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The detection of patterned spiking activity is important in the study of
neural coding. A pattern �ltering approach is developed for pattern de-
tection under the framework of point processes, which offers �exibility
in combining temporal details and �ring rates. The detection combines
multiple steps of �ltering in a coarse-to-�ne manner. Under some con-
ditional Poisson assumptions on the spiking activity, each �ltering step
is equivalent to classifying by likelihood ratios all the data segments
as targets or as background sequences. Unlike previous studies, where
global surrogate data were used to evaluate the statistical signi�cance of
the detected patterns, a localized p-test procedure is developed, which
better accounts for �ring modulation and nonstationarity in spiking ac-
tivity. Common temporal structures of patterned activity are learned us-
ing an entropy-based alignment procedure, without relying on metrics
or pair-wise alignment. Applications of pattern �ltering to single, pre-
sumptive interneurons recorded in the nucleus HVc of zebra �nch are
illustrated. These demonstrate a match between the auditory-evoked re-
sponse to playback of the individual bird’s own song and spontaneous
activity during sleep. Small temporal compression or expansion, or both,
is required for optimal matching of spontaneous patterns to stimulus-
evoked activity.

1 Introduction

In analysis of neural activity, an important problem is detection of spike
sequences with certain temporal or spatiotemporal patterns. In some situ-
ations, the pattern of interest is prespeci�ed, as exhibited, for example, by
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the activity of a neuron during sensory stimulation or motor behavior. In
general, the goal here is to recognize spiking activity of the same neuron
at a different time or in a different state that exhibits patterns similar to
the prespeci�ed one. This case is becoming increasingly important in the
study of sleep, where recent results indicate that spiking activity during re-
inforced behavioral learning or behavior that requires sensory feedback was
“replayed” in spontaneous activity during sleep (Nádasdy, Hirase, Czurkó,
Csicsvari, & Buzsáki, 1999; Dave & Margoliash, 2000; Louie & Wilson, 2001).
Results of this sort provide evidence for the role of sleep in learning and
memory consolidation that is complementary to studies of how sleep and
behavior modify the correlations between neurons (Wilson & McNaughton,
1994; Skaggs & McNaughton, 1996). This letter focuses principally on de-
tection with prespeci�ed patterns.

In other situations, no pattern is prespeci�ed. Instead, the goal is to rec-
ognize any activity pattern that occurs at a frequency above chance level.
Detection of such patterns has been important in the study of the nature of
the neural code, especially in assessing temporal and rate coding (Abeles
& Gerstein, 1988; Abeles, Bergman, Margalit, & Vaadia, 1993; Riehle, Grün,
Diesmann, & Aertsen, 1997; Date, Bienenstock, & Geman, 1998; Baker &
Lemon, 2000). Detection of “excessive” spike patterns should be a stronger
method than are correlational methods (Vaadia et al., 1995). In principle, all
possible spike sequences have to be accounted for. In practice, this can result
in a serious computational problem. To reduce the complexity of the prob-
lem, therefore, typically only sequences with a fairly small number of spikes
have been considered. This computational constraint can have serious con-
sequences in cases where coding of natural behavior is under consideration,
since target sequences can extend for many seconds of behavior and dozens,
if not hundreds, of spikes. The techniques derived in this letter are compu-
tationally ef�cient and may therefore also be of value for this second case.
Here we do not directly address this problem, however.

To detect patterned spike sequences ef�ciently and reliably, template
matching algorithms have been developed. In these algorithms, exemplar
spike sequences observed during speci�c behaviors are used as templates.
A commonly used algorithm is the “sliding sweeps” algorithm (Nádasdy
et al., 1999; Abeles & Gerstein, 1988; Abeles et al., 1993; Dave & Margoliash,
2000). In this algorithm, for each iteration, the segment within a time frame is
compared with the template by counting the number of matching spikes or
interspike intervals (ISIs). This is slow when the template has many spikes,
resulting in inef�cient detection for large data sets. Because the detection
treats matching spikes or ISIs equally, this technique is also insensitive to
the temporal variability of spikes. To expedite detection, one may instead
compare the �ring-rate functions of the data and the template by cross-
correlation (Louie & Wilson, 2001). This method requires several steps of
normalization and kernel smoothing, which makes it also insensitive to the
temporal details of spike sequences.
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In this letter, we approach the detection of spiking activity as a special
case of pattern detection for point processes. This framework provides an ef-
fective way to incorporate temporal detail and �ring rates of spiking activity
into pattern detection. It formulates the detection process as classi�cation
based on the likelihood ratio test. Under certain assumptions of the point
processes, the classi�cation is equivalent to linear convolution of the entire
data set with a �lter determined by the template. The �ltering leads to sub-
stantial computational ef�ciency, as it allows detected patterns (“targets”) to
be located by above-threshold peaks in the �lter response. The quality of the
detection critically depends on the variability of the spiking activity. This is
addressed using multiple �lters and templates and at multiple timescales.
The statistical signi�cance of the targets is evaluated by tests using short
processes to model the spiking activity around the targets. Such localized
tests address different issues than the more commonly applied tests using
long processes to model the entire data set (Abeles & Gerstein, 1988; Abeles
et al., 1993; Riehle et al., 1997; Date et al., 1998; Baker & Lemon, 2000). Finally,
in our approach, the detected targets and the templates can be compared in
their common temporal structure, after learning the temporal structure of
the templates.

We applied this approach to a small data set of single neurons recorded
in the song control nucleus HVc of sleeping zebra �nches. Sensorimotor
matching had previously been reported for neurons in the nucleus robus-
tus archistriatalis (RA), to which HVc projects (Dave & Margoliash, 2000).
Here,we demonstrate a match between each HVcneuron’s auditory-evoked
response to playback of the individual bird’s own song and the spontaneous
activity of that neuron. Investigating such matching is important for theories
that posit a role of sleep in birdsong learning (Margoliash, 2002).

Following is an overview of the main points of the �ltering approach:

1. Conditional Poisson assumption: The �ltering approachassumes con-
ditional independence for the point processes. In terms of neural activity,
this means that each �nite spike train is randomly generated by a template
or by the background, and for either case, the distribution is Poisson. By
dividing spiking activity into different categories and approximating each
with a Poisson process, the resulting “hybrid” process, which in general is
not Poisson, can provide a better model of the spiking activity than Pois-
son processes. The approach is related to the generalized Hough transform
(Rojer & Schwartz, 1992; Amit & Geman, 1999), with the key difference that
it takes into account various models for the target sequences as well as the
background.

2. Classi�cation and �ltering: A spike sequence is classi�ed as a target
instead of a background sequence only if the ratio of the corresponding
likelihoods is above threshold in all tests. By the above model, the likelihood
ratio is determined by a linear convolution of the sequence with a �lter.
The �lter not only limits the amount of temporal discrepancy, or “jitter,”
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between matching spikes, but also weighs spikes differentially, favoring
spikes with small jitter. Henceforth, this convolution will be referred to as
pattern �ltering.

3. Multiple �lters: Since each �lter is based on a reasonable but fairly
simple probability model of the spiking activity, it often detects targets that
are not very similar to the template. This limitation is addressed by mul-
tiple �lters, which implicitly induce a probability model subject to more
constraints and hence offer a better description of the spiking activity. Com-
putational ef�ciency is maintained by coarse-to-�ne detection (Fleuret &
Geman, 2001).

This approach is in contrast to using more sophisticated models. More so-
phisticated models reduce computational ef�ciency, especially when com-
plicated patterns must be detected from large data sets. Also, more sophis-
ticated models do not necessarily result in noticeable improvement in de-
tection performance, yet they suffer from potential dif�culty of parameter
estimation.

4. Multiple templates: A challenge for spike pattern detection is variabil-
ity in target sequences. Spike trains, even when associated with the same
stimulus or behavior, often exhibit variability. To allow for this, multiple
templates are used. Detection is �rst conducted using individual templates,
independently of the other templates. Then the detected targets across the
templates are combined.

5. Multiple scales: Systematic changes in spikingactivity can also present
problems. In some experimental designs, templates collected in one behav-
ioral state are used to analyze the activity in a different state. There can be
systematic differences between states in the rate that processes evolve; these
differences are not accounted for by the templates (Wilson & McNaughton,
1994; Nádasdy et al., 1999; Dave & Margoliash, 2000; Louie & Wilson, 2001).
To address this, �lters are scaled in time by varying amounts, so that se-
quences with similar patterns as the templates up to a temporal scale can
be detected.

6. Training: Some parameters in the detection process are selected by
training. In some cases, such as the spontaneous activity during sleep, one
has to account for the absence of reliably tagged spike sequences to be used
as training sets. The solution here is to train the detector using simulated
spike sequences based on biologically plausible parameters and then eval-
uate the sensitivity of the detection to the parameters.

7. Signi�cance test using simulation: Assessing the p-values of targets
poses a challenging problem, as it is dif�cult to model the probability dis-
tribution of the data. We note that the statistical signi�cance of each target
depends on only the properties of the data around it rather than the global
properties of the entire data set. Therefore, we develop “local” tests, which
use simulated spike trains based on the activity around the target. Using
local processes, it is easier to account for the rate modulation and nonsta-
tionarity of the data.
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The local tests, however, do not address questions related to the entirety
of the data. Questions such as the statistical signi�cance of the total number
of detected targets require global methods, such as random shuf�ing tests
(Abeles & Gerstein, 1988) and unitary event analysis (Grün, Diesmann, &
Aertsen, 2002a, 2002b). Thus, the local and global tests can be considered
complementary. In this letter, only local tests are considered.

8. Analysis of temporal structure of templates: If templates share a com-
mon temporal structure, this may have biological signi�cance. Such struc-
ture can be easy to �nd in cases where neuronal activity is reliable and highly
phasic (Dave & Margoliash, 2000), but it may be dif�cult to identify in cases
where neuronal activity is variable and tonic. To deal with the variability in
tonic spiking activity, an alignment procedure is developed from an infor-
mation point of view. The idea is to minimize the uncertainty in predicting
spiking events based on the empirical distributions induced by the tempo-
ral registries of the templates, hence forcing their common structure to be
aligned. This approach is substantially different from the metric or cross-
correlation-based methods, and it is based on considering the templates as
a whole rather than pairwise comparisons (Victor & Purpura, 1996; Yu &
Margoliash, 1996). In addition, the common temporal structure can provide
useful cues for selection of �lters.

2 Pattern Filtering

In this section, we develop pattern �ltering for spiking activity. The same
methodology can be established for general point processes.

2.1 Conditional Poisson Models for Spiking Activity. Since pattern
�ltering is based on a conditional Poisson assumption as described earlier,
we need to specify the distributions of background sequences and target
sequences.

For the background, the distribution is simply a Poisson process with a
constant rate. To specify the distribution of target sequences, think of them
as being generated by a template. Around each template spike, spikes are
generated with random jitter. We assume that for all the template spikes,
the spike-generating mechanism is the same, and therefore the distribution
of the jitter is the same. In addition, “noise” spikes are generated outside the
neighborhood of the template spikes. All these spikes considered together
then consist of a spike train generated by the template.

More speci�cally, denote by P. f; A/ a Poisson process on A with a rate
function f . Let S D fs1; : : : ; spg ½ [0; ¾ ] be a template and I D [x; x C ¾ ]
be a time interval. A background sequence in I is simply a sample from
P.q; I/, with q a constant. On the other hand, to generate a sequence in
I from S, �rst draw Z1; : : : ; Zp independently and identically distributed
(i.i.d.) » P. f1; .¡²; ²// for a given rate function f1 and ² > 0. Zn C sn is
a sequence in Jn :D .sn ¡ ²; sn C ²/. We take it as the set of jittered spikes
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generated by sn. The union of all Jn, J D
Sp

nD1 Jn, is the neighborhood of
the entire template. Draw X » P . f0; [0; ¾ ]nJ/, and take it as the set of noise
spikes. Finally, “insert” T0 D X [

Sp
nD1.Zn C sn/ into the interval I. The

resulting sequence T D T0 C x is a spike train generated by S in I. We will
refer to a collection of sets X, Zn as a “con�guration” for T. The likelihood
of the con�gurations, rather than the resulting spike trains, will be used in
the classi�cation.

The model incorporates the temporal detail of spiking activity around a
template spike by f1 and ² > 0, with ² being the maximum jitter of a random
spike generated by a template spike. In most cases, f1.x/ is nonconstant, and
we always assume it is nonincreasing in jxj so that the probability decreases
as the jitter increases. The above setup can be generalized to nonstationary
noise within target spike trains by allowing f0 to be a nonconstant. In this
article, however, we will use constant f0.

2.2 Classi�cation by Likelihood Ratio and Pattern Filtering. Based on
the above model, we now consider how to detect targets using one �lter.
Later we will discuss how to combine different �lters. Target detection is
achieved by classifying segments in a data spike sequence as either targets
or background sequences. For a segment T, let lo.T/ be the likelihood of T
given that it is a background sequence, and la.T/ the maximum likelihood (ML)
among all con�gurations for T, given that it is a target. Then the following
log-likelihood ratio is a natural criteria for the classi�cation,

L.T/ D log
la.T/

lo.T/
:

Note that la.T/ is not the likelihood of T and often is smaller. As a conse-
quence, L is not the difference between two rate functions. The choice of
la.T/ reduces the chance of detecting targets that are not similar to the tem-
plate. Also, it can be shown that la.T/ has a simpler form than the likelihood
of T and hence is easier to compute.

To explicitly derive L and see how the detection across a long data se-
quence T can be accomplished by �ltering, for each interval [x; x C ¾ ], let
Tx D T \ [x; x C ¾ ], where ¾ is the duration of a template S D fs1; : : : ; spg.
It is well known for Poisson processes that lo.Tx/ D qn expf¡q¾ g. On the
other hand, by the independence assumption in the model, la.Tx/ D Q0 £Q,
where Q0 is the likelihood of the noise spikes in Tx and Q the ML of the
jittered spikes generated by the template spikes. With J D

S
k.sk ¡ ²; sk C ²/,

let the background function B and the time window function K be

B.x/ D
»

log. f0.x/=q/ if x 62 J
0 otherwise;

K.x/ D
»

log. f1.x/=q/ if x 2 .¡²; ²/

0 otherwise;
(2.1)
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Figure 1: Construction of a �lter. K.x/ is a function de�ned on .¡²; ²/. S is an
exemplar spike sequence. In this case, it happens that B.x/ ´ K.²/ D K.¡²/. The
�lter F is plotted as the dark curve.

respectively, and F.x/ D F.xI S/ as a function on [0; ¾ ], such that (see Fig-
ure 1),

F.x/ D
»

maxs2S K.x ¡ s/ if x 2 J;
B.x/ otherwise:

(2.2)

Regard T D ftng as a series of ± functions, that is, T.t/ D
P

±.t ¡ tn/ (Rieke,
Warland, de Ruyter van Steveninck, & Bialek, 1997). Then

L.Tx/ D R.x/ C C; for any x; (2.3)

where C is a constant independent of S and x, and

R.x/ D R.xI S; T/ D
Z ¾

0
F.¿ /T.x C ¿ / d¿:

Therefore, as x runs across T, up to a constant, L.Tx/ consists of a linear
convolution of T. Thus, targets can be ef�ciently detected using �ltering
instead of class�cation segment by segment. The proof of equation 2.3 is
given in the appendix.

In practice, we select K and B by hand. We use local peaks in the �lter
response R.x/ to detect targets. Given prespeci�ed µ > 0 and r > 0, �nd all
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temporal points x1; : : : ; xL satisfying

(Local maximum) R.xj/ ¸ R.x/; x 2 .xj ¡ r; xj C r/ (2.4)

(Above threshold) R.xj/ ¸ µ: (2.5)

The spike sequences in [xj; xj C ¾ ] are considered potential targets.
The �ltering also applies to multiple point sequences, such as simulta-

neous activity of multiple neurons (Chi, 2003). Suppose S D .S1; : : : ; Sp/

is a set of spike sequences simultaneously recorded from p neurons in the
time interval [0; ¾ ]. Let Fk.x/ D F.xI Sk/. Given a simultaneous recording
T D .T1.x/; : : : ; Tp.x// from the same set of neurons, segments in T with
spatiotemporal pattern similar to S are located by equations 2.4 and 2.5,
with

R.x/ D
Xp

kD1

Z ¾

0
Fk.x/Tk.x C ¿ / d¿:

It can be shown that both the sliding sweeps algorithm and cross-corre-
lation are special cases of linear convolution. One can choose K.x/ D 1 and
B.x/ D ¡M for large M > 0 to achieve the same effect as the sliding sweeps
algorithm. Cross-correlation is essentially convolution of the recti�ed spike
counts of the data sequence with that of the template.

3 Multiple Pattern Filtering Procedures

As we argue in section 1, to improve the detection of spiking activity, mul-
tiple pattern �lters, templates, and temporal scales can be incorporated.
Figure 2 illustrates how the detection process proceeds. For each template
Sn, every segment of the data sequence T is matched with it using several
types of �lters, one after another. If the response of the segment to one of the
�lters is subthreshold, it is classi�ed as a background sequence and will not
be treated by subsequent �lters. To account for time scaling in the activity,
the segment is matched with the template at different time scales. The out-
puts associated with the template, therefore, are segments that match the
template at some time scale. Among the segments, only those with small p-
values under a test P at the end of the channel are output as targets. Finally,
because a segment may be detected multiple times, by �lters associated with
different templates, the target outputs from the channels are combined, so
that only one is chosen from overlapping targets.

Throughout the analysis, detection, training, and signi�cance testing fol-
low the same protocols. For all the templates, the associated �lters are con-
structed with the same time windows and background functions and are
scaled by the same set of factors. Likewise, training for different templates
results in different parameter values. The variability of the templates thus
is incorporated throughout the detection process. This makes the process
more robust to variability, a desirable property for pattern detection.
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Figure 2: Detection by multiple templates, �lters, at multiple scales. T is a data
spike sequence. Sk are templates, for all of which the same set of window and
background functions are used to contruct pattern �lters. Fkm are �lters con-
structed from Sk, using the mth window function and background function. µkm

are associated thresholds. Only segments in T with above-threshold response
to Fkm are considered potential targets. cs are scaling factors applied to all Sk . Pk

are signi�cance tests on targets detected by �lters for Sk. Only targets with high
signi�cance are kept. To avoid overcounting, D is a procedure to choose only
one target from each set of overlapping targets detected across the channels.

3.1 Detection at Multiple Levels

3.1.1 Multiple Filter Types. A pattern �lter enforces some constraints on
the statistical assumptions regarding spiking activity. As long as the �lter
is constructed based on empirical evidence, the constraints are biologically
plausible. Multiple �lters induce more constraints, which may lead to a
more realistic probability model of spiking activity and, hence, better de-
tection. The resulting model is only implicitly speci�ed; however, it allows
for ef�cient computation for detection.

Given a template, using different time window and background func-
tions, multiple �lters can be constructed from the template. The square
window function,

K.x/ D 1.¡²;²/.x/ D
»

1 if x 2 .¡²; ²/

0 otherwise;
(3.1)

and B.x/ ´ 0 are among the simplest choice. One may also apply other time
window and background functions for a �lter, such as

K.x/ D
» 1

2 .1 ¡ ¯/ C 1
2 .1 C ¯/ cos ¼x

²
; if x 2 .¡²; ²/

¡¯ otherwise
;

B.x/ ´ ¡¯; ¯ ¸ 0: (3.2)

K essentially is a Hamming window. Filters made from equation 3.2 are
continuous and nonconstant around template spikes. Another reasonable
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choice includes “cropped” versions of K,

NK.x/ D min.®; K.x//; ® 2 .0; 1/; (3.3)

which can be thought of as mixtures of square windows and Hamming
windows.

Computational ef�ciency is maintained if the �lters are applied in a
coarse-to-�ne manner (see Figure 2). To detect targets, the �rst �lter is ap-
plied to the entire data spike sequence to detect segments with bare sim-
ilarity to the template. In actual computation, this step is fast, requiring
convolving the �lter and the data, both discretized only at a coarse reso-
lution. Subsequent �lters are used only for the detected segments. In these
steps, the �lter and the segments are discretized at �ner resolution. Any
segment that yields a below-threshold response is classi�ed as background
and is excluded. Since the total duration of the segments is much shorter
than the entire sequence, the subsequent steps of �ltering are also fast.

3.1.2 Multiple Scales. Spiking activity often exhibits across-trial nonsta-
tionarity, which is different from across-time nonstationarity (Chi & Mar-
goliash, 2001; Grün et al., 2002a). A remarkable type of across-trial nonsta-
tionarity is temporal scaling, which is observed across different states of
the brain (Nádasdy et al., 1999; Dave & Margoliash, 2000; Louie & Wilson,
2001). To take this into account in the detection process, we use �lters scaled
in time at several levels.

To detect targets in T at a time scale c, for each �lter F, use Rc.x/ DR ¾
0 F.c¿ I S/T.xC¿ / d¿ in place of equation 2.3. To account for the scaling, the

radius r in equation 2.4 is changed to cr, while the threshold µ in equation 2.5
remains the same.

The coarse-to-�ne multiscale procedure is summarized as follows. Given
a template of duration ¾ , suppose M �lters are applied, with corresponding
thresholds µ1; : : : ; µM, and the detection is conducted at D time scales. Then,
for each scale cn,

Filter T by F1.cnt/ to get R1
Ln Ã fx : R1.x/ ¸ µ1; and R1.x/ ¸ R1.t/,

for any t 2 .x ¡ cnr; x C cnr/g
for m D 2; : : : ; M

for x 2 Ln
Filter T \ [x ¡ cnr; x C cn¾ C cnr] by Fm.cnt/ to get Rm
Remove x from Ln if Rm.t/ < µm for all t

Output Ln

(3.4)

3.1.3 Multiple Templates. The conditional Poisson model describes the
variability of spike sequences resulting from small random perturbations of
a template. On a more global scale, there can be variability across the tem-
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plates that is not accounted for by the Poisson model. When this happens,
multiple templates should be incorporated.

Suppose M pairs of time window and background functions .Km; Bm/

are given. Then for template Sn, n D 1; : : : ; N, we repeat the detection,
equation 3.4, using �lters F.n/

m constructed from Sn and .Km; Bm/. The target
sets associated with different templates are combined (see section 3.4). For
each template, the thresholds are set relatively high, so only a small number
of segments can be detected. Thus, the detection for each template is quite
speci�c. However, with many templates being incorporated, the overall
detection covers a reasonably wide range of target activity.

Detection is faster using mean �lters QFm D 1
N

PN
nD1 F.n/

m for each pair
.Km; Bm/. However, since the average �lters do not represent the variability
of the templates, this approach has the same drawback as the detection
using only a single template. Thus, we do not advocate using mean �lters.

3.2 Training. The goal of training is to select thresholds for �lter re-
sponses in order to calibrate the detection. For each �lter, the threshold de-
pends on the responses of two training sets: one consisting of background
activity and the other target activity. In principle, both should be sampled
under similar conditions (i.e., behavioral states); for example, if the �lter
is meant to detect replayed patterns in spontaneous activity during sleep,
the training data should consist of such activity. The problem is that unlike
in supervised learning, often there is no reliable way to tag the sample ac-
tivity as background or targets. As an alternative, simulated sequences are
substituted as training data.

To simulate the responses of background activity to a �lter F, sequences
sampled from a homogeneous Poisson process of the same duration as the
corresponding template are convolved with F. The rate of the process is the
average �ring rate of a long neuronal trace recorded from the same state as
the data spike sequence, which is reasonable when targets are rare events.
For each sample, register the peak value of its convolution with F. Then let
®.F/ D the 99th percentile of the peak values.

To simulate the responses of target activity to F, randomly modi�ed tem-
plates are used as simulated targets. Given a template S, a simulated target
is generated in four steps:

1. Random deletion of each spike in S with a small probability.

2. Random shift of each remaining spike in S by distance x » N.0; ±/.

3. Add a sample from a Poisson process with low density to S as noise
spikes.

4. Random scaling of S by e¡» , with » » Uniform.¡²; ²/.

Given a percentile ¼ ¸ 50 only depending on the time window and
background functions used by F, let SF be the set of the peak responses to
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F of the simulated targets. Let ¯.F/ D the ¼th percentile of SF. Then the
threshold for F is chosen to be

µ D µ .F/ D maxf®.F/; ¯.F/g: (3.5)

This threshold is high enough to exclude most of the background activity
and to ensure that the detected targets are similar to the template.

3.3 Signi�cance Test. It is often the case that the average �ring rate
around a target is signi�cantly different from the average �ring rate across
the data sequence. This raises the possibility that some targets might be
artifacts generated by short episodes, which have constant but signi�cantly
different �ring rates from their surroundings. This possibility cannot be
ruled out by pattern �ltering. To control for it, some statistical test of the
signi�cance of the targets is needed.

Suppose the sequence in [t0; t1] is detected. To test whether the target
is just a segment of constant rate activity, the following procedure is con-
ducted,

1. Calculate the average �ring rate r within an interval J containing
[t0; t1].

2. Sample N sequences from a Poisson process with density r on J, with
N À 1.

3. For each sampled sequence, repeat the same detection procedure
across all timescales.

4. Count the number n of sequences in which targets are detected at any
of the scales.

5. Output p D n=N as the p-value under the null hypothesis.

To account for the physiological limit of a neuron, in actual implementa-
tion, before step 3, spikes with temporal distance from preceding spikes less
than a certain value are deleted from the sampled sequences. The modi�ed
sequences are not random samples from a Poisson process anymore, but
still are derived from a process with a constant �ring rate.

3.4 Ambiguity Solving. If the templates are exactly the same, then at
a given temporal scale, the detected targets should be the same across the
templates. Due to the variability of the templates, targets detected with dif-
ferent templates often overlap in time but are not exactly the same. Thus,
a short time interval can be associated with multiple targets, causing am-
biguity of detection. Detection at similar temporal scales may also lead to
ambiguity.

To avoid overcounting, it is sensible to choose only one from overlapping
targets. A reasonable criterion is the p-value of a target obtained from the
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test in section 3.3, so that among overlapping targets, only those with the
smallest p-value are kept. When two or more targets remain, one can adopt
some ad hoc criteria to choose between them.

4 Information-Based Alignment of Samples

Given a sample of spike sequences, usually associated with the same stim-
ulus or behavior, temporal alignment refers to adjustment of the temporal
registry of spikes under certain constraints, so that a characteristic common
temporal pattern of the spike sequences can be revealed, which otherwise
is dif�cult to observe (see Figure 6).

There are several alignment methods. One is based on dynamical pro-
gramming, which combines aspects of rate coding and temporal coding
(Victor & Purpura, 1996). In this method, there are no “hard” constraints on
the alignment. Instead, any adjustment of the temporal registry is allowed
but with a certain cost. The optimal adjustment is the one that minimizes
the total cost. Another method cross-correlates the spike sequences or the
associated behaviors (such as spectrograms of vocalizations) and registers
the spikes when the cross-correlation reaches maximum (Yu & Margoliash,
1996). In this method, the ISIs of the spike sequences are kept constant, and
the only way to adjust the temporal registry of the spikes is rigid shifting of
the entire sequences. Furthermore, both methods make pair-wise compar-
isons of templates. This leads to a series of local optimum, which does not
guarantee achieving a global optimum. A third method aligns templates by
minimizing a global measure of distance. The method works well when the
spiking activity is highly phasic (Chi & Margoliash, 2001). However, it is
not as well suited for tonic activity.

The above alignment methods are based on the idea of reducing certain
measures of distance among spike sequences. The alignment introduced
here is from a different perspective. To illustrate this, we consider the fol-
lowing problem.Suppose we have the temporal registries of spike sequences
S1; : : : ; SN, and we �nd that at each time t, a certain event is observed in
some of the spike sequences but not in the others. Assume these spike se-
quences are collected under the same conditions. One may ask, If we are
to collect another spike sequence S under the same conditions, then, based
on S1; : : : ; SN, how well can we predict that the same event will occur in S
at t?

Intuitively, at any time where common temporal structure among Sn oc-
curs, which can be excitation, inhibition, or something else, an event will
have a distribution concentrated around 1 or 0. Based on the distribution,
the uncertainty in predicting the event at that time is low. Consequently,
the overall uncertainty in predicting events across time is good indication
of how well the common temporal structure of Sn is expressed across time,
which clearly depends on the temporal registries of Sn. The lower the un-
certainty is, the more explicitly the common structure is expressed. In infor-
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mation theory, uncertainty is measured by entropy. The alignment can thus
be achieved by reducing the total entropy of the events across time.

In actual computation, to deal with the problem of sparse data, it is
important to choose events appropriately. For each time t, we de�ne

At D fAt time t, spiking occurs in [t ¡ 1
2 ; t C 1

2 /g;

Xt D Xt.S/ D
»

1 if At happens to S
0 otherwise : (4.1)

Note that At does not involve the exact number of spikes. The advantage of
using equation 4.1 is that Xt is a Bernoulli random variable, so the estimation
of P.Xt D 1/ does not require a large number of templates. The estimate of
P.Xt D 1/ is

OPt D OPt.S1; : : : ; SN/ D
Number of Si having spikes in [t ¡ 1

2 ; t C 1
2 ]

N

D 1
N

NX

nD1

Xt.Sn/; (4.2)

with estimated std
q

OPt.1 ¡ OPt/=N ¡ 1. The entropy of the Bernoulli random
variable is equal to

Oht D ¡ OPt ln OPt ¡ .1 ¡ OPt/ ln.1 ¡ OPt/; (4.3)

with 0 ln 0 de�ned to be 0. De�ne

H.S1; : : : ; SN/ D
Z

Oht dt; (4.4)

which is an upper bound of the joint entropy of the process Xt, t 2 R
(theorem 2.6.6, Cover & Thomas, 1991). The information-based alignment
of S1; : : : ; SN is to �nd t1; : : : ; tN, such that

H.S1 C t1; : : : ; SN C tN/

D minfH.S1 C ¿1; : : : ; SN C ¿N/ : ¿1; : : : ; ¿N 2 .¡1; 1/g: (4.5)

For actual data, H.S1 C ¿1; : : : ; SN C ¿N/ is a complex function in f¿ng. It
can be minimized by stochastic annealing (Geman & Geman, 1984) rather
slowly. Alternatively,we approximateits minimum by a randomized greedy
procedure. For each cycle, in a random order, we shift Sn, one at a time,
to minimize gn.t/ D H.S1; : : : ; Sn C t; : : : ; SN/ and update Sn to Sn C t if
t minimizes gn. We then carry out multiple such cycles of minimization,
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choosing a different random order at each cycle, until H.S1; : : : ; SN/ cannot
be reduced by shifting individual Sn.

Updating Sn in a random order reduces the possibility of settling into
a local minimum. Experience indicates that many cycles are not required.
Usually 10 to 15 cycles suf�ce. Although it is possible to reduce the entropy
further by annealing, as a practical matter for the data we analyzed, this did
not seem to appreciably improve the alignment and was not implemented.

We now remark on some features of the information-based alignment.
The most signi�cant difference between the information-based alignment as
compared to the previous pairwise alignment procedure is that information-
based alignment is based on the templates as a whole, which naturally
allows an information-theoretic interpretation. In contrast, pairwise align-
ment puts emphasis on the common structure between pairs of sequences,
which may not be the common structure of all the sequences. This leads to
a series of local minima. One can imagine that the �ring-rate function in-
duced from aligned templates should be “clumpy” instead of �at. Entropy
is an objective measure of the clumpiness.

Second, the de�nition of the event At involves a parameter 1. If 1 is
too large, then by equation 4.2, OPt ¼ 1 for most t over the time inteval of
S1; : : : ; SN, and hence H.S1; : : : ; SN/ ¼ 0. On the other hand, if 1 is too
small, because of the variabily in spike timing, no matter how the temporal
registries of S1; : : : ; SN are adjusted, for most t, the number of Si with spikes
in [t ¡ 1

2 ; t C 1
2 ] is at most 1. It is then not hard to see that H.S1; : : : ; SN/ ¼

CN log N, where C is the total number of spikes in S1; : : : ; SN . In either
case, the associated entropy is dif�cult to reduce, and hence fSng will not be
aligned. For HVc activity, we got satisfactory result when 1¡1 was at the
same order of the maximum �ring rate. Presumably, optimal 1 depends on
the intrinsic temporal precision of spiking activity (Victor & Purpura, 1996).
This is subject to further study.

Third, in the optimization, equation 4.5, only rigid shifts are allowed for
Sn. The reason is twofold. Since the internal structure of Sn is maintained, the
alignment can reveal systematic change in spiking activity that otherwise
would not be revealed by shifting individual parts (Chi & Margoliash, 2001).
Presumably, by taking into account time scaling, alignment of temporally
morphed templates may yield better results. However, if all the templates
are collected under the same conditions, there is no compelling argument
why morphing of the templates is more reasonable than not doing so. Nev-
ertheless, depending on problem at hand, even with rigid shift, individual
parts of Sn can be shifted relative to the others (Yu & Margoliash, 1996).

5 Experiments

We tested pattern �ltering on neuronal data collected from the HVc of the
zebra �nch (Taeniopygia guttata). The song system is a standard object in the
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study of neural mechanisms of vocal learning, production, and maintenance
(Brenowitz, Margoliash, & Nordeen, 1997). HVc is a nucleus in the forebrain
of the birdsong system. It plays an important role in vocal learning, audi-
tory input integration, and higher-level motor commands for vocalization.
HVc directly projects to another forebrain nucleus, robustus archistriatalis
(RA). Recently, it was found that in sleeping zebra �nches, the spontaneous
spiking activity of RA neurons occasionally exhibited spike bursting pat-
terns similar to the premotor activity patterns that the same neurons exhibit
during singing and in response to auditory playback of the bird’s own song
(BOS) during sleep (Dave, Yu, & Margoliash, 1998; Dave & Margoliash,
2000). This “replay phenomenon” during sleep is hypothesized to play an
important role in learning and memory consolidation of the birdsong sys-
tem (Margoliash, 2001). Since RA receives inputs from HVc, it is natural to
consider whether the replay phenomenon also occurs in the spontaneous
activity of HVc and is potentially the source of the replay in the spontaneous
activity of RA. Recent recordings in sleep-induced birds from RA-projecting
HVc neurons support this interpretation (Hahnloser, Kozhevnikov, & Fee,
2002). Furthermore, the activity in HVc interneurons, which are the pre-
sumed class of neurons analyzed in this article, has far more variability
than the activity in RA (Mooney, 2000; Shea, Rauske, & Margoliash, 2001),
and therefore the application of pattern �ltering to HVc data is both bio-
logically interesting and a useful test of the effectiveness of the techniques
developed in previous sections.

The steps of the detection are (1) template selection, (2) training of the de-
tector as described in section 3.2, and (3) the multiple detection procedures
in section 3.1.

During sleep, HVc auditory responses to BOS often exhibit considerable
cross-trial variability. Some unobserved variable, such as phase of intrinsic
bursting within the song system or different stages of sleep, presumably
is related to the variability of auditory responses. From the raster plot in
Figure 3, it can be seen that in many trials, the auditory responses were quite
weak and less structured. To achieve effective detection, sample sequences
associated with robust responses and clearer structure were chosen. First,
sequences without enough spikes (< 20) were removed from the sample.
Templates were then chosen from the remaining sequence. In general, if a
sequence did not match well with the other sequences—for example, on
average there were too many nonmatching spikes—then it was not chosen
as a template.

5.1 Results. We analyzed the sleep activity of seven single units in HVc
of four zebra �nches (two units per bird for three birds and one unit for
one bird; see Table 1). For each unit, the data consisted of activity that was
collected in a large number of trials while the animal slept. At the begin-
ning of each trial, a recording of BOS was broadcast to the animal, and
neuronal responses to the stimulus were collected. The spontaneous activ-



Pattern Filtering for Detection of Neural Activity 2323

Figure 3: Auditory responses of HVc neuron unit 1 to multiple repetitions of
the same motif in BOS. (Top) Raster plot of the spike sequences of auditory
responses, starting at the onset of the motif. The spike sequences are aligned
at the onset. The duration of each spike sequence is about 500 ms. (Bottom)
The �ring-rate function of the spikes sequences computed using a disjoint time
window of size 5 ms (Dayan & Abbott, 2001).

Table 1: Results of Detection.

Bird Unit T (ms) N n

hv31 1005 1 504 § 5 5 0.68
2 504 § 5 30 4.08

hv33 1106 3 620 § 0 31 1.27
4 570 § 0 21 0.86

hv39 1014 5 659 § 4 21 0.46
6 661 § 4 50 3

hv40 0626 7 665 § 3 3 0.82

Notes: T: Duration of template. N: Number of detected spike
sequences. n: Average number of detected sequences per
minute.

ity of the neuron was collected in the intervals between presentation of
BOS (approximately once every 20 § 6:5 s). The purpose of the experiments
was to investigate if auditory responses were replayed during spontaneous
activity of sleep in HVc.

For each bird, the recording of BOS had one or two renditions of a motif
(sequence of repeated syllables). Templates were selected from the auditory
responses of the HVc units to the renditions. Template duration T is de�ned
as the duration of the corresponding stimulus. For each unit, we chose one
time interval during which its responses stayed relatively strong across the
trials and selected templates from those responses. Thus, mean.T/ can differ
for units of the same bird.
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Table 1 lists the total numbers and temporaldensities of detected spike se-
quences from spontaneous activity that exhibited similar temporal patterns
as the templates. Across the units, �lters constructed with the following
three types of window functions and background functions were applied
sequentially: square window (see equation 3.1), Hamming-type window
(see equation 3.2), and cropped versions of Hamming windows (see equa-
tion 3.3). The same set of parameter values for pattern �lters was used for
the results reported in Table 1. It is noteworthy that for each of the units an-
alyzed some spontaneous patterns were found to match templates drawn
from auditory responses to BOS.

Next, we show the results for two units in more detail, each involving a
single HVc neuron of a different zebra �nch.

5.1.1 Unit 1. The BOS consisted of two renditions of a motif and was
broadcast in 63 trials, leading to 126 spike sequences of auditory responses
to the playbacks of the motif. Figure 3 displays all the spike sequences,
which are aligned by the onset of the motif.

Of the 126 spike sequences, 48 were chosen as templates. Figure 4A shows
the raster plot and estimated �ring-rate functions for these trials. The tem-
plates were then aligned by minimizing entropy. The raster plot and the
�ring-rate function of the aligned templates are shown in Figure 4B. The
raster plot of the aligned templates clearly reveals more temporal structure
than for the onset-registered templates. The standard error of the shifts of
the aligned templates was about 5 ms, with the difference between the max-
imum shift and the minimum shift equal to 30 ms. The average shift is not
important, because only the relative shifts of the templates matter for the
alignment.

To reduce the amount of computation, 30 of the 48 spike sequences are
further selected. The constructed pattern �lters were scaled at �ve discrete
levels, c D 1; 0:8; 0:9; 1:1, and 1:25, and convolved with the data spike se-
quences following, as described in section 3.1.

For each aligned template, detection was conducted for the recorded
spontaneous activity across all 63 trials, each lasting 7 seconds. A total of 22
spike sequences, which yielded above-threshold responses to all the �lters,
were found. Among them, 8 were highly signi�cant (p · 0:01) by the test
described in section 3.3. After disambiguation, only 5 remained and were
output as targets. In Figure 5, all of the targets are displayed along with the
templates used to detect them. In order to be compared with the templates,
the targets were scaled in time at the levels at which they were detected.
The variability among the templates is obvious, which argues for detec-
tion based on individual templates instead of some form of average of the
templates.

5.1.2 Unit 3. Unlike the previous case, the BOS for this bird contained
only one rendition of a motif lasting about 620 ms and was broadcast to
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Figure 4: Raster plot and empirical �ring rate function of selected sample se-
quences from unit 1, before alignment (A) and after alignment (B). The �ring
rates were estimated by the same method as in Figure 3. Note the different scales
of the �ring-rate functions in A, B, and Figure 3.

the sleeping bird in 126 trials. Figure 6A is a raster plot of the 126 spike
sequences of auditory responses to the motif, aligned by the onset of the
playback of the motif. There is an obvious change in the latency of the
responses. Of the 126 spike sequences, 76 were selected as templates. On
average, there were 29.4 spikes in each template. Figures 6B and 6C are the
raster plots of the selected sequences before and after they were aligned
by minimizing entropy. As for the previous neuron, the information-based
alignment reveals some noticeable common patterns of the responses.

The data of spontaneous activity during sleep were about 25 minutes
in total duration. Using 30 of the 76 selected sequences as templates, 31
nonoverlapping targets with p-value · 0:01 were detected. The relatively
large number ofdetected targets allowed us to have a moreglobal viewof the
temporal pattern of the spontaneous activity, as compared to the auditory
responses. First, for each target detected at scale c, its scaled version by factor
1=c was generated. Then the scaled targets were combined into a raster plot,
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Figure 5: Templates and targets (unit 1). In each group, the �rst trace is a tem-
plate; the others are targets detected with �lters built from the template. The
targets are scaled in time in order to be compared with the templates (in A,
by 1

0:9 , 1
1:25 , 1

1:25 , respectively; in B, by 1
1:1 ; in C, by 1

1:25 ). The line at the bottom
represents an interval of 500 ms. No spikes occurred in the blank regions in the
traces.

Figure 6: (A) Raster plot of 126 sample spike sequences of HVc neuron unit 3 in
response to playbacks of the BOS. All the sequences are about 620 ms long and
aligned at the onset of the BOS. (B) Raster plot of 76 selected sequences used as
templates. The order of the sequences is the same as in the original sample. (C)
Raster plot of the same 76 spike sequences, after they are aligned by entropy
minimization. (D) Raster plot of 31 spike sequences in spontaneous activity of
the same neuron during sleep. Among them, 1 is scaled by 1

0:9 , 7 by 1
1:1 , and 13

by 1
1:25 . The others are unscaled.
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with those detected in the earlier part of the spontaneous activity plotted on
top of those detected in the later part. The raster plot is shown in Figure 6D,
which clearly demonstrates the similarity between the responses to BOS
and the spontaneous spike sequences.

5.2 Sensitivity to Parameters. To test how different values of the pa-
rameters affect the detection, we compared the results of the detection by
changing the value of one of the parameters while �xing the others. This
required the entire detection procedure, including training and the signi�-
cance test, to be rerun.

The main parameters are those for the time window and background
functions, speci�cally,

² The window sizes ²1 for the square window (see equation 3.1), ²2 for the
Hamming window (see equation 3.2), and ²3 for the croppedHamming
window (see equation 3.3)

² The background values ¯1, ¯2, ¯3, respectively, associated with the
above window functions to construct the �lters.

Because of the similarity between the Hamming window function and its
cropped versions, we always set ²2 D ²3 and ¯2 D ¯3. In both cases reported
in the previous two sections, the values of the parameters were ²1 D 4 ms,
²2 D ²3 D 5 ms, ¯1 D ¡0:3, and ¯2 D ¯3 D ¡0:4.

Suppose targets in time intervals Jk , k D 1; : : : ; K were detected with the
above parameter values. To analyze the targets detected when one of the
parameter values was changed, they were classi�ed into three categories.
A target detected in interval I is classi�ed as new if I \ Jk D ; for all k. It is
classi�ed as already detected if it has a signi�cant large overlap with some
Jk. Speci�cally, the overlap between I and Jk covers more than c D 4=5 of Jk.
Otherwise, it is classi�ed as overlapping. In general, if the number of already
detected targets is large, then it indicates that different parameters lead to
consistent detection. The larger c is, the harder it is to classify a target as
already detected. We also tested c D 9=10, and the results were very similar.

For the �rst HVc neuron analyzed here (unit 1), we �rst doubled ²1 to
8 ms while keeping the other parameters unchanged. Following the same
procedures for training, detection, and signi�cance test, seven targets were
detected. Among them, two had been previously detected, while the other
�ve were new, shown in Figures 7A through 7E. When ²1 was reset to 4 ms,
while ²2, ¯1, or ¯2 was doubled, all but one target were already detected
either in Figures 5 or 7A through 7E. The new target is displayed in Figure 7F.

We applied the same procedure to data for unit 3. Table 2 collects the
results. Each column summarizes to the detection with the value of the
corresponding parameter being doubled, while keeping the others �xed.

The results show that different parameter values have some, but not a
large, impact on detection. On the one hand, new targets may be detected.
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Figure 7: Templates and corresponding targets detected from the same data as
Figure 5, but with the window size of one of the time window functions doubled
(see section 5.2).The targets are scaled by 1

1:1 , 1
1:25 , 1

1:1 , 1
1:25 , 1, and 1

1:31 , respectively.
As a window size increases, more jitter is allowed in detection, leading to less
close matching of some of the detected targets and the corresponding templates.

Table 2: Breakdown of Targets Detected for the Second HVc Neuron by Dou-
bling the Value of One Parameter, as Compared with Targets Detected When
²1 D 4 ms, ²2 D ²3 D 5 ms, ¯1 D ¡0:3, and ¯2 D ¯3 D ¡0:4.

²1 ²2 ¯1 ¯2

Already detected 18 25 16 14
Overlapping 5 4 4 1

New 5 7 5 5
Total 28 36 25 20

On the other, when the number of targets is relatively large, most of the
targets detected using one set of parameters can also be detected using dif-
ferent sets of parameters, up to a relatively small difference in time. This
is not unexpected, because different window sizes correspond to different
statistical models on spiking activity. Furthermore, window sizes also af-
fect the training and signi�cance test on the targets. These changes, when
combined, lead to different detection results. It is thus a good strategy to try
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different parameter values that are biologically plausible and report targets
that are signi�cant under a speci�c statistical test.

6 Discussion

We have described a novel approach to spike sequence detection: pattern
�ltering. Under the framework of temporal point processes, the approach
incorporates (1) conditional Poisson processes to describe spiking activity,
(2) detection by classi�cation based on likelihood ratio, (3) classi�cation by
�ltering, (4) multiple levels of detection, and (5) information-based tempo-
ral alignment of spike trains. Pattern �ltering has signi�cant computational
advantages. First, it effectively detects spike sequences with a speci�c tem-
poral pattern. Second, it allows the training and signi�cance testing of the
detection to be done ef�ciently, which otherwise would normally involve
substantial computation. To improve pattern �ltering, there are several is-
sues to be addressed.

6.1 Statistical Signi�cance of Targets. When a target is detected, it is
necessary to make sure that it is not likely to have resulted by chance from
background activity. One thus needs to test the p-value of the target: the like-
lihood of the target if it was generated by the background. Unfortunately,
the probability distribution of the background activity is often poorly un-
derstood, making theoretical evaluation of the p-value infeasible.

The approach we take to address the problem is to use local processes as
surrogates for the background activity (see section 3.3). The processes are
modi�ed homogeneous Poisson with short ISIs being removed to account
for the neuronal refractory period. It is well known that a homogeneous
Poisson process in general is not a good model for spiking activity (Riehle
et al., 1997). At least, it does not account for rate modulations and possible
nonstationarity of the spiking activity. This is a reason for using local pro-
cesses, which can approximate the probability distributions around targets
better than a global, homogeneous Poisson model does. For HVc, this choice
of surrogates seems to work reasonably well. For other systems, however,
different surrogate processes may be more appropriate. For example, in
cases where neurons exhibit very low-frequency discharge but occasionally
burst strongly, a Poisson distribution will not �t the data well, and a differ-
ent distribution should be considered. In any case, localized processes will
not only be suf�cient, but will be better than a global surrogate process for
the p-value tests of individual targets.

The detection considered here does not address another aspect of the
statistical signi�cance of targets: their global properties, such as the total
number of targets. This has been a challenge for quite a long time, because
it requires modeling of the entire data set (Abeles & Gerstein, 1988; Abeles
et al., 1993; Date et al., 1998; Baker & Lemon, 2000; Grün et al., 2002a). In the
light of the above comments, one possible approach to the global statistical
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signi�cance of targets is to use a hierarchy of processes. Intuitively, this
means that for each data segment, which may have random onset and offset,
we use a local process to model it, and the process at the top of the hierarchy
speci�es what type of process to use for the segment as well as when the
segment starts and ends.

6.2 Multiple Filtering. The basic procedure in our multilevel detection
is serial (see Figure 2), as the �lters in each channel are arranged in the
form F1 ! F2 ! ¢ ¢ ¢ ! Fn, with F1 having a coarser temporal resolution
(i.e., sampling rate) than the others. This feedforward arrangement of �lters
can be changed into a parallel one, whereby each Fk outputs to a common
integrator G independent of the others. Since the coarser temporal resolution
of F1 makes it faster to compute its output, G will �rst check the output of F1,
and only when the output is above threshold will G check the outputs of the
other Fk. If above-threshold outputs from F1, : : : , Fn coincide at a location x
in the data, then G outputs the data at x as a target. This parallel-feedforward
mechanism is biologicallyplausible, because it keeps the sensors in a system
operating on a continuous basis, without being interfered with by the others
at the same level of hierarchy.

6.3 Estimation of Density Functions for Filters. In our study, the time
window functions and the background functions were chosen by hand.
It is possible to estimate both from a sample of spike sequences, which
potentially may lead to a better probability model of the spiking activity.

First, from the discussion in section 2.2, both the time window and back-
ground functions of a �lter depend on the average �ring rate at background,
which is easily estimated from data. From a theoretical point of view, the
underlying assumption that the background spiking activity follows a ho-
mogeneous Poisson process over time is questionable. One possible mod-
i�cation is to divide the background activity into several categories and
model each one with a Poisson process, which may be inhomogeneous.
In the appendix, we suggest a non-Bayesian approach as well as a simple
Bayesian approach to incorporate different categories of background. It is
worth mentioning, however, that for the detection per se, the homogeneous
Poisson model of background activity has worked well.

Second, the density functions of jittered spikes around template spikes
and noise spikes within a target can also be estimated. To pursue this, tem-
poral alignment will play an important role. The appendix suggests a fairly
simple but crude estimation procedure for the density functions. However,
the point is that the estimation of the density functions requires the distinc-
tion between jittered spikes and noise spikes, which is hard to made without
appropriate alignment.

6.4 Alignment. Our study demonstrates that alignment of spike se-
quences is useful for understanding the temporal discharge patterns of



Pattern Filtering for Detection of Neural Activity 2331

higher-order neurons such as in HVc. The responses of such neurons may
exhibit internal structure yet variability in phase in relation to the stimulus.
This variability may manifest itself as a systematic change in response la-
tency across consecutive trials, as exhibited in Figure 6. Besides systematic
modulations, there can also be random or local perturbations of the system,
resulting in magni�ed random changes in spike timing across trials.

Basically, the alignment aims to “undo” either the systematic modula-
tions or the random changes in the spike sequences. The information-based
alignment is meant for tonic neuronal activity, where the notion of distance
is harder to de�ne. The alignment takes into account only the entropy of a
binary spiking event in each individual time bin and then sums up the en-
tropy. Note that the binary spiking event is not directly related to the exact
number of spikes. Indeed, the binary events can be considered quantization
of the actual spiking events. Simple spiking events such as binary events
can be used for alignment and require far fewer samples.

In the alignment considered here, any correlation among spikes in differ-
ent time bins is ignored by this alignment. One can indeed use joint binary
events. For example, with Xt de�ned as in equation 4.1, given time lags
11; : : : ; 1n¡1, let Yt D .Xt; XtC11 ; : : : ; XtC1n¡1 /. Then, in equation 4.3, re-
place Oht with the entropy of Yt, which has 2n possible values. However, even
for modest n, the alignment encounters the small sample problem. One pos-
sible way to alleviate the dif�culty is to quantize the set of all possible values
of Yt, and use entropy derived from the quantization rather than Yt itself.

6.5 Applications of Point Processes to Complex Data. Point processes
can be applied not only to spiking activity but also to other complicated
data, even for continuous-valued ones. Chosen appropriately, point repre-
sentations not only greatly reduce the complexity of the data, but also keep
a signi�cant amount of information. Such compact representations can be
advantageous in analyzing the structure of data, such as behavior (Chi &
Margoliash, 2001). In addition, as shown in this article, they can lead to ef�-
cient detection. Recent progress in computer vision and acoustics indicates
that detection of complicated objects can be achieved by representing them
with very simple discrete features, such as points (Amit & Geman, 1999;
Amit & Murua, 2001; Amit, Koloydenko, & Niyogi, 2002; Chi, 2003; Roth,
Yang, & Ahuja, 2002).

Although there are extensive possibilities of point representations for
complicated data, in order for point processes to be effectively applied,
several issues need to be addressed. First, what types of features should be
used, and how should these features be registered? While this may not be
a problem for neural activity, it poses a challenge for other types of data.
Second, how should the characteristic structure be learned from sample
point representations, especially when �ne structure needs to be learned?
This issue may have important implications for neural coding (Victor &
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Purpura, 1996). Third, in the context of detection, how should the statistical
signi�cance of detected targets be assessed? As discussed earlier, this is
in particular a hard problem in neural science, given that the statistical
properties of neural activity in many systems are poorly understood.

Appendix

A.1 Proof of Equation 2.3. We �rst show that

L.Tx/ D
X

Txn.JCx/
B.t ¡ x/

C
X

Tx\.JCx/
max

nD1;:::;p
K.t ¡ x ¡ sn/ C C; (A.1)

where C is the constant in equation 2.3. First, we need to �nd la.Tx/, the
maximum likelihood of con�gurations that generate Tx, given Tx is gen-
erated by the template S D fs1; : : : ; spg. Let X, Z1, : : : , Zp be a con�gura-
tion for Tx. By well-known results for Poisson processes (Reich, Victor, &
Bruce, 1998; Brown, Barbieri, Ventura, Kass, & Frank, 2001), the likelihood
of X C x D Txn.J C x/ is

Q0 D
Y

t2Txn.JCx/
f0.t ¡ x/ £ exp

»
¡

Z

[0;¾ ]nJ
f0.¿ / d¿

¼
: (A.2)

On the other hand, for each n D 1; : : : ; p, the likelihood of Zn is equal to

Qn D
Y

t2Zn
f1.t/ £ exp

»
¡

Z ²

¡²

f1.¿ / d¿

¼
: (A.3)

Because X and Zn are independent, their joint likelihood is

l.X; Z1; : : : ; Zp/ D Q0 £
Yp

nD1

Y
t2Zn

f1.t/ £ exp
»

¡p
Z ²

¡²

f1.¿ / d¿

¼

D Q0 £
Y

t2Tx\.JCx/
f1.t ¡ sn.t/ ¡ x/

£ exp
»

¡p
Z ²

¡²

f1.¿ / d¿

¼
;

where n.t/ is the unique n such that t 2 Zn C sn C x. Maximizing l.X; Z1; : : : ;

Zp/ over all possible con�gurations that generate Tx yields

la.Tx/ D P.Tx j Tx generated by fs1; : : : ; sng/ D Q0 £ Q; (A.4)

with

Q :D
Y

Tx\.JCx/
l.t/ £ exp

»
¡p

Z ²

¡²

f1.¿ / d¿

¼
;

l.t/ :D max
n: t2JnCx

f1.t ¡ sn ¡ x/:
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Recall that lo.Tx/ D qn expf¡q¾ g. Then, letting

C D ¡
Z

[0;¾ ]nJ
f0.¿ / d¿ ¡ p

Z ²

¡²

f1.¿ / d¿ C q¾;

which is independent of S,

L.Tx/ D log
la.Tx/

lo.Tx/

D
X

t2Txn.JCx/
log

f0.t ¡ x/

q

C
X

t2Tx\.JCx/
max

n:t2JnCx

»
log

f1.t ¡ x ¡ sn/

q

¼
C C:

Equation A.1 is proved by combining the above equations and equation 2.1.
Now we can prove equation 2.3. By the de�nition of ± functions, with

Tx D T \ [x; x C ¾ ], it is easy to see that R.x/ D
P

t2Tx
F.t ¡ x/. Then by

equations 2.2,

R.x/ D
X

t2Tx\.JCx/
F.t ¡ x/ C

X
t2Txn.JCx/

F.t ¡ x/

D
X

t2Tx\.JCx/
max
1·k·p

K.t ¡ x ¡ sk/ C
X

t2Txn.JCx/
B.t ¡ x/:

This combined equation A.1 then proves L.Tx/ D R.x/ C C.

A.2 Incorporation of Multiple Types of Background. Assume that a
background spike sequence is a sample from one of N Poisson processes
with densities qk.t/. The processes may be inhomogeneous, and thus qk
may not be constant. For each k, let

lk.Tx/ D l.TxjTx is generated from qk/;

still letting la.Tx/ be the maximum con�guration likelihood for Tx. Then
following the argument that leads to equation A.1,

Lk.Tx/ D log
la.Tx/

lk.Tk/
D Rk.x/ C Ck;

with Rk.x/ D
R ¾

0 Fk.¿ /T.x¡¿/ d¿ and Fk D F¡ log qk and F constructed from

K.x/ D
»

log f1.x/ if x 2 .¡²; ²/

0 otherwise ; B.x/ D
»

log f0.x/ if x 62 J
0 otherwise:

With the above changes, targets are detected at locations where all the peak
responses to Fk, k D 1; : : : ; N reach above-threshold local maximum.
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It is also possible to develop a Bayesian approach to the detection. Let
.¼0, ¼1, : : : , ¼n/ be a prior probability distribution of the categories “target,”
“background k,” k D 1; : : : ; n. The spike sequence Tx at a location x in the
data has posteriors

P.Tx is a target j Tx/ D ¼0la.Tx/

P.Tx/
;

P.Tx is from background k j Tx/ D ¼klk.Tx/

P.Tx/
:

Then the Bayesian log-likelihood ratio of Tx being a target versus a nontarget
is

L.Tx/ D log
¼0la.Tx/

PN
kD1 ¼klk.Tx/

D log
¼0

1 ¡ ¼0
¡ log

XN

kD1
N¼k e¡Rk.x/;

with N¼k D e¡Ck¼k=.1 ¡ ¼0/.

A.3 Estimation of Modulated Spike Densities Based on Alignment.
Let S1; : : : ; SN be aligned templates. To estimate the density f1 of spikes
generated by template spikes, for each Sn, think of the other templates as
spike sequences generated by Sn. Given ² > 0, for each t 2 Sn, the histogram
of jt ¡ sj, for s 2 Sk \ .t ¡ ²; t C ²/, k 6D n, can be used to estimate the density
of jittered spikes around t. Since we assume the density is the same around
each template spike, we can pool all the ISIs for all t 2 Sn and use the
histogram of

Dn D
[

t2Sn
fjt ¡ sj : s 2

S
k 6DnSk \ .t ¡ ²; t C ²/g

to estimate the density f1. In fact, since there are jSnj time windows for the
spikes in Sn, and N ¡ 1 other templates, for any small interval J ½ .¡²; ²/

with duration ¾ ,

1
.N ¡ 1/¾ jSnj

jDn \ Jj

is an estimate of the average of f1 in J. One can pool the data of all Dn and
use D D [Dn to estimate f1 as well.

Under the assumption of being a constant, the density f0 of noise spikes
within a target can also be estimated. Suppose the durations of the templates
are all registered in [0; ¾ ]. Then for each n D 1; : : : ; N,

Of .n/
0 D Mn

.N ¡ 1/L

with L D j[0; !]nJj, J D
S

t2Sn
.t ¡ ²; t C ²/, and

Mn D
X

k 6Dn
jfs 2 Sk : s 62 Jgj
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gives an estimate of f0. Moreover, Of .n/
0 across n may be combined for esti-

mation of f0.
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