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Abstract. A useful paradigm for multiple testing is to control error rates de-

rived from the false discovery proportion (FDP). The False Discovery Rate (FDR)

is the expectation of the FDP, which is defined to be zero if no rejection is made.

However, since follow-up studies are based on hypotheses that are actually rejected,

it is important to control the positive FDR (pFDR) or the positive false discovery

excessive probability (pFDEP), i.e., the conditional expectation of the FDP or the

conditional probability of the FDP exceeding a specified level, given that at least

one rejection is made. We first show that, unlike FDR, these two positive error

rates may not be controllable at an arbitrarily low level. Given a multiple testing

problem, there can exist positive intrinsic lower bounds, such that no procedures

can ever attain a pFDR or pFDEP level below the corresponding bound. To re-

duce misinterpretations of testing results, we then propose several procedures that

are adaptive, i.e., they achieve pFDR or pFDEP control when the target control

level is attainable, and make no rejections otherwise. The adaptive control is es-

tablished under a sparsity condition where the fraction of false nulls is increasingly

close to zero as well as under the condition where the fraction of false nulls is a

positive constant. We also demonstrate that the power of the proposed procedures

is comparable to the Benjamini-Hochberg FDR controlling procedure.

Key words and phrases. False Discovery Excessive Probability; False Discovery

Rate; Multiple Testing; Positive False Discovery Proportion; p-value; Sparsity.



1 Introduction

Traditionally, multiple hypothesis testing aims to control familywise error

rate (FWER), i.e. the probability of falsely rejecting one or more null hy-

potheses. To balance between error rate control and power, Benjamin and

Hochberg (1995) introduced false discovery rate (FDR), and established that

FDR can be controlled at any specified level by a procedure originally due

to Simes (1986), henceforth referred to as the BH procedure. Since then,

there have been considerable researches on both the theory and applications

of FDR control (cf. Benjamini & Hochberg 2000, Genovese & Wasserman

2002, 2004, 2006, Lehmann & Romano 2005, Storey 2002, 2003, Storey et

al. 2004, van der Laan et al. 2004, and references therein).

FDR is defined as the expectation of false discovery proportion (FDP),

which is the proportion of falsely rejected nulls among all the rejected ones

if there are any, and 0 otherwise. Two aspects of FDP are of interest. First,

control of FDP can be considered in terms of the false discovery excessive

probability (FDEP), which is the probability that FDP exceeds a specified

level. Several procedures have been proposed for FDEP control. For exam-

ple, Genovese & Wasserman (2006) suggested an inversion-based procedure,

and van der Laan et al. (2004) proposed an augmentation-based procedure.

These two procedures are equivalent under mild conditions (Genovese &

Wasserman 2006), and both built upon procedures that control FWER or

k-FWER (i.e. the probability of falsely rejecting at least k nulls) without

making assumptions on statistical dependency among p-values. On the other

hand, Lehmann & Romano (2005) derived step-down procedures to control

FDEP and k-FWER.

Second, FDR combines two factors: the probability of making no discov-
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ery, and the conditional expectation of FDP given that at least one discovery

is made. Storey (2002, 2003) referred to the latter as positive FDR (pFDR),

and argued that it is a more suitable error rate than FDR. By definition,

pFDR is more relevant than FDR to follow-up studies conducted once pos-

itive findings are obtained. For the same reason, it is useful to consider

positive FDEP (pFDEP), i.e. the conditional probability that FDP exceeds

a specified level given that at least one discovery is made. However, to

our knowledge, there are no previous procedures that can realize control

of pFDR or pFDEP when it is feasible. Storey (2002) proposed estimates

of FDR and pFDR for fixed rejection regions, and showed that they are

pointwise conservative. Storey et al. (2004) proved that these estimates

are simultaneously conservative for fixed rejection regions with thresholds

bounded away from 0, and that the procedure of Storey (2002) can achieve

control of FDR (but not pFDR) at any specified level.

The objective of this article is twofold: theoretically to understand the

controllability of pFDR and pFDEP, and methodologically to develop suit-

able procedures to control them. First, we establish that, given a multiple

testing problem, there exists a possibly positive lower bound β∗ on pFDR,

and, if the exceedance level for FDP is specified below β∗, there also exists

a positive lower bound on the pFDEP. Genovese & Wasserman (2002) and

Chi (2006) showed a dichotomous effect of β∗ on the BH procedure: the

number of rejections grows to ∞ or converges to a finite random variable as

the number of tested hypotheses increases, depending on whether the FDR

control level is above or below β∗/(1 − π), where π is the fraction of false

nulls being tested. As a result, the asymptotic power is positive or zero.

Given a multiple testing problem, the above lower bounds are intrinsic,

determined solely by the data-generating distribution. Therefore, no pro-
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cedure can ever attain a pFDR or pFDEP below the corresponding bound.

The existence of the bounds has serious implications. For example, the

lower bound β∗ can be arbitrarily close to 1. If, say, β∗ = 0.9, then, given a

nonempty set of rejected nulls, on average 90% of them are false rejections

whatever multiple testing procedure is used. In this situation, it seems rea-

sonable to require no rejections be made at all, in order to avoid grossly

mistaken interpretations about the results.

Because the intrinsic lower bounds are beyond control at the stage of

data analysis and generally unknown, it is futile to seek a procedure that

can control pFDR or pFDEP at any specified level. From this perspective,

we propose that a desirable procedure should be adaptive, that is, it auto-

matically achieves a specified control level whenever the level is attainable,

and avoid making any rejections otherwise.

To develop a methodology of adaptive control, we shall consider two

scenarios. In the first one, the fraction of false nulls π is known. We shall

propose procedures that are adaptive in the above sense to control pFDR and

pFDEP, respectively. In the second scenario, π is unknown. The proposed

procedures are similar to the previous ones, but with π being replaced by 0.

The procedures are still adaptive, but become conservative. On the other

hand, they can achieve adaptive control even when false nulls become sparse

in the sense that π tends to 0.

The rest of the article is organized as follows. Section 2 describes the

setup. Section 3 studies the intrinsic lower bounds on pFDR and pFDEP

and the resulting so-called “subcritical” and “supercritical” cases. Sections

4 and 5 present several adaptive pFDR or pFDEP controlling procedures

and related asymptotic results. Section 6 reports a simulation study and

an application to gene expression data. Section 7 gives concluding remarks.
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The Appendix collects selected technical details. Proofs of major theorems

can be found in the Supplemental Materials.

2 Setup

Suppose that there are n (≥ 1) null hypotheses to be tested. For 1 ≤ i ≤ n,

let ξi be the p-value associated with the ith null, and let Hi = 0 (resp. 1)

if the ith null is true (resp. false). Consider the following mixture model

(Efron et al. 2001, Genovese & Wasserman 2002, 2004, Storey 2003):

(ξ1, H1), . . . , (ξn, Hn) are iid, such that

Hi ∼ Bernoulli(π), ξi |Hi = θ ∼






Uniform(0, 1), if θ = 0,

G with density g, otherwise.

Under this model, each p-value ξi has the (marginal) distribution function

F (t) = (1 − π)t + πG(t), t ∈ [0, 1].

Formally, a multiple testing procedure is defined through a mapping

δ = (δ1, . . . , δn) : [0, 1]n → {0, 1}n,

such that the ith null is accepted ⇐⇒ δi(ξ1, . . . , ξn) = 0.
(2.1)

It follows that the set of rejected nulls is completely determined by the p-

values ξ1, . . . , ξn. As far as we know, all multiple testing procedures in the

literature are strictly based on p-values in the sense that δi = δj whenever

ξi = ξj . In other words, the decision on each null is completely determined

by its p-value regardless of the indices of the nulls.

By the meaning of p-value, it is often required for a multiple test-

ing procedure that whenever a null is rejected, all those with smaller or
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equal p-values be rejected as well. Equivalently, such a procedure can

be identified with a “threshold” function τ : [0, 1]n → [0, 1], such that

δi = 1 {ξi ≤ τ(ξ1, . . . , ξn)} for each 1 ≤ i ≤ n. Section 3 will consider

the controllability of pFDR and pFDEP under the general form (2.1). On

the other hand, the proposed procedures in Sections 4 and 5 all involve

threshold functions.

Given a multiple testing procedure, denote by R the number of rejected

nulls and V the number of rejected true nulls. A procedure is called trivial if

it makes no rejection, i.e. P (R = 0) = 1. For a nontrivial procedure, define

– False Discovery Rate: FDR = E[V/(R ∨ 1)],

– Positive false Discovery Rate: pFDR = E[V/R |R > 0],

– False Discovery Excessive Probability at FDP exceedance level α ∈
(0, 1), FDEPα = P [V/(R ∨ 1) > α],

– Positive False Discovery Excessive Probability at FDP exceedence level

α ∈ (0, 1), pFDEPα = P [V/R > α R > 0],

where a ∨ b denotes the larger one between a and b. Apparently,

FDR = pFDR × P (R > 0) , FDEPα = pFDEPα × P (R > 0).

Therefore, FDR (resp. FDEP) consists of two conceptually distinct factors:

P (R = 0), i.e. the probability of rejecting no null, and pFDR (resp. pFDEP),

as a measure of error conditional on rejecting at least one null.

A simple but important class of multiple testing procedures is to reject

all the nulls with p-values up to a fixed threshold. Let

Rt = # {i : ξi ≤ t} , Vt = # {i : Hi = 0, ξi ≤ t} , 0 ≤ t ≤ 1. (2.2)
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Note that E(Rt/n) = (1 − π)t + πG(t), and E(Vt/n) = (1 − π)t. Define

αt =
(1 − π)t

(1 − π)t + πG(t)
, βt =

1 − π

1 − π + πg(t)
, (2.3)

where α0 is taken to be β0 by continuous extension, and βt is called “local

FDR” (Efron et al. 2001, Broberg 2005). Therefore, the lowest attainable

FDR and local FDR are

α∗ = inf
0≤t≤1

αt =
1 − π

1 − π + sup0≤t≤1 G(t)/t
,

β∗ = inf
0≤t≤1

βt =
1 − π

1 − π + sup0≤t≤1 g(t)
.

(2.4)

In general, supt G(t)/t ≤ supt g(t) and α∗ ≥ β∗, because G(t)/t = g(s) for

some s ∈ [0, t] by the Mean Value Theorem. On the other hand, if G is

concave, then αt ≤ βt and both are increasing in [0, 1] (Broberg 2005), so

that α∗ ≤ β∗ and thus α∗ = β∗.

The following proposition is straightforward but fundamental:

Proposition 2.1 Let 0 < t ≤ 1. Under the mixture model,

(a) H1, . . . , Hn are independent given ξ1, . . . , ξn, and

P (Hi = 0 | ξi ≤ t) = αt, P (Hi = 0 | ξi = t) = βt, 1 ≤ i ≤ n;

(b) for 1 ≤ k ≤ n, conditioning on Rt = k, Vt follows Bin(k, αt), i.e., the

binomial distribution with k trials and success probability αt per trial.

Result (a) implies that given all the observed p-values, the probability

that an individual null is true is completely determined by its own p-value,

regardless of the others. Result (b) provides the conditional distribution of

the number of false rejections given the total number of rejections. It is the

basis for our proposed procedures in Sections 4 and 5.
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Notations. For a distribution function F , let F ∗(t) = inf{x : F (x) ≥ t},
0 < t < 1, be the corresponding quantile function. Denote by pbin(γ; n, p)

the distribution function of Bin(n, p), and by qbin(γ; n, p) the corresponding

quantile function. If n = 0 or p = 0, then Bin(n, p) is defined to be the

singular measure concentrated at 0. Denote by Φ the distribution function

of N(0, 1). Finally, adopt the convention that max ∅ = 0.

As we shall only consider in-probability asymptotics of multiple testing

procedures, the sets of nulls for different n need not be nested. Henceforth,

assume that for each n, (ξ
(n)
1 , H

(n)
1 ), . . . , (ξ

(n)
n , H

(n)
n ) are iid from a mixture

model, where π = πn and G = Gn may depend on n. Denote by ξn:1 ≤
· · · ≤ ξn:n the order statistics of the p-values.

3 Subcritical vs supercritical conditions

Given α, γ ∈ (0, 1), we say that (p)FDR is controlled at level α if (p)FDR

≤ α, and (p)FDEPα at level γ if (p)FDEPα ≤ γ. The BH procedure is

useful in that it can control FDR at any desired level α. However, several

important issues remain. To what degree can the BH procedure control

pFDR? Is there a procedure that can control pFDR at any level α? Similar

questions can be raised for pFDEPα. As seen below, the answers depend

critically on how large the level α is.

To start, consider a procedure that rejects nulls with p-values no greater

than a fixed t ∈ (0, 1). Then R = Rt, V = Vt, and by Proposition 2.1,

E(Vt/Rt |Rt = k) = αt, (3.1)

P (Vt/Rt > α |Rt = k) = 1 − pbin(αk; k, αt), (3.2)

for any k ≥ 1. Therefore, pFDR = αt is lower bounded by α∗ ≥ β∗ defined
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in (2.4). Likewise, pFDEPα is lower bounded by γ∗, where

γ∗ = γ∗(α) = 1 − max
k≥1

pbin(αk; k, α∗). (3.3)

Note that γ∗ = 0 if α > α∗, and γ∗ > 0 if α < α∗. As a result, no procedure

with a fixed rejection threshold can attain pFDR below α∗, and, if α < α∗,

no such procedure can attain pFDEPα below γ∗. In general, similar results

can be established for nontrivial multiple testing procedures.

Proposition 3.1 Under the mixture model, the following statements hold

for any nontrivial multiple testing procedure (2.1).

(a) pFDR ≥ β∗.

(b) If α < β∗, then pFDEPα ≥ 1 − maxk≥1 pbin(αk; k, β∗) > 0.

Note that the lower bounds in Proposition 3.1 are intrinsic to a multi-

ple testing problem, regardless of the procedure applied. The lower bounds

reveals an important difference between pFDR (resp. pFDEP) and FDR

(resp. FDEP): the latter can be made arbitrarily small since P (R > 0)

can be arbitrarily close to 0. This difference seems not yet well appreci-

ated in the literature. In the context of FDR control using a fixed rejection

region, Storey et al. (2004) noted that pFDR and FDR are asymptotically

equivalent, and any asymptotic results on FDR can essentially be translated

into results on pFDR directly. Nevertheless, this perspective of asymptotic

equivalence cannot generally be extended to data-dependent random rejec-

tion regions, because the presumption that P (R > 0) tends to 1 may no

longer hold. Indeed, by Proposition 3.1, any procedure that controls FDR

at level α < β∗ necessarily makes no rejection with a positive probability,

P (R = 0) = 1 − FDR

pFDR
≥ 1 − α

β∗
> 0.
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As an example, consider the BH procedure when the fraction π of false

nulls is known and incorporated (cf. (4.3)). The behavior of the proce-

dure is categorically changed when α is decreased to below β∗ (Genovese

& Wasserman 2002, Chi 2006). When α > β∗, the number of rejections

grows approximately linearly with the number of tested nulls; the pFDR is

approximately equivalent to FDR and hence is controlled at level α. When

α < β∗, the number of rejections converges in distribution to a finite random

variable that has a positive probability of being zero; meanwhile the pFDR

approaches β∗. When π is unknown, the BH procedure (4.4) has a similar

“phase transition” in its behavior, but with a higher critical value β∗/(1−π)

for α, due to the conservative estimation of an unknown π by 0.

The discussion so far has only involved the marginal distributions of

V/R and R. The next result concerns their joint distribution. It implies

that when the number n of tested nulls is large, it is essentially impossible

to have both V/R ≤ α < β∗ and R ∼ εn at the same time, no matter how

close α is to β∗ and how small ε > 0 is.

Proposition 3.2 Under the mixture model, if α < β∗, then there exists a

constant c > 0 such that, with probability one, V ≤ αR implies R ≤ c log n

for all n large enough.

Since setting the FDR or FDP exceedence level α above or below β∗ has

critical consequences for the control of false discovery proportions, we shall

distinguish between the two cases. We call the case α > β∗ subcritical and

the case α < β∗ supercritical. The critical case where α = β∗ rarely occurs

in practice and will not be considered.

In principle, when β∗ = 0, i.e. sup0≤t≤1 g(t) = ∞, any FDR or FDP

exceedence level leads to a subcritical case. However, situations where β∗ >
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0 can arise rather naturally.

Example 3.1 For 1 ≤ i ≤ n, let Xi be a test statistic with continuously

differentiable distribution function Q0 under Hi = 0, or Q1 under Hi = 1.

Suppose that for each null, rejection is made on the left tail of Xi, and the

associated p-value is ξi = Q0(Xi). Then ξi has distribution function

G(t) = P (ξi ≤ t |Hi = 1) = P (Xi ≤ Q∗
0(t) |Hi = 1) = Q1(Q

∗
0(t)),

with density function

g(t) =
Q′

1(Q
∗
0(t))

Q′
0(Q

∗
0(t))

= likelihood ratio of Q∗
0(t). (3.4)

Therefore, g is bounded on [0, 1] if and only if Q′
1(x)/Q′

0(x) is bounded on

(−∞,∞). By Proposition 3.1, we obtain

β∗ = infimum of pFDR

=
1 − π

1 − π + π × (supremum of likelihood ratio)

(3.5)

Consider the following examples of Q0 and Q1.

(1) Let Q0 be the distribution function of N(0, 1) and Q1 that of N(−a, 1),

with a > 0. Then

g(t) =
exp

{
−(Q∗

0(t) + a)2/2
}

exp {−Q∗
0(t)

2/2} = exp
{
−aQ∗

0(t) − a2/2
}

, 0 ≤ t ≤ 1,

is strictly decreasing. It is easy to see that sup0≤t≤1 g(t) = limt→0 g(t) = ∞.

Therefore, β∗ = 0.

(2) Let Q0 be the distribution function of Uniform(0, 1) and Q1 that of

Beta(1, b), with b > 1, i.e. Q1(x) = 1 − (1 − x)b, x ∈ [0, 1]. Then

g(t) = b[1 − Q∗
0(t)]

b−1 = b(1 − t)b−1, 0 ≤ t ≤ 1,

is strictly decreasing. Because sup0≤t≤1 g(t) = limt→0 g(t) = b, β∗ > 0.

10



(3) Let Q0 be the standard Cauchy distribution function and Q1 a scaled

version of Q0 with scaling factor c > 1. Then

Q0(x) =
1

2
+

arctanx

π
, Q1(x) = Q0(x/c), −∞ < x < ∞,

and

g(t) =
c

1 + (c2 − 1) sin2(πt)
, 0 ≤ t ≤ 1,

is strictly decreasing if t < 1/2 and strictly increasing otherwise. Because

sup0≤t≤1 g(t) = limt→0 g(t) = limt→1 g(t) = c, β∗ > 0.

As noted in the Introduction, the lowest attainable pFDR level β∗ can

be arbitrarily close to 1. Now this can be seen from (3.5). Indeed, if the

likelihood ratios associated with the test statistics are uniformly bounded,

then the smaller the fraction π of false nulls is, the closer β∗ is to 1. As a

result, it becomes increasingly difficult to pick true discoveries out of any

nonempty set of rejections. It is worth pointing out again that this difficulty

is not due to the design of any multiple testing procedure, but only due to

the problem itself.

In what follows, we assume G is concave on [0, 1]. By (3.4), the assump-

tion means that for each null, the smaller the associated test statistic is,

the stronger the evidence against the null. The global concavity assumption

simplifies technicalities but is not essential for our results in general. Un-

der the assumption, (1) αt ≤ βt, and both are increasing on [0, 1]; and (2)

α∗ = β∗, and both are equal to α0 = (1 − π)/(1 − π + πg(0)).

4 Procedure: fixed known fraction of false nulls

In this section, we consider the scenario where πn ≡ π ∈ (0, 1) is known,

and Gn ≡ G is unknown and has a continuous and strictly decreasing den-
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sity g. The purpose is twofold: to illustrate the basic ideas underlying the

proposed procedures, and to accommodate the possibility that the fraction

of false nulls can be found either from prior knowledge or by estimation (cf.

Benjamini & Hochberg 2000, Langaas et al. 2005, Storey 2002).

4.1 Motivation

Our procedures are motivated by the idea that (p)FDR or (p)FDEP control

can be realized by using the estimated conditional distribution of the number

of false rejections given the total number of rejections; see Proposition 2.1.

Given 0 < t < 1, if Rt > 0, then αt = (1 − π)nt/E(Rt) can be estimated

by α̂t = (1 − π)nt/Rt, with Rt in place of E(Rt). Then by (3.1) and (3.2),

E(Vt/Rt |Rt) and P (Vt/Rt > α |Rt) can be estimated respectively by

Ê(Vt/Rt |Rt) = α̂t = (1 − π)nt/Rt, (4.1)

P̂ (Vt/Rt > α |Rt) = 1 − pbin(αRt; Rt, α̂t). (4.2)

In (Storey 2002), α̂t was used as an estimate of E(Vt/(Rt ∨ 1)) and α̂t/[1−
(1− t)n] an estimate of E(Vt/Rt |Rt > 0) . The factor 1− (1− t)n is asymp-

totically 0 for fixed t > 0, and has no effect on our proposed procedures.

Consider the following idea to control (p)FDR based on the estimate

(4.1): reject the R smallest p-values, where

R = max
{

k ≥ 1 : for t = ξn:k, Ê(Vt/Rt |Rt) ≤ α
}

= max {k ≥ 1 : (1 − π)nξn:k/k ≤ α}

= max {k ≥ 1 : (1 − π)nξn:k ≤ αk} , (4.3)

with max ∅ defined to be 0. The procedure is a BH procedure with π being

known. If 1 − π is replaced by 1, it becomes the original BH procedure,
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which rejects the R smallest p-values with

R = max {k ≥ 1 : nξn:k ≤ αk} . (4.4)

Benjamini & Hochberg (2000) and Storey et al. (2004) showed that proce-

dure (4.3) has FDR = α, whereas procedure (4.4) has FDR = (1 − π)α.

Similar to (4.3), one possible way to control (p)FDEPα at level γ is as

follows: reject the R smallest p-values, where

R = max
{

k ≥ 1 : for t = ξn:k, P̂ (Vt/Rt > α |Rt) ≤ γ
}

= max {k ≥ 1 : pbin (αk; k, (1 − π)nξn:k/k) ≥ 1 − γ}

= max {k ≥ 1 : qbin (1 − γ; k, (1 − π)nξn:k/k) ≤ αk} . (4.5)

This procedure is structurally similar to procedure (4.3), except that quan-

tiles of binomial distributions are used rather than the expected values.

4.2 Modification

Because G is concave, α∗ = β∗. By Proposition 3.1, no procedure can

attain pFDR < α∗, and no procedure with FDP exceedence level α < α∗

can attain pFDEPα < γ∗. Since α∗ is unknown, the best possibility for a

pFDR controlling procedure is that it is adaptive to both subcritical and

supercritical conditions. That is, if α > α∗, the procedure attains pFDR ≤
α; and if α < α∗, it almost never makes rejections, thus indicating that the

pFDR cannot be controlled at level α. Likewise, the best possibility for a

pFDEP controlling procedure is as follows. If α > α∗ or α < α∗ but γ > γ∗,

the procedure attains pFDEPα ≤ γ; and if α < α∗ and γ < γ∗, it almost

never makes rejections.

In order to modify (4.3) and (4.5) to achieve the adaptive control, we

first need to deal with the fluctuation in α̂t if t → 0 as n → ∞. Although
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α̂t converges to αt for each fixed 0 < t < 1, the process (α̂t)0<t<1 does not

converge uniformly to (αt)0<t<1. For example, α̂ξn:1
converges in distribution

to an exponentially distributed random variable with mean α∗ rather than

to the constant α∗. To avoid such instability, we replace α̂t with

α̃t =
(1 − π)n(t ∨ ξn:kn

)

Rt ∨ kn
, where kn → ∞, kn/n → 0.

It follows that α̂ξn:kn
converges to α∗, and hence the process (α̃t)0<t<1 con-

verges uniformly to (αt)0<t<1, i.e. sup0<t<1 |α̃t − αt| → 0.

By substituting α̃t for α̂t in (4.3), we get the following adaptive pFDR

controlling procedure at target pFDR control level α.

PFDR control with known π: Reject the R smallest p-values, where

R = max

{
k ≥ 1 :

(1 − π)nξn:(k∨kn)

k ∨ kn
≤ α

}
. (4.6)

To modify (4.5) in order to control pFDEPα at level γ, in addition to the

fluctuation in αt, we also need to deal with the fluctuation in the number

of nulls. We first present a modification that correctly incorporates the

fluctuations, and then give a heuristic argument.

PFDEP control with know π: Reject the R smallest p-values, where

R = max

{
k ≥ 1 : qbin

(
Γ∗(ξn:k); k,

(1 − π)nξn:(k∨kn)

k ∨ kn

)
≤ αk

}
(4.7)

with

Γ∗(t) = Φ

(√
1 +

α − (1 − π)t

1 − α
1 {t > ξn:kn

}Φ∗(1 − γ)

)
.

Note that any kn → ∞ of order o(n) can be in (4.7) to yield the same

asymptotic behavior of the procedure. In practice, we have used kn = c log n,

with c > 0 being a constant.
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Overall, procedure (4.7) accommodates both sub- and supercritical cases

automatically. When α > α∗, R converges to a finite random variable, and

(4.7) is asymptotically identical to

R = max

{
k : qbin

(
Γ(ξn:k); k,

(1 − π)nξn:k

k

)
≤ αk

}
(4.7a)

where Γ(t) = Φ[
√

(1 − (1 − π)t)/(1 − α) Φ∗(1 − γ)] (cf. Theorems 4.2). On

the other hand, when α < α∗, R grows roughly linearly in n, and (4.7) is

asymptotically identical to (cf. Theorem 4.3)

R = max

{
k : qbin

(
1 − γ; k,

(1 − π)nξn:kn

kn

)
≤ αk

}
. (4.7b)

Heuristics. The supercritical case (4.7b) is straightforward, following the

same idea as (4.6). For the subcritical case (4.7a), it remains to be seen why

1−γ in (4.5) should be replaced with Γ(ξn:k) so that P (V ≤ αR) ≈ 1−γ. Let

θ be the correct replacement. By the definition of R, qbin(θ; R, ζn/R) ≈ αR,

where ζ = (1 − π)ξn:R. Now

{V ≤ αR} =

{
V − ζn

σR
≤ qbin(θ; R, ζn/R) − ζn

σR

}
,

where for each k, σk is the standard deviation of Bin(n, ζn/k). By normal

approximation, the second fraction on the right side converges to Φ∗(θ). On

the other hand, V is the number of true nulls with p-values no greater than

ξn:R. Loosely speaking, under the mixture model, the probability that a p-

value is no greater than ξn:R and associated with a true null is (1−π)ξn:R = ζ.

Therefore, V ∼ Bin(n, ζ), whose standard deviation is σ′ =
√

ζ(1 − ζ)n.

Because σR ≈
√

ζn(1 − ζn/R) ≈
√

ζn(1 − α),

P (V ≤ αR) ≈ P

(
V − ζn

σ′
≤

√
1 − α

1 − ζ
Φ∗(θ)

)
≈ Φ

(√
1 − α

1 − ζ
Φ∗(θ)

)
.

Therefore, if θ = Γ(ξn:R) = Γ(ζ/(1 − π)), then P (V ≤ αR) ≤ 1 − γ.
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4.3 Asymptotic results

By assumption, F (u) = (1 − π)u + πG(u) is concave on [0, 1]. The case

α ≥ 1− π is trivial since all the null hypotheses can be rejected with pFDR

= 1 − π ≤ α. For α ∈ (α∗, 1 − π), define

u∗ = u∗(α) = the unique u ∈ (0, 1) with (1 − π)u = αF (u) ,

which is a counterpart of the solution to u = αF (u) for the original BH

procedure (4.4) (Genovese & Wasserman 2002, Chi 2006).

For comparison with our procedures, Proposition 4.1 summarizes the

asymptotic behavior of the BH procedure (4.3) under the subcritical and

the supercritical conditions respectively.

Proposition 4.1 The following are true for procedure (4.3).

(a) If α ∈ (α∗, 1 − π), then, as n → ∞, R/n
P−→ F (u∗), pFDR → α, and

pFDEPα → 1/2.

(b) If α ∈ (0, α∗), then, as n → ∞, R
d→ κ, pFDR → α∗, and

pFDEPα → 1 −
∞∑

k=1

pbin(αk; k, α∗)qk,

where, letting c = α/α∗, qk = kk(1 − c)cke−kc/k!.

Our first result states that procedure (4.6) is adaptive in pFDR control.

Indeed, pFDR is asymptotically controlled exactly at the target control level

under the subcritical condition, whereas the number of rejections tends to

0 under the supercritical condition.

Theorem 4.1 (pFDR control with known π) The following are true

for procedure (4.6) as n → ∞.

16



(a) If α ∈ (α∗, 1 − π), the procedure is asymptotically identical to the BH

procedure (4.3), so that R/n
P−→ F (u∗) and pFDR → α.

(b) If α ∈ (0, α∗), the procedure is asymptotically trivial: P (R = 0) → 1.

The adaptability of the pFDEP controlling procedure (4.7) is established

next. First, in the subcritical case, the procedure can asymptotically control

pFDEPα at any specified level. In contrast, for the BH procedure (4.3), by

Proposition 4.1 (a), pFDEPα → 1/2. Second, in the supercritical case, for

procedure (4.7), R asymptotically can take at most two values, and pFDEPα

is asymptotically controlled if the specified level is attainable. In contrast,

for the BH procedure (4.3), by Proposition 4.1(b), R can take a large value

with a positive probability, and pFDEPα tends to a constant level.

Theorem 4.2 (Subcritical pFDEP control with known π) Let α∗ <

α < 1 − π and 0 < γ < 1. The following are true for procedure (4.7) as

n → ∞.

(a) R/n
P−→ F (u∗), pFDR → α, and pFDEPα → γ.

(b) The probability that (4.7) and (4.7a) are identical tends to 1.

Theorem 4.3 (Supercritical pFDEP control with known π) Let

0 < α < α∗. Define `0 = max{k ≥ 1 : qbin(1 − γ; k, α∗) ≤ αk} and

`1 = max{k ≥ 1 : qbin(1 − γ; k, α∗) + 1 ≤ αk}. The following statements

hold for procedure (4.7) as n → ∞.

(a) P (R ∈ {`0, `1}) → 1.

(b) For ` = `0, `1, V |R = `
d→ Bin(`, α∗).

(c) If γ > γ∗, then lim pFDEPα ≤ γ. If γ < γ∗, then P (R = 0) → 1.

(d) The probability that (4.7) and (4.7b) are identical tends to 1.
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We next consider the powers of the proposed adaptive procedures. Let

N0 be the total number of true nulls. Then the realized power is

ψn = (R − V )/(n − N0). (4.8)

The result below shows that the powers of procedures (4.6), (4.7) and (4.3)

are asymptotically the same. Consequently, procedures (4.6) and (4.7)

asymptotically maintains the same power as the BH procedure (4.3), but

achieves a stricter control in terms of pFDR and pFDEP.

Proposition 4.2 If α ∈ (α∗, 1−π), then ψn
P−→ G(u∗) for procedures (4.3),

(4.6), and (4.7). If α ∈ (0, α∗), then ψn
P−→ 0 for the three procedures.

5 Procedure: unknown fraction of false nulls and

increasingly sparse false nulls

We now consider the scenario where both πn and Gn are unknown, with

Gn having a continuous and strictly decreasing density. We will restrict our

discussion to pFDEP control. Similarly, pFDR control can be treated.

5.1 Description

Our approach is to modify procedure (4.7) for pFDEP control. Because

πn is unknown, we replace it with the most conservative estimate for the

fraction of false nulls, i.e., 0. Then we obtain the following procedure.

PFDEP control with unknown πn: Reject the R smallest p-values,

where

R = max

{
k : qbin

(
Γ∗(ξn:k); k,

nξn:(k∨kn)

k ∨ kn

)
≤ αk

}
(5.1)
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with kn ∼ c log n as n → ∞, where c > 0 is a constant, and

Γ∗(t) = Φ

(√
1 +

α − t

1 − α
1 {t > ξn:kn

}Φ∗(1 − γ)

)
.

Under the conditions of Theorem 5.1, any kn → ∞ of order o((log n)4) can

be used in (5.1) to yield the same asymptotic behavior of the procedure. In

practice, we have used kn ∼ c log n with c > 0 being a constant.

Similar to (4.7), procedure (5.1) adapts to both sub- and supercritical

cases. Note that, because 1−πn is not incorporated in (5.1), given the value

of α, the FDR and FDP exceedance level actually realized by the procedure

is (1 − πn)α (cf. Benjamini & Hochberg 2000, Storey et al. 2004). For this

reason, the sub- and supercritical cases need to be written as

subcritical: lim
n

α
(n)
∗ /(1 − πn) < α,

supercritical: lim
n

α
(n)
∗ /(1 − πn) > α.

(5.2)

Recall α
(n)
∗ = 1/F ′

n(0). In the subcritical case, asymptotically

R = max

{
k : qbin

(
Γ(ξn:k); k,

nξn:k

k

)
≤ αk

}
(5.1a)

where Γ(t) = Φ(
√

(1 − t)/(1 − α) Φ∗(1 − γ)). In the supercritical case,

asymptotically

R = max

{
k : qbin

(
1 − γ; k,

nξn:kn

kn

)
≤ αk

}
. (5.1b)

First, consider the scenario where πn ≡ π > 0 and Gn ≡ G. For proce-

dure (5.1), the critical value of the level α that divides the subcritical and

the supercritical cases is α∗/(1− π) due to the conservative estimation of π

by 0. This follows from a similar argument for the BH procedure (4.4) in

Genovese & Wasserman (2002) and Chi (2006).
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In the supercritical case α < α∗/(1 − π), it is straightforward to extend

Theorem 4.3: procedure (5.1) asymptotically controls pFDEPα if γ > γ∗,

and makes no rejection if γ < γ∗. In the subcritical case α > α∗/(1−π), both

the BH procedure (4.4) and procedure (5.1) asymptotically control pFDEPα,

and in fact become more conservative than the target pFDR control level α

and pFDEPα control level γ:

pFDR → (1 − π)α, pFDEPα → 0,

Such “over-control” is known for the BH procedure (4.4) (see Benjamini &

Hochberg 2000, Finner & Roters 2001, Storey 2002, Storey et al. 2004), and

can be similarly demonstrated for procedure (5.1).

Nevertheless, the over-control of pFDEP is an asymptotic behavior of

procedure (5.1), and is evident only when n is sufficiently large. In fact, the

smaller π is, the larger n has to be for the asymptotic behavior to take effect;

see Section 6. In this situation, it seems more relevant to characterize the

performance of procedure (5.1) when π is close to 0 but n is relatively not

large enough. It is also of interest to address the same question for the BH

procedure (4.4) and compare the two procedures. The approach we take is

to investigate the asymptotic behaviors when false null hypotheses become

increasingly sparse, i.e. πn → 0 as n → ∞.

5.2 Asymptotic results

The presence of sparsity raises some interesting questions (Abramovich et

al. 2006, Donoho & Jin 2004, 2005). Previous studies showed that, when

false nulls become increasingly sparse, the disparity between the null and

alternative distributions must increase accordingly in order to achieve good

estimation. The same point applies to pFDEP control as well.
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First, consider the subcritical case. Under the increasing sparsity condi-

tion, the subcritical case defined in (5.2) can be rewritten as

πn → 0, lim
n→∞

α
(n)
∗ < α. (5.3)

In order to achieve pFDEP control, some constraints are necessary on how

fast the fraction of false nulls can decrease and at the same time how fast

the disparity between the null and alternative distributions should increase.

In Theorem 5.1 below, the constraints are specified by condition (5.4). The

result reveals a significant difference between procedure (5.1) and the BH

procedure (4.4): the former asymptotically achieves exact control of pFDEP,

whereas the latter gradually fails to control pFDEP.

For each large n, let

un = the unique point u ∈ (0, 1) such that u = αFn(u).

By the concavity of Fn and condition (5.3), un is well defined for large n.

Theorem 5.1 (Subcritical pFDEP control with vanishing πn) Un-

der condition (5.3), suppose that for any λ 6= 1,

nunπ2
n

(log n)4

[
λ − Gn(λun)

Gn(un)

]2

→ ∞. (5.4)

Then the following statements hold as n → ∞.

(a) For procedure (5.1), R
P−→ ∞ and pFDEPα → γ. That is, both

FDEPα and pFDEPα are asymptotically controlled exactly at γ.

(b) The probability that (5.1) and (5.1a) are identical tends to 1.

(c) In contrast to (a), for the BH procedure (4.4), pFDEPα → 1/2.

(d) For both procedures (4.4) and (5.1), the power ψn as defined in (4.8)

satisfies ψn/Gn(un)
P−→ 1.
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As an example of condition (5.4), let Gn(u) = uθn with θn ↓ 0. Because

G′
n(0) = ∞, the procedure is always subcritical. Let c = 1/α − 1. Then

un = αFn(un) implies un = [πn/(c + πn)]1/(1−θn). From Gn(λun)/Gn(un) =

λθn → 1, θn → 0, and πn → 0, it follows that Gn(un) ∼ π
θn/(1−θn)
n and (5.4)

is equivalent to nπ
2+1/(1−θn)
n /(log n)4 → ∞. Therefore, if πn ∼ n−1/3+ε with

ε > 0, then (5.4) is satisfied.

Next consider the supercritical case where

πn → 0, lim
n→∞

α
(n)
∗ > α. (5.5)

Theorem 5.2 (Supercritical pFDEP control with vanishing πn)

Under condition (5.5), the probability that procedures (5.1) and (5.1b) are

identical tends to 1, and there is a constant K0 such that P (R < K0) → 1.

Furthermore, suppose that

lim
n→∞

α
(n)
∗ = lim

n→∞

F ∗
n(kn/n)

kn/n
< 1, (5.6)

and denote the limit by α∗. Let `0 = max{k ≥ 1 : qbin(1 − γ; k, α∗) ≤ αk}
and `1 = max{k ≥ 1 : qbin(1 − γ; k, α∗) + 1 ≤ αk}. Then the following

statements hold for procedure (5.1) as n → ∞.

(a) P (R ∈ {`0, `1}) → 1.

(b) For ` = `0, `1, V |R = `
d→ Bin(`, α∗).

(c) If γ > γ∗, then lim pFDEPα ≤ γ. If γ < γ∗, then P (R = 0) → 1.

(d) For both procedures (5.1) and (4.4), the power satisfies ψn
P−→ 0.

6 Numerical studies

In this section, we report numerical studies based on simulated data and

a set of real gene expression data to assess the proposed procedures. We
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label the procedures as CT and compare them with the BH procedure (4.4)

and the procedures proposed by van der Laan et al. (2004, VDP) and

Lehmann & Romano (2005, LR). The VDP procedure rejects the smallest

RVDP = bRHommel/(1 − α)c p-values, where b·c denotes the floor function and

RHommel = max{k : ξ1:n ≤ γ/n, · · · , ξk:n ≤ γ/(n + 1 − k)} .

The LR procedure rejects the smallest RLR p-values, where

RLR = max{k : ξ1:n ≤ γα1/Cn, · · · , ξk:n ≤ γαk/Cn}

with αk = (bαkc + 1)/(bαkc + n + 1 − k) and Cn =
∑bαnc+1

j=1 1/j. Both the

VDP and the LR procedures yield FDEPα ≤ γ under arbitrary statistical

dependency among the p-values.

6.1 Simulation study

Throughout, α = .2 and γ = .05. We examine the performances of the

procedures in terms of several quantities, including P (R > 0), pFDEPα =

P (V/R > α |R > 0), and power = E[(R − V )/(n − N0)], where N0 is the

total number of true nulls. All the quantities are computed as Monte Carlo

averages from 10000 repeated simulations.

In each simulation, the parameter π is the fraction of false nulls under the

mixture model, while the alternative distribution G is a Beta distribution

with density b(1−x)b−1. As a result, the distribution of p-values has density

(1 − π)x + πb(1 − x)b−1, and hence α∗/(1 − π) = 1/[1 + (b − 1)π].

Table 1 summarizes the simulation results for procedure (5.1) under 4

subcritical configurations, with (π, b) = (.1, 100), (.05, 199), (.02, 496), and

(.01, 991), respectively. In these configurations, the alternative distribution

G is increasingly concentrated near 0, but the fraction π of false nulls is
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Table 1: Simulation results for procedure (5.1): subcritical case, α = .2,

γ = .05. For each pair (n, kn), results are obtained for 4 different (π, b),

with π the fraction of the alternative Beta(1, b) distribution, b = 100, 199,

496, and 991, respectively. Top kn = blog nc. Bottom: kn = 2 blog nc.

π .1 .05 .02 .01 .1 .05 .02 .01

n = 2000, kn = 7 n = 20000, kn = 9

P (R > 0) .9960 .8502 .4588 .2795 1 1 1 .9951

pFDR .13 .13 .12 .12 .17 .17 .16 .15

FDR .13 .11 .054 .034 .17 .17 .16 .15

pFDEPα .011 .046 .10 .14 0 .01 .034 .045

FDEPα .011 .039 .047 .038 0 .01 .034 .045

Power .70 .48 .19 .12 .85 .83 .78 .70

n = 2000, kn = 14 n = 20000, kn = 18

P (R > 0) .9950 .8289 .3545 .1091 1 1 1 .9952

pFDR .13 .13 .13 .15 .17 .17 .16 .15

FDR .13 .11 .045 .017 .17 .17 .16 .15

pFDEPα .011 .046 .11 .20 0 .01 .034 .045

FDEPα .011 .038 .039 .022 0 .01 .034 .045

Power .70 .48 .18 .067 .85 .83 .78 .70

decreasing to 0, so that α∗/(1 − π) is fixed at 1/10.9 = .09. Recall that

procedure (5.1) involves a sequence kn ∼ c log n, with c > 0 a constant. We

apply the procedure for kn = blog nc and for 2 blog nc. Table 1 shows that

the results are similar. It also shows that procedure (5.1) controls pFDEP0.2

at level γ = .05 for all the four configurations when n = 20000, but not for

π = .01 or .02 when n = 2000. In the latter cases, π is considerably close to

0 but n is not sufficiently large for the asymptotic control to take effect. In

fact, although R → ∞ in probability as n → ∞, the probability of R = 0 is

.54 or greater for π = .01 or .02 and n = 2000.

Table 2 summarizes the simulation results for procedure (5.1) under 4
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Table 2: Simulation results for procedure (5.1): supercritical case, α =

.2, γ = .05.

π .1 .05 .02 .01 .1 .05 .02 .01

n = 2000, kn = 7 n = 20000, kn = 9

P (R > 0) 0 .0002 0 0 0 0 .0002 0

pFDR NA .30 NA NA NA NA .55 NA

FDR 0 <.0001 0 0 0 0 .0001 0

pFDEPα NA .50 NA NA NA NA 1 NA

FDEPα 0 .0001 0 0 0 0 .0002 0

Power 0 <.0001 0 0 0 0 <.0001 0

n = 2000, kn = 14 n = 20000, kn = 18

P (R > 0) 0 0 0 0 0 0 0 0

pFDR NA NA NA NA NA NA NA NA

FDR 0 0 0 0 0 0 0 0

pFDEPα NA NA NA NA NA NA NA NA

FDEPα 0 0 0 0 0 0 0 0

Power 0 0 0 0 0 0 0 0

supercritical configurations, with (π, b) = (.1, 10), (.05, 19), (.02, 46), and

(.01, 91), respectively. The distribution G is increasingly concentrated near

0 and the fraction π is decreasing to 0 as in Table 1, but α∗/(1 − π) is now

fixed at 1/1.9 = .53. In this case, it is not possible for any procedure to

control pFDEP0.1 at level γ = .05. Procedure (5.1) responds to this fact

by almost never making rejections. In fact, for each configuration of (π, b),

rejections only occur in 0–2 simulations out of 10000.

Finally, Table 3 summarizes the simulation results for procedure (5.1),

BH, VDP, and LR with (π, b) = (.05, 199) and (.05, 19). The results are

qualitatively similar under the other configurations studied in the previous

two simulations. Note that the four procedures are not strictly comparable

as they are designed for different purposes: procedure (5.1) for pFDEP con-
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Table 3: Comparison of simulation results for procedures: α = .2, γ = .05.

π = .05 CT BH VDP LR CT BH VDP LR

Subcritical n = 2000, kn = 7 n = 20000, kn = 9

P (R > 0) .8502 1 .4260 .0768 1 1 .4168 .0615

pFDR .13 .19 .084 .10 .17 .19 .091 .082

FDR .11 .19 .036 .0077 .17 .19 .038 .0051

pFDEPα .046 .39 .10 .10 .01 .22 .12 .086

FDEPα .039 .39 .044 .0078 .01 .22 .048 .0053

Power .48 .89 .0051 .0007 .83 .89 .0005 .0001

Supercritical n = 2000, kn = 7 n = 20000, kn = 9

P (R > 0) .0002 .3749 .0892 .0151 0 .3862 .0953 .0114

pFDR .30 .49 .48 .52 NA .50 .51 .49

FDR <.0001 .18 .043 .0079 0 .19 .048 .0056

pFDEPα .50 .69 .49 .52 NA .70 .52 .50

FDEPα .0001 .26 .044 .0079 0 .27 .050 .0057

Power <.0001 .0049 .0005 <.0001 0 .0005 <.0001 <.0001

trol, the BH procedure for FDR control, and the VDP and LR procedures

for FDEP control. Nevertheless, three observations are worth mentioning.

First, procedure (5.1) is adaptive, making rejections appropriately under the

subcritical configuration, and almost never under the supercritical configu-

ration. Second, the BH procedure controls the FDR at the specified level

α = 0.1, but, unlike procedure (5.1), fails to control FDEP0.1 or pFDEP0.1

under the subcritical configuration. Third, although the VDP and LR pro-

cedures are able to control FDEP for any dependency structure of the p-

values, they appear substantially less powerful than procedure (5.1) and the

BH procedure, especially in the subcritical case.
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6.2 Application to gene expression

We analyze the data reported in the study of Hedenfalk et al. (2001),

who sought to identify differentially expressed genes between breast cancer

tumors in patients who were BRCA1- and BRCA2-mutation-positive (cf.

http://research.nhgri.nih.gov/microarray/NEJM Supplement/). The

raw data consist of 3226 genes on 7 BRCA1 arrays and 8 BRCA2 arrays.

For ease of comparison, we remove the genes with measurements exceeding

20 and analyze the data for the remaining 3170 genes on the log2 scale.

First, following Storey & Tibshirani (2003), we use a two-sample t-

statistic and compute its p-value based on permutations of array labels to

test each gene for differential expression between BRCA1 and BRCA2 ar-

rays. Next, we apply procedure (5.1) as well as the BH (4.4), VDP, and

LR procedures to the resulting p-values. For this example, Storey & Tib-

shirani (2003) estimated that 67% of the genes are not differentially ex-

pressed. Based on this estimate, we also apply procedures (4.7) and (4.3)

with 1 − π ≈ .67. For all the adaptive procedures, we use kn = blog nc and

2 blog nc. We only report the results obtained with kn = blog nc. The results

obtained with kn = 2 blog nc are similar.

Figure 1 shows the number of rejections (i.e., significant genes) by the

tested procedures across a range of values of α ≤ .2 and γ ≤ .2. Each pro-

cedure declares a gene significant if the associated p-value is below a thresh-

old. Therefore, the sets of significant genes generated by the procedures are

nested within each other. Note that the procedures are based on different

criteria of controlling false discoveries and therefore are not strictly com-

parable. Compared with the BH procedures (4.4) and (4.3), the proposed

procedures (4.7) and (5.1) control the FDP in terms of excessive probability
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Figure 1: Comparison of procedures applied to gene expression data
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Left : BH and CT stand for procedures (4.4) and (5.1), respectively. Right : BH

and CT stand for procedures (4.3) and (4.7) with kn = 8, respectively, both using

1 − π ≈ .67. For γ = .2, .1 and .05, the number of significant genes are 8–10, 6–7

and 2 with VDP, and 1–5, 1–2, and 1 with LR.

rather than expectation, and therefore are stricter when it comes to labelling

genes as significant. For example, at control level α = 0.1, 221 genes are

rejected by the BH procedure (4.4), but only 125 of them are rejected by

the procedure (5.1) with pFDEP0.1 ≤ γ = .05. That is, in order to have

false discovery proportion below .1 with 95% of chance, only about 1/2 the

genes can be rejected by procedure (5.1). The nonparametric VDP and LR

procedures yield much more conservative results. Across all the range of

values of α ≤ .02 and γ ≤ .2, the VDP procedure rejects at most 10, and

the LR procedure rejects at most 5 genes. Finally, by using the estimate .67

of 1 − π instead of 1, each procedure yields more genes declared significant

at the same level of α and γ, leading to improved power.
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7 Conclusion

In many fields of science and engineering, such as genomics and imag-

ing, multiple hypothesis testing is becoming increasingly important for ex-

ploratory data analysis. The error rates pFDR and pFDEP are particularly

relevant to follow-up studies conducted once positive findings are obtained.

In this article, we investigate the controllability of pFDR and pFDEP, and

propose several adaptive procedures to control them respectively.

The work can be extended in several directions. First, our results are ob-

tained under a mixture model where p-values are independent. This simple

setting helps us in understanding the intrinsic nature of pFDR and pFDEP

and the mechanisms that can be exploited to achieve adaptive control. The

insights gained here are valuable for further investigation of the control of

pFDR or pFDEP in more general settings. A potentially important idea is

to estimate the distribution or the mean and variance of the number of false

rejections given the total number of rejections. Resampling techniques can

be employed for this purpose in multiple testing problems with dependent

p-values.

Second, we have used point estimates of pFDR and pFDEP for fixed

rejection regions to construct procedures to control pFDR and pFDEP. It

is interesting to study the variations of the point estimates, and investigate

how to incorporate interval estimates in developing more reliable procedures

(Storey 2002).

Third, the fraction of false nulls, if unknown, is underestimated by 0

in the proposed procedures. However, this fraction may be estimated from

data, and a less biased estimate may yield higher power given the same

level of control; see Benjamini & Hochberg (2000) and Storey (2002), and
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our example in Section 6.2. It is interesting to further investigate how to

estimate this fraction. It is also important to evaluate how uncertainty in

the estimate may affect the proposed procedures.
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Appendix: selected theoretical details

A1 Proof of Proposition 3.1

(a) According to (2.1), let δ = (δ1, . . . , δn) be a multiple testing procedure.

Then, given ξk = tk, k = 1, . . . , n, the set of rejected nulls is uniquely

determined. Thus R is uniquely determined as well. Because (ξ1, H1), . . . ,

(ξn, Hn) are independent, by Proposition 2.1(b), for each k,

P (Hk = 0 | ξj = tj , j = 1, . . . , n) = P (Hk = 0 | ξk = tk) = βtk ≥ β∗.

Then for t1, . . . , tn with R > 0,

E (V/R ξj = tj , t = 1, . . . , n)

= E

(
1

R

n∑

k=1

(1 − Hk) ξj = tj , t = 1, . . . , n

)

=
1

R

n∑

k=1

E(1 − Hk | ξj = tj , t = 1, . . . , n) ≥ β∗.

Take expectation over t1, . . . , tn for which R > 0. Then pFDR ≥ β∗. If G(t)

is concave, then α∗ = β∗ and hence pFDR ≥ α∗.

(b) Given R = r > 0, let ξi1 , . . . , ξir be the rejected p-values. By Proposition

2.1, Hik are independent of each other and P (Hik = 0) ≥ β∗. As a result,

30



V =
∑r

k=1(1 − Hik) dominates Z1 + . . . + Zr, where Z1, . . . , Zr are iid

∼ Bernoulli(β∗), the Bernoulli distribution with probability of 1 equal to

β∗. Therefore,

P (V > αr |R = r) ≥ P (Z1 + . . . + Zr > αr) ≥ 1 − sup
k≥1

pbin(αk; k, α).

Because the procedure is nontrivial, i.e. P (R > 0) > 0, taking expectation

over r > 0, we get P (V > αR |R > 0) ≥ 1 − supk≥1 pbin(αk; k, α). ¤

A2 Proof of Proposition 3.2

Given R = r > 1, let ξi1 , . . . , ξir be the p-values associated with rejected

nulls. As in the proof of Proposition 3.1, V stochastically dominates Z1 +

. . . + Zr, where Z1, . . . , Zr are iid ∼ Bernoulli(β∗). Then

P (V/R ≤ α |R = r, ξik , k = 1, . . . , r, are rejected p-values)

≤P (Z1 + . . . + Zr ≤ αn).

Since α < β∗, I = supt<0[αt − log E(etZ1)] > 0. On the other hand, by

Chernoff’s inequality,

P (Z1 + . . . + Zr ≤ αr) ≤ e−rI .

Because the bound is independent of ξik , we get P (V/R ≤ α |R = r) ≤ e−rI .

Therefore, given c > 0, for any n,

P (V/R ≤ α, R ≥ c log n) ≤ max
r≥c log n

e−rI ≤ n−cI .

If c > 1/I, then Pn := P (V/R ≤ α, R ≥ c log n) has a finite sum over n

and hence by the Borel-Cantelli lemma, with probability 1, for all large n,

the events that V/R ≤ α and R ≥ c log n can not happen at the same time.

This completes the proof. ¤
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A3 Sketch proofs of main theorems

Theorems 4.2 and 5.1 deal with the subcritical case. The proof of Theorem

4.2 follows closely the heuristics given in Section 4.2. The proof of Theorem

5.1 follows the same idea. The only subtle point is that the fraction of false

nulls is increasingly smaller. In order for the Central Limit Theorem (CLT)

to still apply, we need to show (1) although the number of rejections R is

o(n), it converges to ∞, and (2) the number of false rejections, V , closely

follows Bin(R, α) as n → ∞. These two facts guarantee that the argument

based on the CLT in the heuristics still holds, hence leading to the desired

convergence. Condition (5.4) will be used to establish the two facts.

Theorems 4.3 and 5.2 deal with the supercritical case. For Theorem

4.3, first, R is bounded (in probability) as n → ∞. Indeed, if R → ∞,

then by the weak law of large numbers (WLLN), it can be shown that

(1 − π)nξn:(k∨kn)/(k ∨ kn) → (1 − π)/F ′(0) = β∗. Then by (4.7), one would

have qbin(θ; R, β∗) ≤ αR, where θ > 0 is a constant. However, because

β∗ > α, by the WLLN, qbin(θ; kβ∗) = (1 + o(1))β∗k > αk as k → ∞. This

contradiction implies that R is finite. This is the main step of the proof.

Then, because kn → ∞, (4.7) is asymptotically the same as (4.7b), which

implies that R must be the largest k satisfying qbin(1− γ; k, β∗) ≤ αk. The

remaining proof of Theorem 4.3 follows from this observation. Theorem 5.2

can be proved in a similar way.

For more details of the proofs, see Supplemental Materials.
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Supplemental Materials

for “Positive false discovery proportions: intrinsic bounds and

adaptive control” by Z. Chi and Z. Tan

S1 Notations

In this Supplemental Materials, we prove the main theoretical results in the

article, i.e., Theorems 4.2, 4.3, 5.1 and 5.2. The proofs for the first two

theorems are similar to those for the other two. Since the latter ones are

more of interest to applications, they will be demonstrated in detail. The

proof of Theorems 4.2 and 4.3 will only be outlined afterwards.

The following notations will be used. If Xn and Yn are random variables,

then Xn ≥p Yn, Xn ≤p Yn, and Xn ∼p Yn denote P (Xn ≥ Yn) → 1, P (Xn ≤
Yn) → 1, and Xn/Yn

P−→ 1, respectively. The notation Xn = op(Yn) means

“|Xn| ≤p ε|Yn| for any ε > 0”, whereas Xn = Op(Yn) means “for any ε > 0,

there are M > 0 and n0 > 0, such that P (|Xn| ≥ M |Yn|) < ε for all n ≥ n0”.

Finally, when necessary, to make explicit the dependence on the number n

of tested hypotheses, we use a superscript to index a random variable. For

example, denote by R(n) the number of rejections when there are n null

hypotheses.

It will be easier to work with continuous time to prove the theorems.

For procedure (5.1), given p-values ξ
(n)
1 , . . . , ξ

(n)
n , the R

(n)
τn smallest ones are

rejected, where

τn = sup
t∈[0,1]

{
qbin

(
Γ∗(t); R

(n)
t ,

n(t ∨ ξn:kn
)

R
(n)
t ∨ kn

∧ 1

)
≤ α(R

(n)
t ∨ 1)

}
. (S1.1)

Henceforth denote

qn(t; z) := qbin
(
z; R

(n)
t , (nt/R

(n)
t ) ∧ 1

)
.
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For brevity, write τ = τn, Rt = R
(n)
t , and Vt = V

(n)
t . By the notations in

Sections 4 and 5, R = Rτ and V = Vτ . The same relationship holds for the

BH procedure (4.4), except that

τ = τn = sup {t ∈ [0, 1] : nt ≤ Rt} (S1.2)

S2 Subcritical case with increasingly sparse false

nulls

Define ηt = η(n) = nt/Rt, θt = θ
(n)
t = t/Fn(t), and ρ = 1/α − 1 > 0. Then

qn(z; t) = qbin(z; Rt, ηt ∧ 1) and by un = αFn(un),

θun = α, (πn + ρ)un = πnGn(un). (S2.1)

Suppose the subcritical condition (5.4) is satisfied. Then we have the

following lemmas.

Lemma S2.1 For procedure (5.1) and the BH procedure (4.4), τ/un
P−→ 1

and

(a)
Gn(τ)

Gn(un)

P−→ 1, (b) θτ
P−→ α, (c) ητ

P−→ α, (d)
Rτ

(log n)4
P−→ ∞.

Lemma S2.2 For both procedures, θτRτ − nτ = αRun − nun + op(
√

nun).

Lemma S2.3 For procedure (5.1), αRτ = qn(τ ; Γ(τ)) + Op(1), and for the

BH procedure (4.4), αRτ = nτ .

Let Rt− = R
(n)
t− and Vt− = V

(n)
t− be the numbers of rejected nulls and

rejected true nulls, respectively, whose p-values are strictly less than t.

Lemma S2.4 Given t ∈ (0, 1) and k > 0, for procedure (5.1), conditioning

on τ = t and Rτ− = k, Vτ− ∼ Bin(k, t/Fn(t)). The statement holds as well

for the BH procedure (4.4).
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Recall that if pn ∈ (0, 1) satisfies npn(1− pn) → ∞, then by Lindeberg’s

CLT, for Sn ∼ Bin(n, pn) and z ∈ (0, 1),

Sn − npn√
npn(1 − pn)

d→ N(0, 1),
qbin(z; n, pn) − npn√

npn(1 − pn)
→ Φ∗(z). (S2.2)

Proof of Theorem 5.1. Assume the Lemmas are true for now. We show

(a)–(d) in sequel.

(a) By Lemma S2.1, ητ
P−→ α and

nτ(1 − ητ ) = Rτητ (1 − ητ ) ∼p α(1 − α)Rτ
P−→ ∞.

Then by Lemma S2.3,

P (Vτ ≤ αRτ ) = P (Vτ ≤ qn(τ ; Γ(τ)) + Op(1)) + o(1)

= P

(
Vτ − nτ√
nτ(1 − ητ )

≤ qn(τ ; Γ(τ)) − nτ√
nτ(1 − ητ )

+ op(1)

)
+ o(1).

Since qn(τ ; Γ(τ)) = qbin(Γ(τ); Rτ , ητ ) and nτ = Rτητ , Lindeberg’s CLT

yields

qn(τ ; Γ(τ)) − nτ√
nτ(1 − ητ )

∼p Φ∗(Γ(τ)) =

√
1 − τ

1 − α
Φ∗(1 − γ) . (S2.3)

Write (Vτ − nτ)/
√

nτ(1 − ητ ) = Z1Z + Z2, where

Z1 =
Vτ − θτRτ√
θτ (1 − θτ )Rτ

, Z =

√
θτ (1 − θτ )Rτ

nτ(1 − ητ )
, Z2 =

θτRτ − nτ√
nτ(1 − ητ )

.

By Lemma S2.4, conditioning on τ = t and Rτ− = k, Vτ− ∼ Bin(k, θt).

Since Rτ − Rτ−, Vτ − Vτ− ∈ {0, 1}, and θτRτ → ∞, it follows that Z1
d→

N(0, 1). By Lemma S2.1, Z
P−→ 1. By Lemma S2.2, Z2 = Z ′

2 + op(1),

where Z ′
2 = (αRun − nun)/

√
nτ(1 − ητ ). From Fn(un) = un/α → 0, Run ∼
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Bin(n, Fn(un)), τ/un
P−→ 1, and ητ

P−→ α, it follows that

Z ′
2 =

α(Run − nFn(un))√
nFn(un)(1 − Fn(un))

√
un(1 − Fn(un))

ατ (1 − ητ )

d→
√

α

1 − α
N(0, 1)

and hence Z2
d→

√
α/(1 − α)N(0, 1).

Let U1, U2 be iid ∼ N(0, 1). We next show

(Z1, Z2)
d→ (U1,

√
α/(1 − α) U2).

Let f(x, y) = E(eixZ1+iyZ2). Then by Lemma S2.4 and CLT, for any an →
∞ and tn ∈ (0, 1), as long as anθtn(1 − θtn) → ∞,

lim
n→∞

E(eixZ1 |Rτ = an, τ = tn) = e−x2/2.

Since Z2 is a deterministic function of τ and Rτ , by Rτθτ (1 − θτ )
P−→ ∞

and dominated convergence,

E(eixZ1+iyZ2) = E(E(eixZ1+iyZ2 |Rτ , τ))

∼ e−x2/2E(eiyZ2) → exp

{
−x2

2
− αy2

2(1 − α)

}
.

Combining all the above results, it follows that

Vτ − nτ√
nτ(1 − ητ )

d→ U√
1 − α

with U ∼ N(0, 1) ,

which, together with (S2.3) and τ
P−→ 0, implies

P (Vτ ≤ αRτ ) ∼ P (U ≤
√

1 − αΦ∗(Γ(τ))) → 1 − γ.

This completes the proof of part (a).

(b) This directly follows from Lemma S2.1(d).
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(c) For the BH procedure (4.4), from (S1.2), 0 ≤ αRτ − nτ ≤ α. By

Lemma S2.2,

P (Vτ ≤ αRτ ) = P (Vτ ≤ nτ + O(1)) = P (Z1 ≤ Z2 + o(1))

with

Z1 = (Vτ − θτRτ )/
√

θτ (1 − θτ )Rτ ,

Z2 = (nτ − θτRτ )/
√

θτ (1 − θτ )Rτ .

Following the argument for part (a), (Z1, Z2)
d→ (U1,

√
α/(1 − α) U2), where

U1 and U2 are iid ∼ N(0, 1). As a result, P (Vτ ≤ αRτ ) → 1/2.

(d) From (5.4), nπn → ∞. Since n − N0 ∼ Bin(n, πn), then by the weak

law of large numbers (WLLN), (n − N0)/(nπn)
P−→ 1. By Lemmas S2.1,

S2.2, and S2.4,

Rτ

nFn(un)

P−→ 1,
Rτ − Vτ

Rτ

P−→ 1 − α.

Therefore, by (S2.1) and πn → 0,

ψn

Gn(un)
=

Rτ − Vτ

Gn(un)(n − N0)
∼p

(1 − α)nFn(un)

Gn(un)nπn
=

ρun

πnGn(un)

P−→ 1.

The proof for the BH procedure (4.4) is similar and hence is omitted. ¤

To show the lemmas, the following representation of the p-values ξ
(n)
1 ,

. . . , ξ
(n)
n will be used. Let ζ

(n)
k = Fn(ξ

(n)
k ). Then ζ

(n)
1 , . . . , ζ

(n)
n are iid

∼ U(0, 1). Let

Wt := W
(n)
t = #

{
k ≥ 1 : ζ

(n)
k ≤ t

}
, (S2.4)

so that Rt = WFn(t). Recall the following result (Shorack & Wellner 1986,

p 600). Let bn =
√

2 log log n, cn = 2 log log n+log
√

log log n− log
√

4π, and
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Zt = (Wt − nt)/
√

nt(1 − t). Then for any x ∈ (−∞,∞), as n → ∞

P

(
bn sup

t∈[0,1]
|Zt| ≥ cn + x

)
→ e−4ex

. (S2.5)

From (5.4), it can be seen that as n → ∞, nun/(log n)4 → ∞ and

√
n

(log n)2
π2

n [λGn(un) − Gn(λun)]√
un

→






∞, if λ > 1

−∞, if 0 < λ < 1.

(S2.6)

Indeed, because Gn is strictly concave, if λ > 1, (5.4) implies that

√
nun

(log n)2
πn

(
λ − Gn(λun)

Gn(un)

)
→ ∞.

Then the first limit in (S2.6) follows by (S2.1). The second limit similarly

holds.

Proof of Lemma S2.1 We will only show the Lemma for procedure (5.1).

The proof for the BH procedure (4.4) is similar.

The main part of the proof is devoted to τ/un
P−→ 1. Denote

dn =
√

n log log n, fn(t) := πnGn(t) − (πn + ρ)t.

Because Gn is strictly concave, so is fn. By (S2.1), fn(un) = 0. Also,

fn(t) >(<) 0 for t <(>) un. Given λ > 1, let vn = un/λ. On the one

hand, by (S2.2), qn(vn; Γ(vn)) ≤ nvn +
√

nvnAn, with An → Φ∗(Γ(vn)). On

the other, by (S2.5), for large n, Rvn = WFn(vn) ≥p nFn(vn)− 2dn

√
Fn(vn).

Therefore, by Fn(vn) ≤ αvn and Fn(vn) ≤ Fn(un) = un/α,

Rvn − 1

α
qn(vn; Γ(vn))

≥p n (Fn(vn) − (1 + ρ)vn) −
√

nFn(vn)/α An − 2dn

√
Fn(vn)

≥p nfn(vn) − 3dn

√
un/α.
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By πn + ρ = πnGn(un)/un,

nfn(vn) = nπn

(
Gn(vn) − πnGn(un)

un
vn

)
≥ nπn

(
Gn(un/λ) − Gn(un)

λ

)
.

Then by (S2.6), nfn(vn) − 3dn

√
un/α

P−→ ∞, yielding

αRvn − qn(vn; Γ(vn))
P−→ ∞

and hence P (τ > vn) → 1.

Now let wn = λun. Then for all t ≥ wn, Fn(t) < t/α. Similar to the

above argument, the probability that

Rt −
1

α
qn(t; Γ(t)) ≤ fn(t) + 3dn

√
Fn(t) ≤ fn(t) + 3dn

√
t/α, all t ≥ wn

tends to 1. Because fn(t) is concave, it is upper bounded by fn(wn)t/wn.

Note fn(wn) < 0. Therefore, the probability that

Rt −
1

α
qn(t; Γ(t)) ≤ fn(wn)t/wn + 3dn

√
t/α

≤
√

t/wn

(
fn(wn) + 3dn

√
wn/α

)

︸ ︷︷ ︸
xn

tends to 1. Similar to the above argument, xn → −∞ by (S2.6). Then

P (τ ≤ wn) → 1. Together with P (τ > vn) → 1 and λ > 1 being arbitrary,

τ/un
P−→ 1. Now we can show parts (a)–(d) in sequel.

(a) Because Gn is concave,

Gn(un/λ) > Gn(un)/λ, Gn(λun) < λGn(un).

Then from τ/un
P−→ 1, P (Gn(un)/λ ≤ Gn(τ) < λGn(un)) → 1 and hence

Gn(τ)/Gn(un)
P−→ 1.
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(b) Since Fn(t) = (1 − πn)t + πnGn(t), by the above results,

Fn(τ)/Fn(un)
P−→ 1.

By Fn(un) = un/α, θτ = τ/Fn(τ)
P−→ α.

(c) Given λ > 1, define vn and wn as above. By P (Rτ > Rvn) → 1 and

P (τ < wn) → 1, P (ητ < nwn/Rvn) → 1. On the other hand, since nvn →
∞, by the CLT in (S2.2), Rvn = WFn(vn) ∼ nFn(vn) and wn/Fn(vn) =

λ2vn/Fn(vn) ≤ αλ2. Then P (ητ < αλ2) → 1. Similarly, P (ητ > α/λ2) → 1.

Hence ητ
P−→ α.

(d) This follows from Rτ ≥ Rvn ∼ nFn(vn) ≥ nvn and nvn/(log n)4 → ∞.

¤

By the weak version of Hungarian construction (Shorack & Wellner 1986,

p.494), for each n, there exist a Brownian bridge B
(n)
t

d
= Zt − tZ1 and a

stochastic process r
(n)
t defined on the same probability space as ζ

(n)
1 , . . . , ζ

(n)
n ,

where Zt is a standard Brownian motion, such that supt∈[0,1] |r(n)
t | = Op(1)

and Wt = nt +
√

nB
(n)
t + r

(n)
t (log n)2.

Proof of Lemma S2.2 By Rt = WFn(t) and the Hungarian construction,

θtRt − nt =
√

nθtB
(n)
Fn(t) + (log n)2θtr

(n)
Fn(t) .

Note θun = α and by Lemma S2.1, θτ = Op(1). Since (log n)2/
√

nun → 0

and r
(n)
t is bounded, in order to show Lemma S2.2 for τ , it is enough to

show that

1√
un

[
θτB

(n)
Fn(τ) − αB

(n)
Fn(un)

]
P−→ 0.
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Write the left hand side as I1 + αI2, where I1 = (θτ − α)B
(n)
Fn(τ)/

√
un and

I2 = (B
(n)
Fn(τ) − B

(n)
Fn(un))/

√
un. Given λ > 1, since un → 0, P (τ < λun) → 1

and Fn(λun) < λFn(un) = λun/α, it is seen that |B(n)
Fn(τ)| asymptoti-

cally is dominated by supt≤λun/α |B(n)
t |, hence stochastically dominated by

supt≤λun/α |Zt| + (λun/α)|Z1|. Then B
(n)
Fn(τ)/

√
un = Op(1). By θτ

P−→ α,

I1
P−→ 0.

Similarly, letting Dn = λun − un/λ, B
(n)
Fn(τ) − B

(n)
Fn(un) asymptotically is

stochastically dominated by supt∈[0,Dn] |Zt| + Dn|Z1|. Therefore, I2 asymp-

totically is stochastically dominated by
√

λ − 1/λ supt∈[0,1] |Zt|+ op(1). Be-

cause λ is arbitrary, I2
P−→ 0. ¤

Recall that qbin(z; n, p) is increasing and left-continuous in z and p re-

spectively; for z, p ∈ (0, 1),

lim
x↓z

qbin(x; n, p), lim
x↓p

qbin(z; n, x) ∈ {qbin(z; n, p), qbin(z; n, p) + 1};

and qbin(z; n, p) ≤ qbin(z; n − 1, p) + 1.

Proof of Lemma S2.3 By the definition of τ , when τ > 0 and Rτ > 0,

for all t > τ , qn(t; Γ(t)) > αRt. If t− τ > 0 is small enough, Rt = Rτ . Since

Γ(t) is decreasing in t, qbin(Γ(τ); Rτ , nt/Rτ ) ≥ αRτ . Letting t ↓ τ then

yields qn(τ, Γ(τ)) ≥ αRτ − 1.

On the other hand, there is a sequence tj ↑ τ , such that qn(tj ; Γ(tj)) ≤
αRtj . If Rt is continuous at τ , then for large j, Rtj = Rτ and letting j → ∞
yields qn(τ, Γ(τ)) ≤ αRτ . If Rt has a jump at τ , then for large j, Rtj = Rτ−1

and letting j → ∞ yields

qbin

(
Γ(τ); Rτ − 1,

nτ

Rτ − 1

)
≤ αRτ + 1

=⇒ qbin

(
Γ(τ); Rτ ,

nτ

Rτ − 1

)
≤ αRτ + 2.
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Then qn(τ, Γ(τ)) − αRτ ≤ qbin (Γ(τ); Rτ , nτ/(Rτ − 1)) − αRτ ≤ 2.

The proof that for the BH procedure (4.4) is standard so is omitted. ¤

Proof of Lemma S2.4 Let Ft = σ(1 {ξi ≤ s} , s ∈ [t, 1], i = 1, . . . , n).

Then for t running backward from 1 to 0, Ft consist a filtration and for

both procedure (5.1) and the BH procedure (4.4), τ is a stopping time with

respect to the filtration. In particular, {τ ≥ t} ∩ {Rτ− = k} ∈ Ft. Let

i1, . . . , iRt−
be the random indices of those ξi that are strictly less than t.

By the independence of (ξ1, H1), . . . , (ξn, Hn) and Vt− = Hi1 + . . . + HRt−
,

it is not difficult to see that for any t, A ∈ Ft, k ≥ 0, and n1 < . . . <

nk, conditioning on E = {Rt− = k, i1 = n1, . . . ik = nk}, Vt− and A are

independent, i.e. P ({Vt− = v} ∩ A |E) = P ({Vt− = v} |E) × P (A |E).

Consequently, P (Vt− = v | τ = t, E) = P (Vt− = v |E). By Proposition

2.1, the right end is P (S = v), with S ∼ Bin(k, nt/Gn(t)). Since the

conditional probability does not involve n1, . . . , nk, then P (Vt− = v | τ = t,

Rt− = k) = P (S = v). ¤

S3 Supercritical case with increasing sparsity of

false nulls

Let ζ
(n)
k be defined as in (S2.4). We need two lemmas in order to prove

Theorem 5.2.

Lemma S3.1 Given p0 ∈ (0, 1), for any ε > 0,

lim
n→∞

sup
p∈[p0,1]

P (|X1,p + · · · + Xn,p − np| ≥ εn) = 0.

where for each p, X1,p, X2,p, . . . are iid ∼ Bernoulli(p).
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Lemma S3.2 If kn ≤ n satisfies kn → ∞, then

sup
kn≤k≤n

∣∣∣∣
ζn:k

k/n
− 1

∣∣∣∣
P−→ 0.

Proof of Theorem 5.2 Assume the lemmas are true for now. Fix ε > 0

such that (1 − ε)2 limn→∞ α
(n)
∗ > α. Then by condition (5.5), for n large

enough, (1 − ε)2/F ′
n(0) = (1 − ε)2α

(n)
∗ /(1 − πn) > α.

First, we show that for some K0 > 0, P (Rτ < K0) → 1. Let mn(t) =

Rt ∨ kn. Then

n(t ∨ ξn:kn
)

Rt ∨ kn
≥

nF ∗
n

(
ζmn(t)

)

mn(t)
. (S3.1)

By the selection of kn, mn(t) → ∞. Then by the convexity of F ∗
n(x) (because

Fn is concave) and Lemma S3.2,

nF ∗
n

(
ζmn(t)

)

mn(t)
≥p

F ∗
n ((1 − ε)mn(t)/n)

mn(t)/n

≥ (1 − ε)(F ∗
n)′(0) =

1 − ε

F ′
n(0)

≥ α

1 − ε
(S3.2)

and hence by Lemma S3.1, there is K0 > 0, such that for all K ≥ K0,

qbin

(
1 − γ; K,

1 − ε

F ′
n(0)

)
>

(1 − ε)2K

F ′
n(0)

> αK.

Combined with (S3.1) and (S3.2), this implies

P




⋂

t:Rt≥K0

{
qbin

(
1 − γ; Rt,

n(t ∨ ξn:kn
)

Rt ∨ kn

)
> αRt

}

 → 1.

As a result, P (Rτ < K0) → 1.

Now suppose condition (5.6) is satisfied. We show parts (a)–(d) in sequel.
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(a) Note that

Rτ = max

{
k ≥ 1 : qbin

(
1 − γ; k,

nξn:(k∨kn)

k ∨ kn
∧ 1

)
≤ αk

}

Because P (Rτ < K0) → 1 and kn → ∞, P (Rτ = R′
n) → 1, where

R′
n = max {k ≥ 1 : qbin (1 − γ; k, pn ∧ 1) ≤ αk}

with pn = nξn:kn
/kn. Since pn

P−→ α∗, by the properties of qbin as listed

before the proof of Lemma S2.3, part (a) then follows from

P (qbin(1 − γ; k, pn) ∈ {qbin(1 − γ; k, α∗), qbin(1 − γ; k, α∗) + 1}) → 1.

(b) Since Fn is concave, given Rτ = ` > 0 and τ = t, Vτ is stochasti-

cally dominated by Bin(`, (1 − πn)t/Fn(t)), but stochastically dominates

Bin(`, (1 − πn)/F ′
n(0)). Because τ

P−→ 0, (1 − πn)τ/Fn(τ)
P−→ α∗. Part (b)

therefore follows.

(c) Let Z1, Z2, . . . be iid ∼ Bernoulli(α∗). If γ < γ∗, then `0 = 0, or

else there were k > 0 such that P (Z1 + . . . + Zk ≤ αk) ≥ 1 − γ. Then

γ ≥ 1−P (Z1 + . . .+Zk ≤ αk) ≥ γ∗, which is a contradiction. It is clear that

`1 = 0. Therefore, by part (a), Rτ
P−→ 0. On the other hand, if γ > γ∗, then

`0 > 0. By part (b), P (Vτ ≤ αRτ |Rτ = `0) → P (Z1 + . . . + Z`0 ≤ α`0) ≥
1 − γ, and hence limn P (Vτ/Rτ > α |Rτ = `0) ≤ γ. The case Rτ = `1 can

be similarly shown as long as `1 > 0. This completes the proof of (c).

(d) For both procedure (5.1) and the BH procedure (4.4), in order to show

that their respective powers tend to 0, by P (R ≤ K0) → 1, it is enough to

show n − N0
P−→ ∞. Denote sn = F ∗

n(kn/n). Since Mn := #{i ≤ n : ξ
(n)
i ≤

sn, H
(n)
i = 1} ∼ Bernoulli(n, πnGn(sn)) and Mn ≤ n − N0, it is enough to
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show nπnGn(sn) → ∞. Since kn/n = Fn(sn) = (1 − πn)sn + πnGn(sn) and

sn/Fn(sn) → α∗ < 1,

πnGn(sn)

kn/n
= 1 − (1 − πn)sn

Fn(sn)
→ 1 − α∗ > 0,

yielding nπnGn(sn) ∼ (1 − α∗)kn → ∞. ¤

Proof of Lemma S3.1 It is enough to show

lim
n→∞

sup
p∈[p0,1]

P (X1,p + · · · + Xn,p > (p + ε)n) = 0, and

lim
n→∞

sup
p∈[p0,1]

P (X1,p + · · · + Xn,p < (p − ε)n) = 0.

We will only show the first limit. The second one can be shown similarly.

Clearly, when p ≥ 1− ε, P (X1,p + · · ·+ Xn,p > (p + ε)) = 0. If p < 1− ε,

then by Chernoff’s inequality, P (X1,p + · · · + Xn,p > (p + ε)n) ≤ e−nI(p),

where I(p) = supt>0 ((p + ε)t − Λp(t)), with Λp(t) = log(1 − p + pet). Since

Λp(t) is convex and Λ′
p(0) = p, I(p) > 0. It can be verified that I(p) is

continuous on [0, 1 − ε). Letting I(p) = ∞ for p ≥ 1 − ε, it follows that

infp≥p0
I(p) > 0, which implies the limit. ¤

Proof of Lemma S3.2 ξn:1, . . . , ξn:n have the same joint distribution as

(
S1

Sn+1
, . . . ,

Sn

Sn+1

)

where Sk = U1 + · · · + Uk and U1, U2, . . . are iid ∼ Exp(1). By the WLLN,

Sn+1/n
P−→ 1. Therefore, it is enough to show supk≥kn

|Sk/k − 1| P−→ 0,

which follows from the strong law of large numbers (SLLN). ¤
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S4 Nonsparse case

Proof of Theorem 4.1 The proof of part (a) is omitted because it follows

closely Genovese & Wasserman (2002). For part (b), let R′ be the number

of projections in (4.3). Then by Proposition 4.1, P (R′ > kn) → 0. Since

P (R > 0) ≤ P (R′ > kn), part (b) follows. ¤

To prove Theorem 4.2, we need the following standard result for empir-

ical processes.

Lemma S4.1 Suppose τn is a sequence of random variables taking values

in [0, 1], such that for some u ∈ (0, 1), τn
d→ u as n → ∞. Then, letting

π0 = 1 − π,

Vτn − nπ0τn√
nπ0u(1 − π0u)

d→ N(0, 1).

Following the proof for the sparse case, for procedure (4.7), define

τn = sup

{
t ∈ [0, 1] : qbin

(
Γ∗(t); Rt,

π0n(t ∨ ξn:kn
)

Rt ∨ kn
∧ 1

)
≤ α(Rt ∨ 1)

}

and for the BH procedure (4.3), define τn = sup {t ∈ [0, 1] : π0nt ≤ Rt}.
Then following the same notations, R = Rτ and V = Vτ .

The proof of Theorem 4.2 follows closely that of Theorem 5.1, so we only

give its sketch.

Proof of Theorem 4.2 (a) Following Genovese & Wasserman (2002),

τ
P−→ u∗, with u∗ ∈ (0, 1) the only positive solution to π0u = αF (u). By

the definition of R and P (ξi ≤ u∗, Hi = 1) = F (u∗), from WLLN, it follows

that R/n
P−→ F (u∗) > 0 and hence pFDR ∼ FDR = α. Furthermore, Γ∗(t)

can be replaced with Γ(t) and by Lemma S2.3,

P (Vτ ≤ αRτ ) = P

(
Vτ ≤ qbin

(
Γ(τ); Rτ ,

π0nτ

Rτ
∧ 1

)
+ Op(1)

)
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Denote the binomial quantile on the right hand side by K. Applying the

CLT to the binomial distributions, from τ
d→ u∗, it follows that

K − π0nτ√
nπ0u∗(1 − α)

∼p
K − π0nτ√

π0nτ(1 − π0nτ/Rτ )

P−→ Φ∗(Γ(u∗)) .

Combining this with Lemma S4.1 yields

P (Vτ ≤ αRτ ) → P

(√
1 − π0u∗

1 − α
Z ≤ Φ∗(Γ(u∗))

)
= 1 − γ.

(b) Since kn/n → 0 whereas R/n
d→ F (u∗) > 0, part (b) easily follows. ¤

Proof of Proposition 4.1 (a) Following the proof of Theorem 4.2 (a),

P (Vτ ≤ αRτ ) → P

(√
1 − π0u∗

1 − α
Z ≤ 0

)
=

1

2
,

where, for the BH procedure (4.3),

τ = τn = sup {t ∈ [0, 1] : π(1 − π)nt ≤ Rt} .

(b) See Chi (2006). ¤

The proof of Theorem 4.3 is almost identical to that of Theorem 5.2 and

so is omitted.

Proof of Proposition 4.2 When α ∈ (α∗, 1−π), then τ
P−→ u∗. Because

R − V = #
{

k ≤ n : Hk = 1, ξ
(n)
k ≤ τ

}
and n − N0 = # {k ≤ n : Hk = 1},

by the WLLN, ψn
P−→ P (ξ ≤ u∗ |H = 1) = G(u∗). On the other hand,

when α < α∗, then for procedures (4.6) and (4.7), by Theorem 4.1 and 4.2,

it is apparent that ψn = Op(1/n), and for the BH procedure (4.3), from Chi

(2006), ψn
P−→ 0 as well. ¤
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