M > 0, such that
— R,

Iim ————— a.s.
n—oo nYo (log n) 1-vp

PROOF OF THE UPPER LIMIT EQ. (2.11). Denote

._ / 2 F'0)f e
AO'_{E! 4= 20 —1|F© (0)|}

and @, = n*°(logn)'~"°. It suffices to show that for any A > Ay,
(S-1) Pr{&,.; > zpj, for all j > AQ, and n > 1} = 1.

Denote a = (4¢ — 3)/(¢ — 1) > 2. Given € > 0, let ¢ € (1,1 + £) and
0= a—“ — 1. Then vyé > 1. Let (.1, ..., G be defined as in Lemma S-2
and mn = [An*?]. By Lemma S-1,

A—Jn—l/05

Pr{ U {cn:1+~--+cn:j<j—V(a+e>jlogj}}g ;

=[An"0]
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have a finite sum over n. Therefore, by Borel-Cantelli lemma, a.s.,
(S2) Cui+ .- +Cuj>7—V(a+e)jlogj, forallj> An" and n>> 1.
Let E; = {R; < Mi*(logi)!™"}. By Lemma S-2, for M > 0,
i Pr {ﬂ B }

On N>y, Ei, if §nej < 2nyy, then j < R, = o(n), so by Taylor’s expansion,

Cn:1+ “+ Cnsj -, <l_ (1—¢) |FO(0)] (l>e

gn:j = " T _— = <n:j n /) F/(O)g n

On the other hand, by the LIL, almost surely, v1 + -+ + 7% < n +
V2 + eLL(n) for n > 1. Together with (S-2), the inequalities lead to

(5-3) | (a+ej)logj
(L—¢) [FOO)] 5\
< - Ty <n> (1+V2+eD(n)).

Assume that for infinitely many n, there exists j > AQ, such that &,.; <
F(aj/n). Then by Vlogn/n = o(j/n) and (S-3), for n > 1,

(a+e)logj _ (1—¢)? |F(f)(0)| V!
J = 0! F'(0)* (g)
JTVR_0VateF(0) n' !
Vel = (L=oFO©)]

On the other hand, there are r,, | 0 such that

=

j571/2 - (1 _ T.n)AZfl/Qanl
Viogj — V(20 -2)/(2¢ - 1)

Combine the above two inequalities to get

26—1 (1—6)2(1—%)‘

—1/2

Let n — oo and then € — 0. Then A*1/2 < A and hence A < Aj.
The contradiction shows that (S-1) holds almost surely. This then finishes
the proof. O
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PROOF. Proof of Lemma S-1 By log E[e?(~")] = § —log(1 4+ 6) = 207 —
263 + ... fix 6y > 0, such that A(f) < 1c6 for 6 € (0,6p). Let g;(0) =
%092 — 0v2c(1 4 6)logj/j. Then by Chernoff’s inequality, for 5 > 1 and
NS (07 90)3

Y ::Pr{pyl+...+7j—j§—\/m} < exp{jg;(0)}.

Forn > 1 and j = myp,...,n, 6 = V2(1+0)clogj/j < b, gj(é) =
—(1 +6)logs/j, and so A; < j~(F9. The proof is then complete by the
inequality for union of events. O

PrROOF OF LEMMA S-2. Following Lemma S-1, we estimate

qn:j = Pr{fn:j < Zn:j}.

Given € € (0, 1), again, (S-1) holds, so almost surely, R,, < en for all n > 1.
On the other hand, by v = 1/F'(0), if e < 1, then 0 < 25tf <t — F(at) <

2ktt for all t € [0, €], where k = |Z;€2§8)) L Tt follows that there is a constant

& > 0, such that

. - y 5'2(*1
1%? 2 (j z znn]n> = 13212_2 , forallj <enandn>1.
— <niyj n:j

Therefore, if M > (2/6)!7% and a,, = Mn*°(logn)!~°, then by Bennett’s
inequality,

(5@2571 B o1
Pr{a, < R, <en} Snexp{—% — (M 1

which have a finite sum (cf. Appendix). The proof is then complete by Borel-
Cantelli Lemma. O

2.2. Lower limit. The proof of the lower bound is based on two lemmas.
Given n > 1, denote M; = M;(n) = [1’|. Given j < m < n, let R(n,m,j) =
# {Z <n: 51 < Sm:j}' Clearly gm:j = §n:R(n,m,j)~

LEMMA S-3. Fiz0<e<1and0<a<b< 1. Then almost surely, for
m > 1, there exists j € [am,bm] NN such that

Entnt, < [1— V2= eD(ip) i ™.

LEMMA S-4. Given 0 < a < b < 1, almost surely, for all m > 1,
j € lam,bm]| NN, and My, 41 < n < M, 42, we have
1 ) o
—R(n, My, Mj) — ™™ | < Cpy D ) ™™,
n

where Cy, = 11n(n + 1)vn — 1.
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PROOF OF THE LOWER LIMIT FOR EQ. (2.10). Assume the above two
lemmas for now. To show lim,, kl’fgi” > 1y, it suffices to show that given
v € (0,1p), almost surely, for n > 1, R, > n".

Fix A € (v,19),m € (1,2), and € € (0,1 —n"1), such that 20\ —v < 2/ —2
and C, < % By Lemma S-3, a.s., for each m large enough, there exists
J € [vm, Am] NN, such that

(S-4) Enpenty < [1=D(n7) ]n? =™
For n > 1, if M1 < n < Mpy,49, then by Lemma S-4,
1 1
(S-5) ER(T% My, My) =1/~ < iD(U‘])nkm‘

By J > vm and n > ™+, (S-5) implies R(n, M,,, Mj) > nn’/~™(1—¢) >
n”. On the other hand, by J < Am and n < n™*2, (S-5) also implies
(S-6) R(n, My, My) < np? ™™ (1 4 €) < 1= Ynr (1 + o).

It only remains to show that almost surely, for n > 1,

En:R(n,Mm,My) < Zn:R(n,Mm,My)-

If this is shown, then R,, > R(n, M,,, M) > n” and the proof is complete.
Assume that with a positive probability, §,.r(n,M,.,0,) = Zn:R(n,Mm,M,) fOT
infinitely many n. Since &,.r(n,M,n,0M5) = My f0r M1 < n < Myyyo,
by (S-4) — (5-6), almost surely, for n > 1,

[1 - D(T/J) ]UJ_m > Zn:R(n,Mm,Mj)
o B(n, My, M) 2[F(0)] (R(n, My, Mj)y

- n O F(0)¢
. 2|FO(0) , e
B J J—m _ 2(1-2) (A1)
>[1-D()/2]n a1 a)
>[1—=D(y7)/2)n"™ — Kn'A-1m,

n

where K > 0 is a constant independent of m. Thus by vm < J < Am,
n~"L(p"™) < 2K n*A=1m _Since the inequality holds for infinitely many m,
it follows that v/2 — 1 < {(A — 1), giving 20 — 2 < 2/\ — v < 20 — 2. The
contradiction finishes the proof. O

Our proof of Lemma S-3 shall be based on the Poisson representation in
Lemma S-2. We need several inequalities for Gamma distributions (cf. [7],
section 11.9).

LEMMA S-5. Given ¢,r > 1 and ¢, v € (0,1), we have
59) Pr{ U {ntsmzie ¢2crm<j>}} < c(logn)!,

J=|n"]
allm > 1.
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PRrROOF. Given n € (1,¢), let
an = max{i:n' <n"}, b, =min{i:n" >n}.

Then by, /a, — 1/v. Denote the left hand side of (S-7) by A,,. Let Z; = v;—1.
Then

—1 -
s=a, \M°TI<i<n®

bn,
A < Pr{ U {?7 max (Zp+---+ Zj) > mL(ns—l)}}

bn

< Pr { max (Zi1+--+2Zj) >V QC’I“L(US_I)}.

S=an

qs

Since EZ; = 0, by martingale inequality (cf. [1], p256, Example )
(S-8) qs < (Ee?)T exp {—0\/2crl(ns*1)} =0 any 0 € (0,1).

where f(0) = A(0) — 6+/2crD(n*~1) /n with A(0) = log(Eef%1) = —log(1 —
6) — 0. By A(0) = A’(0) = 0, and A”(0) = 1, given C € (1,¢/n), there is
0 < 6 < 1, such that for 6 € (0,0¢), A(9) < CH?/2 and so fs(0) < gs(0) =
$C602 — 07/2erD(n°~1) /n. Let 65 = C~'2erD(n*~1) /n. For n > 1, because
0s < O0c for all s =ap,a, +1,...,b,,

go < 1 F05) < @1'9s(05) — oy {_Cr log(s —Cl + log n)} <57
"

Let § =r — 1. Then

bn é
An < Z s <a%/8~ (l(gg?) (logn)~°.
v

s=an

To finish the proof, choose 7 close to 1 so that (logn)?/(61°) < e. O

We need the following lemma on moderate deviation.

LEMMA S-6. Let X1, Xo,... be iid with EX; = 0, Var(X;) = o2 > 0,
and E|X1|? < oo for any ¢ > 0. Fiz ¢ > 0. Suppose t; < cy/logj and
t; — oo, then
e—t§/2

V2mt; ’

PROOF. By Lemma A.3 in [3], Pr{X; + - + X; > ot;v/5} = (1 +
0(1))®(t;), where ®(x) = Pr{N(0,1) > z} ~ 2~ te~*"/2/\/27, as & — co. [

Pr{X;+ -+ X; >oatj\/j} = (1+0(1))

as j — 00.
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Let X; =1—~;. Then EX; = 0 and Var(X;) = 1. Then from Lemma S-6,

—t2/2

e
S-9 Priyi+ -+ <j—tjv/j} =1 +o0(1 ,
( ) r{’yl Vi > ]\/3} ( 0( ))\/ﬂt]‘

LEMMA S-7. Let e € (0,1). If L is large enough, then for any a,b,d €
(0,1) with a < b, almost surely, for m > 1 and Ny, := {L‘SmJ, there exists
J € [adm,bdm] NN such that

(Nt + -+ S ) < L7 — V2= €eL(L7)

Y Y

Proor. For convenience, for z,y € Ry, denote by U;_,, IT;_,, etc. op-

erations over j € [z,y] NN. For m > 1, let

Lm
En= {J {CNm:I—F---—FCNm:jZj+\/4+€L(j)}-
j:Laém

Then by Lemma S-5, Pr{E,,} = O(m~") for some p > 1. Choose L > 1
such that

V2 — SL(L™ — L™) — V4 + eL(L™) > V2 — eL(L™).

For m > 1 and j < m, let

bom
Am = ﬂ {CNm:l +...+ CNm:LLiJ > L — V2 — E]L(Li)}
i=adm

Aj=L" — L) — V2= SL(L7H - L7)

Gm:j = {CNm;LLJ'J_H + o+ Oy Lt > Aj} ;
bdm—1

i=adm

Then by the selection of L, Ay, \ B, C Gy, For fixed m, Gy,.5, j > 1, are
independent of each other. Therefore,

bdm—1
Pr{An\En} < [] Pr{Gmy}
j=adém
bdm—1
< H (1 —Pr {")/1 + ... +7LLj+1J7LLjJ < A]}) .

j=adm

By (S-9), given n € (0, 3¢), there is a constant C' = C(L) such that for all
j>1,

Pr {’Yl oY) S Aj} > Cj*(lfn)_
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Then for some constant Cy = Co(a, b, d,n, L),

bom—1
Pr{A,, \ En} <exp {—C’ Z jH"} <exp{-ComT}.

j=adm
As aresult, Y, Pr{4,, \ Ei,} < co. Together with Pr{E,,} = O(m™"), this
yields - Pr{4,,} < co. The lemma then follows according to Borel-Cantelli
lemma. U

PrOOF OF LEMMA S-3. Given 0 < €; < €, by Lemma S-7, there is L >
1, such that for any § € (0,1), a.s., for m > 1, there exists j € [adm, bdm]NN
with (et + o+ + Quplzs) < L — V2= e L(LY), where Nj = |L%]. Tn
particular, let § = log; 1. Then N; = M; and there is j € [am, bm|NN, such
that Cari1 + -+ + Cutpeng; <17 — V2 — €1 (7). On the other hand, by the
LIL, when m > 1, |1 + -+ + Y41 — 1" < V2 + e L(n™). By the two
inequalities and Lemma, S-2,

Erons < 7 —v2—e L(Y)
mety = T]m—\/2+61L(?7 )
=[1=V2—a D)™ (1 + o(1)).

Thus, if m > 1, then for the above j, &0, < [1— V2 —€eD(n?) /™. O

The proof of Lemma S-4 is based on two preliminary results.

LEMMA S-8. For any 0 < a < b < 1, € € (0,1), and n > 1, almost
surely, for allm > 1 and j € [am,bm] NN, we have

€l iy — 77| < 3RO T

PROOF. By a result of Csorgé and Révész (cf. [5], Theorem 1, p 616), for
uy, = 9logyn/n,

— n Uk (t) —t
lim ——  sup —nl | <2V2, as.
oo ]L(?”L) t€[un,l—un] | V t(l - t)

For j € [am,bm] NN, let t; = [n’] / [#™]. Then & m|. ;| = U*(t;). For
m > 1, t; € [up,,, 1 —un,,] for all j € [am,bm] NN and logyn™ /logan’ — 1
uniformly. Therefore, by the above inequality, given € < 3—2v/2, for m > 1,

Syt =] < VR QL@ i)
< 3D(’ )™
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The proof of the next elementary result is omitted for brevity.

LEMMA S-9.  There is 0y > 0, such that A(0,z) < 262 for all § € [0y, 00]
and x € [0,1], where A(6, ) = log(1 — x + ze?) — 2.

LEMMA S-10.  Forn > 1, let a, € (0,3) and fy(z) > 0 with

sup —— — 0.
z€lan,1/2) N

Then for alln > 1 and x € [an, 5], we have

_fﬁ(x)}_

P%g@wmwm—ﬂznm}swm{ (e

<j

ProoF. For z € (0,1), Z; := 1{¢; < x} — x are iid with EZ; = 0 and
Pr{Z;=1-2} =2 =1-Pr{Z; = —x}. Since j(Uj(z) —z) = Z1+---+ Z;,
by martingale inequality (cf. [1], p256, Example 9), for all § > 0,

Mnla) = Pr { max j(U;0) — 2) > (o)}

< exp {nA(0,x) — fu(z)0}.

By Lemma S-9, there is §p > 0, such that A(,z) < 262 for all 6 € [0, 6y] and
z € [0,1]. Then \,(z) < exp {nz6? — f,(x)0}. By the assumption, if n > 1,
then ];"T(;C) € [0,6p] for all x € [an,1/2] and hence A\, (z) < exp{—%}.

The inequality

1<j<n

Pr{ max j(z —Uj(z)) > fn(ﬂf)} < ew{—ﬁ},

can be similarly proved. Then the proof is complete. U

PROOF OF LEMMA S-4. Let

1 . j
Em = {27,’]—771 < ng:Mj < Qn]_ma am < -7 < bm} .

Denote D,,, = My, 12 — My,. For each j € [am,bm] NN, let
Mm+2

Fm;j = U {|R(n, My, Mj) - Mj - (n - Mm)ngiMj’

n:Mm+1

2 4\/Dm§Mm:Mj logQMm}'
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Because R(n, My, Mj) — Mj = ##{i = My +1,...,n: & < &pp,en; ) and
id Unif(0, 1) for i > M,, and are independent of {s,,,.ns,, by Lemma S-10,

Pr{Tpns; N Ep }

< sup Pr{ max n|U,(x) —z| > 4V Dmxlogsz}
ni—m [2<a<2ni-m 1sn<Dm

< 2e~Ho8Mm — 9(log M.,)* ~ 2(mlogn)~*,

yielding 32, 3= o< j<pm Pr{Tm;jNEm} < co. By Lemma S-8, Pr{ N7 _,, Em}
— 1 as n — 0o. Then by Borel-Cantelli lemma, almost surely, if m > 1, then
for all j € [am,bm] NN and My,11 < n < My,42, we have Eyy,,.0; < i—m,
logon™ ~ logyn?, and

R(n, My, M;) — M, _ 4\/Dm€Mm:Mj10g277m
’ n— My, Sty | S n— Mpy,
< SnL@’)
V=1
By Lemma S-8, |§ar,,,:m; — Mj/Mm’ < 3L(n?)/n™. Combining the results,
’R(TL, Mm, M]) — Mj Mj < 1177L(7’]j)
n— My, My, | — Vn—1nm"
Then
‘R(H,Mm,Mj) . Mj o n — Mm ’R(’I’L, Mm,Mj) - Mj . Mj
n M,,| n n— M, M,
~ Un(y® = 1) L(n')
N n—Inm
By L(?)/n™ = D(1?) =™, the proof is complete. O

2.3. The last statement of Theorem 2.3. By (2.10), it is apparent that
R, — oo a.s. To show V,,/R,, — [ a.s., apply the representation (S-2). For

each n > 1, sorting p1,...,pn in increasing order rearranges 7, ...,7, as
Mn:ls - - -5 NMnen- Lhen

Vi, 1 &

R, Ru%
Almost surely, p,.r, — 0 and hence p(p,,.;) — B« uniformly fori =1,..., R,.

Then from the Strong Law of Large Numbers (SLLN), V,,/R,, — (.
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2.4. Bandwidth for kernel estimation of F'(0). Because the behavior of
the BH procedure relies on F’(0), it is desirable to estimate the latter. Given
an appropriate kernel function K(¢) > 0, F'(0) can be estimated by

. 9 M € pi
S-10 F’ = — K u)
(5-10) w0 = - YK (Y
7j=1
where €1, €2, . .. are iid with Pr{e; = 1} = Pr{e; = —1} = 1/2 and nb,, — cc.
We have

PROPOSITION S-1.  Suppose for (S-10), the kernel function K is smooth
and nonnegative with bounded support, such that K(x) = K(—z) and [ K =
1. Let

()
= (};_(10))' /K(m)]w\kl dx, /1:2/K2.

1

Then the minimum MSE of F(0) is

jo \ Y0 2 1—1g
MIN MSE = (1 + o(1)) (V—) <1 a > ) nvo
0 — Mo

with the corresponding optimal bandwidth

1 1—vg 1
o[-
I 7] n+—vo
It is interesting that for the kernel estimator (S-10), the minimum MSE
is of the same order as n~*° and the optimal bandwidth is of the same order

as n*°~'. Whether there is any connection between the kernel estimation
and criticality remains to be seen.

PROOF. Because the Rademacher process €1, €2, ... and p1, po,... are in-

dependent, €1p1, €2ps, .. .are iid with density f(z) = 2F’(|z|). So the bias

of ! (0) is

BIEO0) - F0) = [ K (i) fw)do— F(0)
_ bln/K <b”i> F/(|2]) dx — F'(0)



Z. CHI/ SUPPLEMENTAL MATERIALS 16

On the other hand, the variance of F/,(0) is

M/K2 (%) f(x)de = i(1‘1‘0(1))~

nb2 nby,
Therefore, the MSE with bandwidth b, is (4207 " + (14 o(1)). Mini-
mizing over b, then finishes the proof. O
3. Proof of Theorem 2.2.

THEOREM 2.2. Suppose a € (au,1) and A = 1 — aF'(us) > 0. Let
g« =1 —ps. Then

2.8 lim + = ,  a.s.

(2:8) n v/nlogyn A

Furthermore, Ry, /n is asymptotically proportional to the power:
R, (1-—

(2.9) power,, = —- < 5 a> +0p(1) = G(uy), a.s. O
n

We first prove (2.8). By (2.9), R,/n %% p.. Then by SLLN, V,,/R, &%
(1 — m)aw. Therefore,

Ry—V, R,1-Vy./R,

power, = = N

R,1—(1—-m«

=—n-— 7= 1
n . + 0p(1)

a.s. *1_ 1_

s pll=(=ma] o

T
On the other hand,
l/a—1 F'(0) -1
N e L

Combining the above two formulas then proves (2.8).

Most of the effort will be devoted to lim,,(R,, — nps)/L(n) = —v2p.q./A,
which is equivalent to lim, —(R, — np.)/L(n) = v2p.q./A. Recall that
A =1— aF'(ap.). Then lim, (R, — np)/L(n) = v2p.«q./A will be shown

by a “time reversal” argument.

3.1. Lower bound for lim, (R, — np.)/L(n). In this section we show
lim, (R, — np«)/L(n) > —v2p.q«/A, a.s. In the following, denote

t(n,a) = |np. —al(n)], n>1, a>0.

Recall the definition of R(n,m,j) given just before Lemma S-4. We need
two lemmas.
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LEMMA S-1. If a > /2p«q./A, then there are § = 6(a) > 0 and ¢ =
c(a) > 1, such that given n € (1,c), almost surely, Enr,,.1,, < ZM,,:T,, —

oD(n™) for all m > 1, where M,, = [n™] and T,, = t(My,a). Recall
Zny = F(agj/n) for 1 <j <n.

LEMMA S-2. Given n € (1,2), define My, and T,, as in Lemma S-1.
Then almost surely, for m > 1,

|R(ny My, T /0 — T/ M| < 66V — 1D(n™).

PROOF OF LOWER BOUND. Given a > 2p.q./A2%, fix § = 6(a), ¢ = c(a) as
in Lemma S-1. Let ) € (1, ¢) such that 661/n — 1 < 4. Clearly T, /M, — px.
By Lemma S-1, almost surely, for m > 1, &1 < 20,17, — OD(0™).
On the other hand, by Taylor expansion, for all M,+1 < n < My 4o,
ZniR(n, M T) = ZMopT — |R(ny, My, Tr) /1 — T /My, |. Then by Lemma
S-2, Zp:R(n,Mm,Tyn) > #Mp T, — OD(n™), yielding

EniR(n, Mo, Ton) = EMom T < ZMn T — OD(N™) < 20 R(n, M Ton)

Thus R,, > R(n, My,,T),). Because by Lemma S-2,

R(n, My, Tp) — npy > (Tm/Mm — 66v/n — ID(y™) — p*> n
> — (a + 66V — 1) D(n™)n
> —n (a + 66vn — 1) L(n),

we get lim, (R, — np.)/L(n) > —n(a + 664/n —1). Since n > 1 and a >
V2p.q« /A are arbitrary, this then finishes the proof. O

Following Lemma S-10, it can be shown that if ¢, — oo and a € (0,1),
then for d, > 0 and 6 > 0, for all n > 1 and ¢,d, < j < an,

2
(S-1)  Pr{£(j — nU,(j/n)) > dn} < exp {_2(1 ¥ 5)??1 — j/n)} '

PROOF OF LEMMA S-1. Indeed, it suffices to choose § = d(a) = 3(aA —
V2p«q«) and ¢ = ¢(a) = %aA/\/Qp*q* + % > 1. To see this, define

Enitna) + U (t(nT; a)) B 2t(n,a)

n

Tn = )

2logk
Fn:{’l"kék’g—i, allk:Zn},

E, = {fn:t(n,a) > Znit(n,a) — 5]])(’0)} .
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Fix 0 < € < (A — v2p.q./a). Because t(n,a) — np, ~ —al(n), for n>> 1,
on E, NIy, by Taylor expansion of z,.4(n 4 = F'(at(n,a)/n) around aps,

2t(n,a) U, <t(n, a)>

n n

> F(aps) + (aF (aps) + ¢€) (t(n, a) _ p*> — 1y — 0D(n)
> pe + (aF'(apy) + 2¢) (t(”rl“) - p*) —6D(n),

> (npsx —t(n,a))(A — 2¢) — IL(n) > cvV2p.qL(n).
Then by (S-1), given n € (1,¢), for n > 1,
Pr{E,NT,} <exp {—CQIOan/n} < (logn)~°.

Consequently Yoo, Pr{Ey, N, } < co. By Borel-Cantelli lemma, almost
surely, for m > 1, either Ef, or I'j, —occurs. However, by the Bahadur-
Kiefer representation, almost surely, for all n > 1, I';; occurs. As a result,
for m > 1, Ef, occurs, i.e., {a,,.1, < 2Mp:T — 6D(0™). O

Because the proof of Lemma S-2 is very similar to that for Lemma S-4,
with M; being replaced by T),, the detail of the proof is omitted.

3.2. Upper bound for lim, (R, — np«)/L(n). In this section we show
lim, (R, — np«)/L(n) < —v2p.q./A. Together with the lower bound, this
implies lim,, —(R,, — np.)L(n) = v2p.q./A. We need two lemmas.

LEMMA S-3. If a € (0,v2psq./A), then there are 6 = §(a) > 0 and
L = L(a) > 1, such that Pr{Ey,, i.0.} =1, where
E, = {gn:t(n,a) — Zn:t(n,a) > 6]1)(”)}
and M, = |L™].

LEMMA S-4. Let E, and M,, be defined as in Lemma S-3 and T,, =
t(Mp,,a). Then there is a constant k > 0, such that

[o@)
Z Pr{Ru;,, > Tin + km, Ey,,} < 00.

m=1
PROOF OF UPPER BOUND. Let
Iy ={Rm,, >Tm+rm}.

By Lemma S-4 and Borel-Cantelli lemma, a.s., I';, U Ef, occurs for all
m > 1. By Lemma S-3, for infinitely many m, Ejs,, occurs, and hence
Ry, < T + km. Therefore, lim, (R, — np.)/L(n) < —a. Because a <
V2p.q«/A is arbitrary, the upper bound is proved. O
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The proof of Lemma S-3 is based on the following result.

LEMMA S-5. Let a € (0,v2p.q«/A). There are § = §(a) > 0 and L =
L(a) > 1, such that a.s., t,,—Uns, (tm) > A(px—tm)+O0D(M,,) for infinitely
many m, where My, = |L™|, T, = t(My,,a), and t,, = T /Mp,

PRrOOF. Let D,, = Dy, (L) = My41 — Myy,. Fix § > 0, b € (0,a), and
L > 0, such that

al + 20 < V2p.qsx,
b+ bA+ 6 > a+ al,

b\/L/(L—1)<a, and
(b+ bA + 20)L(Dy,) > (a4 aA + 6)L(Mpy1) + /3pxq:L(Mp,),
for all m > 1.

It is not hard to see such 0, b, and L indeed exist. Denote x,, = t(n,b)/n
and let

=1

Ap =Pr {nmn - E": 1{{ <zp} > (bA+ 25)L(n)} :

Given n > 0 with 2p.q. > (1 +n)(bA + 26)?, since z, — 1 {&; < z,,} are iid
with mean 0 and variance z,(1 — x,), by Lemma S-6, it can be seen that

(1+7)(bA + 26)%logyn
2z, (1 — )

)\HZexp{— }, for all n > 1.

Since x,, — ps«, there is p € (0,1), such that A, > (logn)™” for n > 1. Let

Mm+1
1—‘m = {Dmem - Z 1 {éj < xDm} > (bA + 25)L(Dm)} .
J=Mpm+1
Then T', are independent of each other and Pr{I',,} > (logD,,)* >
(mlog L)™F for all m > 1. Therefore, Y, Pr{I';,} = oo, and by Borel-
Cantelli lemma, Pr{l’,, i.0.} = 1.
Because b\/L/(L — 1) < a, for m > 1, xp,, > ty+1 and hence on Iy,

m

Mm+1
(S-2) Dpap,, — >, 1{& <tmi1} > (bA +26)L(Dp,).
Let G = {p*Mm - Z]]\iwf 1 {5] < p*} > =V 3p*Q*L(Mm)} By the LIL,

as n — 0o, Pr{ Nin>n G} — 1. Then by tp,41 < p«, almost surely, for all
m > 1,

My,
(8'3) p*Mm - Z 1 {fj < tm—l—l} > =V 3p*Q*L(Mm)

j=1
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Add (S-2) and (S-3). Observe

Dpxp,, + peMpy < peMp 1 — bL(D)y,)
< Tny1 + all(My 1) — DL(Dp) + 1.

Then by the selection of §, b, and L, for m > 1, on I';; N G,

M1

Tm+1 - Z 1 {5] < tm-‘rl}
j=1
> (b+ bA + 26)L(Dy,) — al(Mpm+1) — v/3pq:L(M,y)

> (Al + 0)L(Myns1)
> A(p*Mm—l-l - Tm+1) + 6L(Mm+1) .

Dividing both sides by M, yields

a1 = Uty (bmg1) 2 A(ps = tng1) + 0D(Miptr).

Since Pr{Tl’;,, N G, i.0.} = 1, the proof is then complete. O

PROOF OF LEMMA S-3. Let 6 = §(a) and L = L(a) as in Lemma S-5.
Fix ¢ € (0, 2%) Because t,, — ps« and t,, < ps, by Taylor expansion of F'
around apy, zar, 1, < Pst (F (apy) —€) (tm—ps) = px— (1 —A—€) (ps—tm)-
By Lemma S-5, it follows that that almost surely, for infinitely many m,

2tm — Uy, (tm) >t + A(pse — ) + 0D(M,,)
= PDx — (1 - A)(p* — tm) + (S]D)(Mm)
> ZMy T + (0/2)D(M) -

On the other hand, by the Bahadur-Kiefer representation, &ys,,.7,, = 2ty —
U, (tm) + o(D(M,,)). Combining the inequalities and redefining § as §/3,
the proof is complete. O

Lemma S-4 is based on the following result. The argument in [2] for in-
probability convergence can be modified to show the lemma. Therefore we
omit the proof for brevity.

LEMMA S-6. Given r >0, a.s., forn> 1, R, < n(p«+7).

PROOF OF LEMMA S-4. Given k > 0, let Ty, = {Ras,, > Ty + £m} N
Eyy,,. Then

I, C {ngle > ZM,,:T,, and there is j > T, + km, s.t. 5 < ZMm:j}-
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Let € € (0,A) and ¢ = aF'(ap.) + € < 1. Fix r > 0 and let I = [ap. —
2r, apy + 2r], such that |F(z) — F(y)| < c|z — y| for x,y € I. Then I, C
G U Ny, where

G = {3 € (5m, T M) ON, 8.4 Ertitn s — Ett < €/ Mom }
Non = {RMm > (ps + r/Z)Mm}
U {me:Tmﬂ' ¢ I, for some 0 < j < TMm}.

By Lemma S-6 and SLLN, Pr{U,,—, Nm} — 0 as n — oco. On the other
hand, observe that (&ar,,:7+5 — EMp:Tn, 0 < j < n —Tp,) has the same
distribution as (u,,:5, 0 < j < n —Ty,). Therefore,

I>km

Pr{Gn} < \p = Pr{ U & < cj/Mm}} .

Following the proof of Lemma S-1, it is seen that if x > 0 is large enough,
then 3, A < 00, and hence by Borel-Cantelli lemma, Pr{U,,—, Gm} — 0
as n — oo. Then almost surely, for m > 1, I'}, = {Rp,, < T + km}UE§,
occurs. By Lemma S-3, the proof is thus complete. O

3.3. Proof for lim, (R, —np.)/L(n). The upper limit of (R, —np.)/L(n)
can be deduced from an appropriate lower limit based on “time reversal”.
The idea is that R, has a bounded difference with the first index j that
satisfies &p.j > 2p.j ~ ps«. Let 7, be this first index. Then for ék =1-¢&
and ¢(z) = 1 — F(a(l — z)), R, = n — 7, is the last index satisfying
an;j < <Z~>(j/n) ~ Dy, with p, = 1 — p, a fixed point of ¢(x). Since we can
handle the lower limit of R, the upper limit for R,, can be obtained.

To complete the proof, we shall remove the condition that p, be the largest
fixed point of F'(ax) and that F' be a distribution function. Note that by
Lemma S-6, R,, can be defined as max{j > 0: &,.;; < 2,5 and [j/n—ps| < r}
for any r > 0. This makes it possible to generalize the result to any fixed
point of ¢.

LEMMA S-7. Suppose ¢ € C([0,1]) is increasing and has a fized point
ps« € (0,1) such that A =1 — ¢/'(ps) > 0. Denote g = 1 — p,. Let ¢ €
(¢'(p«), 1) and r € (0,qs) such that

d(y) — dp(x) <cly—x), if pe—71<x <y <pe+7;
c(qe +7) < qu—1.

Define R, = max{j > 0 : &,.; < ¢(j/n), and |j/n — p.| < r}, then
h_mn(Rn - np*)/L(n) =V QP*Q*/A-
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LEMMA S-8. Under the same conditions as Lemma S-7, define

min{j > 0:&,.j41 > &(j/n) and |j/n —pi| <r}, if such j exist;
Ty —
" o0, otherwise.

Then R, — 1, > 0 is stochastically bounded and there is a constant k > 0,
such that almost surely, forn>1, R, <1, + rklogn.

PROOF OF limy, (R, — np.)/IL(n) = v2p.«q./A. Let £ =1—&;. Then for
n>1land j=0,...,n+1 & =1~ &unjr1- Let ¢(z) = F(ar) and

d(x) =1—¢(1—=x). Then g, is a fixed point of ¢ such that ¢'(g.) = ¢'(ps) =
aF'(aps) < 1. Moreover,
n— 7y = max {j : &uj < 6(j/n) and [j/n—q.| <r}.

Therefore, by Lemma S-7,

. Mpe—Tn . N — Ty, — NG
lim ———= = lim ——————— = —V2p,q./A, a.s.
imoo L(n)  ase  L(n) Pede/

and hence lim,, (1, — nps)/L(n) = v2p«q«/A. Then by Lemma S-8, almost
surely, R, — 7, = O(logn) = o(LL(n)), which gives lim,,(R,, — np.)/L(n) =
V2pqi /A O

Lemma S-7 follows exactly the same argument as in last two subsections.
We therefore omit its proof.

PROOF OF LEMMA S-8. By definition, &,.;, < ¢(7,/n) and so 7, < R,,.
Let [ = (px — 7, psx + 1) and

En = {Tj/ja Rj/j7 and gj:Tj‘H el for all ‘7 2 n} ’
Given k£ > 1,

Pr{R, — 1, =k, E,}

Z Pr{R,=k+s,m =s, E,}
s: s/n, (k+s)/nel

Z Pr{ﬁn:k—&-s - gn:s-i-l < ¢((k + S)/n) - (Z)(s/n),

s s/n, (k+s)/nel

IN

Tn = S, En:‘l‘n+1 S I}

< Z Pr{§n:k+s —&nist1 < ck/n, n = S, fn:TnJrl € I}
s: s/nel
Let &}, &, L Unif(0,1) and independent of &1,&a,.... Because 7, is a
stopping time with respect to &,.1, ..., &un, conditioning on 7,, = s,

é‘n:j-l—s—}—l - fn:s—i—l: .7 > 0
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have the same joint distribution as
(1 - fn:S-i-l)g;z—s—l:j’ ] > 0.
Therefore,

Pr{R, — 1 =k, E,}

< Z Pr{gwll—s—l:k—l(l - 5n:s+1) < Ck/na Tn =8, Snist1 € I}
st s/nel

< > Pr{€_,1pa(a—7) <clge+1)k/(n—s—1)}Pr{r, = s}
s: s/nel

< sup Pr{&u-1 < k/5},
Jz(gx—r)n

where ¢ = ¢(q« +1)/(¢« — ) < 1. From Lemma S-6, Pr{E,} — 1. The
lemma then follows from almost the identical argument for the the case
a < Q. |

4. Proofs for Procedure M.

4.1. Proof of Proposition 4.1. The result involves the following conver-
gences:

)}
N}

PROPOSITION 4.1. L,(t) = R2(T, (t)) + 1 and U,(t) = R,(T,F(t)),
where

(S-1) Pl — u i=inf{z €[0,t]:t —2 < a(F(t) — F()
) PriLny = ut =sup{z € [t,1] 1z —t < (F(x) — F(t

T (1) =inf{x <t t;w - [Rz<t>—fg(x)]v1} |

(S-2)

-t _[R —R,(t)] V1
T;(t):sup{xzt:x < [Fn(2) n(t) }
a n
Therefore, Step 2 of Procedure M is the same as rejecting all nulls with
p-values in [T, (t;,), T;f (t;,)], k = 0,...,m. Furthermore, T;F () =% uF and

(S-1) holds.

PRrOOF. For (S-2), we only show L,(t) = RS(T, (t)) + 1, i.e. r, (t) =
J = Ry (t) — Ry (T, (t)). First, if J > 0, then by T,, (t) < p,,. o (T ()41 =
Pn:Re (t)—J+1 and the right continuity of R7,

a(t — Pr:Re(t)—J+1) < é(t N 3)
_ Ry~ BTz (@)1 _ ol
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If J =0, then t — pp.pot)—s41 =t — Pn:popy+1 < 0 = J/n. In either case,
by definition, 7,/ () > J. On the other hand, for j > J, pp.poy—jr1 <
PriRg(t)—J = Ppipo (T (1) < T, (t), then by the definition of 7}, (t) and j > 1,

1 [R(t) — R (Pniro()—j+)] V1 aj
a(t — Pn:Ro (t)—j+1) > - ! =

and hence r,, (t) < 7, implying r,, (t) < J.
To show (S-1), notice py.r,1)—1 < Ty, (t) < Ppir, (). Following the argu-

ment in [2], T, (t) — u™ (t). Because py.r,,(t) = Pr:La (¢ )1~ 0, the first con-
vergence in (S-1) is proved The second convergence in (S-1) can be proved
likewise. O

4.2. Proof of Theorem 4.1. Let pi(t) = F(u) — F(t), p; (t) = F(t) —
F(u; ). The theorem is stated as follows.

THEOREM 4.1. Suppose t;—aF(t;) are different from each other.
1) If pf(t;) = 0 and F'(t;) < 1/« for all i, then a.s., forn > 1, R, = 0.
Furthermore,

(Ti(o)’rg(tl)’ri(tl)""7T7:(tM*1)’r'r—l_(thl)’T'r:(l))
i} (707%17717'"77-M717TM7177:M)7 as n — oQ,

where the 7’s and T’s are independent, each T, and T following the
distribution of the last excursion time into (—oo,0) of the random walk
So =0, Sp = Sk—1 + vk — aF'(tg), with v1,72, ... @id ~ Ezp(1).

2) If pf(t;) + py (t;) > 0 for some i =0,...,M, then a.s.,

11—«

lim FDR = hm pFDR < (1 —7)a, lim power, = (
n—oo

n—oo

+a>1'[

s

where
II= max {Z[ ;(s)+p*+(8)]}~

SC{to,tm}: fus udl | igg
are disjoint for s€S

3) Suppose for each i, I; := {k >1: FR)(t;) # 0} # 0. Let £; = min I;. If
pE(t;) =0 for all i but F'(t;) = 1/« for at least one of them, then

log Ry, as. 20—2
lim FDR = lim pFDR = (1 - 7)o, ?fgi o
where ¢ = max{{; : F'(t;) = 1/a}. Additionally, a.s., for n > 1, the
set of rejected p-values consists exactly of those in [T, (t;), T (t;)] with
F'(t;) =1/a.
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We need some notations for the proof. From Proposition 4.1, Step 2 of
Procedure M is the same as rejecting all hypotheses whose p-values are in
p; € [T,y (ti,), T,f (ti,)], K = 0,...,m. Given t € [0,1], for the forward and
backward BH-type procedures Wlth reference point ¢, v, (t) = R, (T,f (t)) —
R, (t) and r, (t) = RY(t) — RS (T, (t)), and the numbers of false rejections
are Vy,(T.F (t)) — Vo (t) and V,2(t) — V.2(T,, (t)), respectively, where

Vo) =#{1<j<n:p; <z 0; =0},
Vi) =#{1<j<n:p; <z, 0; =0}

Similar to the BH procedure (S-1),

W (T (1) = Va(t)
El () V1 ] < (1=ma,

(S-3)

<(1—-m)a.

p[ L=tz
o (1) V1

Most part of Theorem 4.1 follows from the results on the BH procedure.
We will only give proof to statements that are specific to Procedure M.

PROOF OF PART 1). Following Lemma S-1, a.s., for n > 1, r, &+ (t;) <
(logn)? for all i. Then R,, = 0 by Condition 1) in Step 2.

The convergence of the joint distribution of 7;7(¢;) can be proved as fol-
lows. First, for each i, following the proof of Theorem 2.1, each 7 (¢;) con-
verges weakly to the corresponding excursion time of random walk. Second,
given € > 0 such that [t; —e, t;+€] are disjoint from each other, for n > 1, the
distribution of 7} (¢;) (resp. r,, (t;)) only depends on the p-values in [t;,t; +¢]
(resp. [ti — €,t;)). Conditioning on the numbers of p-values in these inter-
vals, 77 (t;) are independent of each other. Since the number of p-values in
each interval tends to oo, it then follows that the conditional distribution
of 75 (;) converges to its unconditional distribution. The convergence of the
joint distribution then follows. O

PROOF OF PART 2). For any ¢, if p}(¢) + p; (t) > 0, then by SLLN and
Proposition 4.1

) as, gt ) - P (1),

Vol ) = Vi(Tw M) s (3 1yt (1) — um (1)),
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Since R,, (resp. V;,) is the sum of a subset of r,(¢;) (resp. Vo (T, (t;)) —
Vo(T; (t:))), with pf(t;) + py (t;)) > 0, it then follows that limV,,/R,, <
(1 — m)a. The convergence of power can be shown following Theorem 2.2 as
well. O

PROOF OF PART 3). In this case, F'(t;) < 1/a for all i. For n > 1,
A; = [T, (t;), T, (t;)] are disjoint from each other. Therefore, Step 1 of
Procedure M includes all A; with r,,(¢;) > (logn)?. By Theorems 2.2 and
2.3, rp(t;) > (logn)? if and only if F'(t;) = 1/a. The rest of the statement
can be shown following the proof for Theorem 2.3. g
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Appendix.

Kiefer’s result on Bahadur representation. (cf. [5], section 15.1):
by [Un(6) + U3 6) 2] _
n—00 n=3/4,/log nlogyn

Hoeffding’s inequality. (cf. [1], p. 191): If X1,...,X,, are iid with a <
X1 <band FX; = u, then for all ¢ > 0,

" 2¢2
Pr{ZXk—nu > c} < exp{—m}.

k=1

,  a.s.

Bennett’s inequality. (cf. [5], p. 440): Let

N Vi
=00+t log(l+t)—t =2y ——
which is nonnegative and strictly increasing for ¢t > 0. If X ~ Bin(n,p) —np
and p € [0,1/2], then

Pr{X >z} gexp{—lﬂ <£>}, all z > 0.
- p np
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