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Abstract. Random wavelet expansion is introduced in the study of stationary self-similar
generalized random fields. It is motivated by a model of natural images, in which 2D views
of objects are randomly scaled and translated because the objects are randomly distributed in
the 3D space. It is demonstrated that any stationary self-similar random field defined on the
dual space of a Schwartz space of smooth rapidly decreasing functions has a random wavelet
expansion representation. To explicitly construct stationary self-similar random fields, ran-
dom wavelet expansion representations incorporating random functionals of the following
three types are considered: (1) a multiple stochastic integral over the product domain of scale
and translate, (2) an iterated one, first integrating over the scale domain, and (3) an iterated
one, first integrating over the translate domain. We show that random wavelet expansion
gives rise to a variety of stationary self-similar random fields, including such well-known
processes as the linear fractional stable motions.

1. Introduction

Self-similar distributions (ssd’s henceforth) form an intensively studied area in
probability theory [21–23, 4, 5, 20, 1, 19, 18, 2]. Interest in such distributions orig-
inated in physics, especially renormalization group theory and critical phenomena.
Recently ssd’s have also gained interest in human vision [16, 17, 11, 6] and image
analysis [24, 3, 8, 14].

This article is mainly concerned with stationary self-similar generalized random
fields. Dobrushin [4] gave a complete description of Gaussian ssd’s and also estab-
lished a representation of ssd’s subordinated to Gaussian ones, all of which have
finite variances. Taqqu and Wolpert [23] and Maejima [12] investigated the con-
struction of infinite variance self-similar processes with stationary increments sub-
ordinated to Poisson measures. These processes, when differentiated, yield ssd’s.

Whereas the above methods are established for specific types of ssd’s, the ap-
proach presented here is a general one. Termed “random wavelet expansion”, it
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was motivated by image analysis. It has been noted that natural images exhibit
strong scaling property in addition to stationarity. Therefore it is sensible to build
stationary self-similar image models. However, regular functions sampled from
ssd’s are either constant or fractal, which is in contrast with the rich structure
natural images have. For this reason, Mumford [13] proposed that images are
better modeled as generalized functions. As far as the author knows, Mumford
and Gidas [14] obtained the first random wavelet expansion representation as
follows,

I (x, y) =
∑
i

Ji(λix + ai, λiy + bi), (1.1)

where {(λi, ai, bi)} is a random sample from a Poisson point process on R × R
2

with intensity measure λ−1 dλ da db and Ji are independent random generalized
functions from some distribution ν0. This representation was derived from a sta-
tistical model on the composition of the object surfaces in natural images. Around
the same time, another image model was proposed in [3] from the perspective that
natural images are generated by projecting the 3D space onto an image film. Since
objects are randomly located in the 3D space, their 2D views are randomly scaled
and translated, leading to (1.1). Section 2 gives more detail on the model and its
connection with (1.1).

The representation (1.1) will be generalized, while still termed “random wave-
let expansion”. A random wavelet expansion representation has the form 〈I, φ〉 =
〈W, �g,Hφ〉, where φ is a test function on R

n, W a linear random functional, and
�g,H a (deterministic) continuous wavelet expansion operator with mother wavelet
g and index H . Then (�g,Hφ)(u, v) is a function on R × R

n, with u ∈ R corre-
sponding to the scale, and v ∈ R

n the translate. The physical meaning of the above
formula can be seen more clearly in light of the model in section 2.

Random wavelet expansion is general in the following sense: any ssd
defined on the dual space of a Schwartz space of smooth rapidly decreasing func-
tions has a random wavelet expansion representation I = �∗

g,HW , with g an
infinitely differentiable function with compact support (Theorem 2). Nevertheless,
the result gives little information on how to characterize a ssd by random
wavelet expansion. To get such information, it is necessary to have ssd’s explicitly
constructed.

For the random functional W in the representation I = �∗
g,HW , the most

natural choice is stochastic integrals. As �g,Hφ is a function of scale and translate,
W can be a multiple integral over the product domain of the two (scale-translate
domain); or an iterated integral that first integrates over the translate domain, then
over the scale domain (Theorem 3); or an iterated integral that integrates in the
other order (Theorem 7). These possibilities are investigated in detail in sections
4–6.

In section 4, after setting up the framework of random wavelet expansion, we
will explore the idea of using stochastic integrals that first integrate over the trans-
late domain, to yield a quite general construction scheme. Intuitively, the scheme
is to “stack” along the scale domain different types of stationary random fields,
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each defined on the translate domain. If the locations and the types of the stacked
random fields form a stationary point process, then under certain independence
condition for these random fields, the superimposition of their “projections” along
the scale domain is a ssd. The idea of the scheme also enables us to better under-
stand the spatial structure underlying self-similarity. In section 4.3 we consider the
relationship between symmetry and self-similarity. We will show that, under certain
minor conditions, a stationary random field is self-similar if it is self-similar with
respect to both symmetric test functions and anti-symmetric ones (Theorem 4). On
the other hand, by employing a stochastic integral that is not stationary along the
scale domain, we obtain stationary random fields that are self-similar with respect
to symmetric test functions while not to anti-symmetric ones, or vice versa. The
results demonstrate that the stationarity of a random integral along the scale domain
plays a non-trivial role in ensuring self-similarity.

Section 5 studies in detail random wavelet expansion representations that in-
corporate multiple stochastic integrals. All the ssd’s in this section are constructed
based on a simple fact. That is, random wavelet expansion converts scalings and
translations into diffeomorphisms of the scale-translate domain that have Jacobian
1. As will be seen, as Poisson random measures, stable symmetric random mea-
sures, and many other random measures that underlie infinitely divisible random
fields are invariant under such diffeomorphisms, they can be combined with ran-
dom wavelet expansion to get ssd’s. A rich class of stable symmetric ssd’s can be
constructed in this way. Briefly, if M is an α-stable symmetric measure, α ∈ (0, 2),
then for representations 〈Ig, φ〉 = ∫

(�g,Hφ) dM and 〈Ih, φ〉 = ∫
(�h,Hφ) dM ,

the necessary and sufficient condition for Ig
D= Ih is that g and h be scaled and

translated versions of each other, up to a sign (Theorem 5).
In section 6, we consider the case where W is an iterated stochastic integral

that first integrates over the scale domain. The integral will be combined with a
“dual” operator Lg,H of �g,H (see Eq. (3.3)). Random wavelet expansion in this
section gives rise to the familiar linear fractional or log-linear stable motions on R

[18], giving these random processes an underlying spatial structure. First, it will be
demonstrated that letting φ = 1[0,t], t ∈ R, the process Xt = 〈W, Lg,H1[0,t]〉 can
be a linear fractional stable motion, a log-linear fractional stable motion, or simply
a Lévy motion (Proposition 8). This formally argues that these motions arise from
the random wavelet expansion representation I = L∗

g,HW . On the other hand, as I
can not be directly imposed on an indicator function, to make the argument precise,
we will show that Xt is the limit in distribution of 〈I, φn〉 for a sequence of smooth
rapidly decreasing functions φn (Theorem 8). Such limiting procedure is called
“discretization” in some literature [4].

The other parts of the article are organized as the following. Section 3 fixes
notation, defines the expansion operator �g,H and collects some of its important
functional properties. In particular, the dual operator of �g,H will be quite useful
(Lemma 1). Section 7 gives proofs of the technical results on functional properties
of �g,H . Finally, section 8 discusses possible generalization of random wavelet
expansion to random fields invariant under transformations that consist a finitely
generated commutative Lie group.
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2. An image analysis background

In this section we present an image analysis background for random wavelet expan-
sion, to illustrate how the latter naturally arises from statistical modeling of natural
images.

One remarkable empirical property of natural images is their apparent statisti-
cal scale invariance. That is, the marginal distributions of many statistics of natural
images are invariant when the images are scaled. This natural phenomenon is of
interest in biological vision as well as in computer vision.

The statistical model devised in [3] to explain the origin of scaling of natural
images regards such images as 2D views of the 3D world through the lens of a
camera. The model is based on several assumptions:

(1) The objects are simplified as planar templates parallel to the camera image
plane. Each object has a fixed reference point, so that its spatial location refers
to the location of its reference point;

(2) Assuming sparseness of the objects in the 3D world, a natural image is approx-
imately the arithmetic sum of the 2D views of the objects;

(3) The locations of the objects form a point process in the 3D space;
(4) The shape of an object is independent of its spatial location.

Set up appropriate coordinate systems in the 3D space and on the camera image
plane so that a point with coordinates (λ, y, z) in space is at distance λ from the
camera lens and its projection on the image plane is at (−y/λ,−z/λ).

Given an object, let f (ξ, η) be its “standard view”, which is a function describ-
ing the light or color intensity inside its 2D view, when it is located at (1, 0, 0). Then
by projective geometry, if the object is moved to (λ, y, z),λ > 0, the intensity inside
its 2D view is changed to f (λξ +y, λη+ z). Letting (λi, yi, zi) be the locations of
the objects, and fi the standard views of the objects, the above assumptions of the
model imply that an image I can be written as I (ξ, η) = ∑

i fi(λiξ +yi, λiη+zi),
with {fi} independent of {(λi, yi, zi)}, which is exactly (1.1). Due to the obvious
random scaling and translation of the template functions fi in its summation, (1.1)
is called “random wavelet expansion” in [14]. It is a simple matter to verify that
if {(λi, yi, zi)} is a random sample from a Poisson point process with intensity
measure λ−1 dλ dy dz, then, formally, I is stationary as well as scale invariant.

In accord with the view of [13], the image I is considered a generalized func-
tion. As a mathematical simplification, assume the templates are identical and let
g be the standard view of the templates. Then for any test function φ,

〈I, φ〉 =
∑
i

∫
g(λiξ − yi, λiη − zi) φ(ξ, η) dξ dη. (2.1)

Let λi = eui , vi = −(yi, zi), x = (ξ, η). Define function �gφ : (u, v) →∫
g(eux+v)φ(x) dx, then 〈I, φ〉 = 〈W, �gφ〉, with W = ∑

i δ(u−ui)δ(v−vi).
Then I has the (formal) representation

I = �∗
gW. (2.2)
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For the representation (2.1), I has to be composed of countably many randomly
scaled and translated copies of g. The representation (2.2) on the other hand dis-
penses with this requirement, hence allowing generalization. Since the essence of
(2.2) is the combination of a random functional (W ) and a (continuous) determin-
istic expansion (�g , with the index H = 1 omitted), we will still call it “random
wavelet expansion”.

3. Preliminaries

3.1. Notation

A multiple index is an n-tuple α = (α1, . . . , αn), with αi ∈ N ∪ {0}. Denote
|α| = ∑

αi . Given x ∈ R
n and φ ∈ C∞(Rn), denote

xα = x
α1
1 · · · xαnn , ∂αφ(x) = ∂ |α|φ(x)

∂x
α1
1 . . . ∂x

αn
n

.

Denote by S(Rn) the Schwartz space of real-valued smooth rapidly decreasing
functions on R

n ([7], pp 20–23). Denote

C∞
0 (Rn) = {φ ∈ S(Rn) : φ has compact support}

Sk(R
n) = {φ ∈ S(Rn) :

∫
xαφ(x) dx = 0, |α| < k}, k ≥ 1.

The topology of Sk(R
n) is inherited from S(Rn). For convenience, we will occa-

sionally use S0(R
n) for S(Rn). All Sk(Rn) are nuclear linear topological spaces

([7], pp 73 & 86). By convention, S ′
k(R

n) stands for the space of continuous linear
functionals on Sk(R

n), equipped with the weak topology. The σ -algebra of Borel
subsets of S ′

k(R
n) with respect to the weak topology is denoted by B(S ′

k(R
n)). For

F ∈ S ′
k(R

n) and φ ∈ S(Rn) we often write 〈F, φ〉 for F(φ).
We will refer to linear random functional on topological space as random func-

tional. Given R
n, following [4], a generalized random process (n = 1) or field

(n > 1) on R
n is a probability measure µ on (S ′

k(R
n),B), for some k ≥ 0,

with B the weak topology generated by cylinder sets. A random functional F on
Sk(R

n) is called a representation of µ, if the c.f. of F is the same as that of µ, i.e.,
E[ei〈F, φ〉] = ∫

ei〈ω, φ〉µ(dω), φ ∈ Sk(R
n).

Given t > 0 and v ∈ R
n, define scaling operator St and translation operator

Tv , such that for any regular function φ on R
n,

(Stφ)(x) = t−nφ(t−1x), (Tvφ)(x) = φ(x − v).

Denote by S∗
t and T ∗

v the adjoint operators of St and Tv on S ′
k(R

n). Notice that
if F ∈ S ′

k(R
n) happens to be a regular function, then S∗

t F is a regular function
with (S∗

t F )(x) = F(tx) and T ∗
v F is another regular function with (T ∗

v F )(x) =
F(x + v).
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Definition 1. Fix H ∈ R. A probability measure µ on S ′
k(R

n) is called stationary
and self-similar with index H (H -ss) if

µ(A) = µ((tHS∗
t )

−1A), µ(A) = µ((T ∗
v )

−1A), t > 0, v ∈ R
n,

A ∈ B(S ′
k(R

n)). (3.1)

If µ satisfies (3.1), then we call it an H -ssd.
By Bochner’s theorem for nuclear spaces [7], if F is a random functional rep-

resentation of µ, then µ is H -ss iff φ ∈ Sk , 〈F, φ〉 D= 〈F, tHStTvφ〉. Formally, this

can be regarded as F(x)
D= tHF (tx + v).

3.2. Definition and functional properties of �g,H

Definition 2. Given a function g and H ∈ R, wavelet expansion operator �g,H

on Sk(R
n), with “mother wavelet” g and index H , is defined by

(�g,Hφ)(u, v) =
∫

Rn

eHug(eux + v)φ(x) dx, φ ∈ Sk(R
n). (3.2)

Comparing with (2.1), it is seen that (eu, v) can be thought of as the spatial location
of an object, with eu the distance of the object from the camera lens, and v the shift
of the object in the 3D space, parallel to the image plane. Furthermore, e−uv is the
translate of the 2D view of the object on the image plane.

The following obvious duality on �g,H is useful in proving several properties of
�g,H , and also useful in the construction of α-stable fractional fields in section 6.

Lemma 1. Suppose g, φ ∈ S(Rn). Then for any H ∈ R,

(�g,Hφ)(u, v) = (�φ,n−Hg)(−u,−e−uv). (3.3)

Lemma 2. Fix k, l ∈ {0}∪N,H ∈ R, andp ∈ (0,∞], such thatp(n+k−H) > n

and l > −H . Then

(1) Given g ∈ Sk(R
n), �g,H is a continuous operator from Sl (R

n) into Lp(R ×
R
n);

(2) On the other hand, given φ ∈ Sl (R
n), the map g → �g,Hφ is a continuous

operator from Sk(R
n) into Lp(R × R

n);
(3) Given any integer m ≥ max{k, l}, define

h(u, v) = e(H−n−k)u

(1 + |e−uv|)m 1[0,∞)(u) + e(H+l)u

(1 + |v|)m 1(−∞,0)(u). (3.4)

There are functionsR ∈ C(Sk(R
n)) andQ ∈ C(Sl (R

n))withR(0) = Q(0) =
0, such that

|(�g,Hφ)(u, v)| ≤ R(g)Q(φ)h(u, v), (3.5)
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(4) If m ≥ max{k, l, n + k − H } (by assumption, this implies m > n/p), then
for h defined by (3.4), h ∈ Lp(R × R

n), and F(v) = ∫ ∞
−∞ h(u, v) du ∈

C(Rn) ∩ Lp(Rn).

Lemma 3. Given any 0 �= g ∈ C∞
0 (Rn) and H ∈ R, �g,H is a 1-1 map from

S(Rn) into C∞(R × R
n).

Proofs of Lemma 2 and Lemma 3 are put off until section 7.

4. Random Wavelet Expansion

4.1. Definition and existence of random wavelet expansion representation for ssd

With �g replaced by �g,H , where g ∈ Sk(R
n) for certain k ∈ {0} ∪ N and H ∈ R,

representation (2.2) is now modified to

I = �∗
g,HW. (4.1)

We term (4.1) random wavelet expansion. The operator �g,H is related to
scaling and translation by the next lemma, which can be easily proved using

(Tv0Seu0φ)(x) = (Seu0φ)(x − v0) = e−nu0φ(e−u0(x − v0))

as well as change of variable in integration.

Lemma 4. For any u0 ∈ R and v0 ∈ R
n,

(�g,HTv0Seu0φ)(u, v) = e−Hu0(Uu0,v0�g,Hφ)(u, v). (4.2)

where the operator Uu0,v0 is defined by

(Uu0,v0f )(u, v) = f (u + u0, v + euv0). (4.3)

for any regular function f on R × R
n.

We will refer to any Uu,v or U∗
u,v , if well-defined, as U -transform. Based on

Lemma 4, we have a general result on (4.1), which is the principle idea of random
wavelet expansion.

Theorem 1. Suppose that

(1) F is a linear topological space of functions on R × R
n;

(2) W is a random functional on F such that it is invariant under U∗
u,v for any

(u, v) and such that its c.f. C is continuous on F;
(3) �g,H is a continuous operator from Sk(R

n) to F .

Then C ◦ �g,H is the c.f. of an H -ssd on S ′
k(R

n).

Proof. Let L = C ◦�g,H . Then clearly L(0) = C(0) = 1. Because �g,H is linear
and C is positive definite, L is also positive definite. Condition (3) as well as the
continuity of C implies the continuity of L. Since S(Rn) is nuclear, by Theorem 2
on p.350 of [7], L is the c.f. of a probability distribution on S ′

k(R
n).

Since C is invariant under U∗
u,v for any (u, v) ∈ R × R

n, then

L(eHuTvSeuφ) = C(Uu,v�g,Hφ) = C(�g,Hφ) = L(φ), φ ∈ S ′
k(R

n).

Therefore, the probability distribution determined by L is H -ss. ��
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Theorem 1 gives an effective way to construct ssd’s. On the other hand, it raises
the question whether such F and W exist. The following result, which in essence
is a tautology, shows that for any ssd on S ′

k(R
n), we can find a random wavelet

expansion which gives rise to the random field.

Theorem 2. Given l ∈ {0} ∪ N, suppose µ is an H -ssd on S ′
l (R

n). Then for any
g ∈ C∞

0 (Rn), there is a linear topological space F of functions on R × R
n as well

as a random functional W on F , such that µ admits the random wavelet expansion
representation (4.1).

Proof. Write E = Sl (R
n). By Lemma 3, �g,H is a 1-1 linear map from E into

C∞(R ×R
n). The range of �g,H , i.e., 7 = �g,H (E), is a linear space. Introduce a

topology T on 7 such that A ∈ T if and only if �−1
g,H (A) is an open set in E . Then

F = (7, T ) is a linear topological space isomorphic to E , with isomorphism�g,H .
Consequently, (F ′,B(F ′)) and (E ′,B(E ′)) are isomorphic as measurable spaces
with isomorphism�∗

g,H , with B(F ′) and B(E ′) the σ -algebras with respect to weak

topologies of F ′ and E ′, respectively. Define ν on F ′ by ν(A) = µ((�∗
g,H )

−1(A)).
Let W = {〈W, f 〉 : f ∈ 7} be such that 〈W, f 〉(ω) = ω(f ), ω ∈ F ′. Then
I = �∗

g,HW is a representation of µ. ��

4.2. “Stack-and-project” scheme for random wavelet expansion

As discussed in section 1, the random functional W in random wavelet expansion
(4.1) can be three types of stochastic integrals. In this subsection we explore those
which first integrate over the translate domain. The consideration leads us to a
general scheme as the following.

Suppose E is a linear topological space of functions on R
n and is closed under

translation. Given set 8, let X = {Xλ, λ ∈ 8} be a family of real-valued random

functionals on E , with each Xλ being stationary, i.e., for v ∈ R
n, Xλ

D= T ∗
v Xλ. As-

sume Y is a marked stationary point process on R, with each mark in 8. Denote by
{(ui, λi), i ∈ Z} a random sample from Y, with ui ∈ R the coordinate and λi ∈ 8

the mark of the i-th point, respectively. Let {Zi, i ∈ Z} be a random process, such
that Zi ∈ X and

L({Zi}|{ui, λi}) = L({Zi}|{λi}) = L({X̃i}), (4.4)

with X̃i
D= Xλi and X̃i independent of each other. Given function f (u, v), u ∈ R,

v ∈ R
n, let f (u, ·) be the map v → f (u, v).

Theorem 3. Suppose F is a linear topological space of functions on R×R
n, such

that f (u, ·) ∈ E for all f ∈ F , u ∈ R. Given Y and {Zi} as above, suppose for
each f ∈ F , with probability 1,

〈W, f 〉 =
∑
i

〈Zi, f (ui, ·)〉 (4.5)

is well-defined, and E[ei〈W,f 〉] is continuous on F . If �g,H is a continuous map
from Sk(R

n) to F , then I = �∗
g,HW is a representation of an H -ssd on S ′

k(R
n).
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Remark. From (4.5) it is seen that 〈W, f 〉 is obtained by first getting 〈Zi, f (ui, ·)〉,
which can be regarded as integration over the translate domain with ui fixed, then
taking the sum over all ui , which corresponds to integration over the scale domain.

Proof. By Theorem 1, we only need to check that the distribution of W is invariant
under U∗

s,0 and U∗
0,t . For the first one, since (Us,0f )(u, v) = f (u + s, v),

〈U∗
s,0W, f 〉 = 〈W, Us,0f 〉 =

∑
i

〈Zi, f (ui + s, ·)〉,

implying U∗
s,0W is determined by the sequence {(ui + s, λi), k ∈ Z} via (4.5).

Since Y is stationary, {(ui + s, λi)} D= {(ui, λi), n ∈ Z}, and thus U∗
s,0W

D= W .
For invariance under U∗

0,t , since (U0,t f )(u, v) = f (u, v + eut), letting ti =
eui t ,

〈U∗
0,tW, f 〉 = 〈W, U0,t f 〉 =

∑
i

〈Zi, (Tti f )(ui, ·)〉 =
∑
i

〈T ∗
ti
Zi, f (ui, ·)〉.

Because by (4.4), conditional on {ui, λi}, {Zi} is independent of {ui}, therefore,∑
i

〈T ∗
ti
Zi, f (ui, ·)〉 D=

(a)

∑
i

〈T ∗
ti
X̃i , f (ui, ·)〉 D=

(b)

∑
i

〈X̃i, f (ui, ·)〉

D=
(c)

∑
i

〈Zi, f (ui, ·)〉,

where (a) and (c) are due to (4.4), and (b) to the stationarity of all Xλ. This proves

U∗
0,tW

D= W . ��
We now give an example of ssd’s constructed with the above scheme. Fix 8 to

be a singleton. Then there is no need to specify the marks of the point process Y.
Let Y = {ζ + i, i ∈ Z}, with ζ ∼ Uniform[0, 1). Let X be a white noise process
on R

n with c.f. C(φ) = exp(−(φ, φ)). Then by I = �∗
g,HW and (4.5),

〈I, φ〉 =
∞∑

i=−∞
〈Bi, (�g,Hφ)(ζ + i, ·)〉, (4.6)

with Bi
D= X and ζ , B1, B2, . . . independent of each other.

Proposition 1. Fix k, l ≥ 0, H ∈ R, and g ∈ Sk(R
n), such that n+ 2k > 2H and

l > −H . Then I in (4.6) is well-defined and determines an H -ssd on S ′
l (R

n).

Proof. First, by Lemma 2, �g,H is a continuous operator from Sl (R
n) into L2(R×

R
n). Let F = �g,H (Sl (R

n)), regarded as a subspace of L2(R × R
n). To show W

is well-defined on F , first, by∫ 1

0

( ∞∑
i=−∞

∫
Rn

|(�g,Hφ)(u + i, v)|2dv
)
du

=
∫

R×Rn

|(�g,Hφ)(u, v)|2 du dv < ∞,
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we have

S(ζ ) =
∑∫

Rn

|(�g,Hφ)(ζ + i, v)|2 dv < ∞, w.p. 1

Second, whenever S(u) < ∞, by the independence of

ηi = 〈Bi, (�g,Hφ)(u + i, ·)〉 ∼ N (0,
∫

Rn

|(�g,Hφ)(u + i, v)|2 dv)

from each each other,
∑

i ηi is a well-defined Gaussian random variable. Therefore
W is well-defined.

The c.f. of W is

C(f ) = E[ei〈W,f 〉] =
∫ 1

0
exp

(
−

∞∑
i=−∞

∫
Rn

|f (u + i, v)|2dv
)
du, f ∈ F .

By |e−x − e−y | ≤ |x − y|, x, y > 0, for f, g ∈ F ,

|C(f ) − C(g)| ≤
∫ 1

0

∣∣∣∣∣
∞∑

i=−∞

∫
Rn

(|f (u + i, v)|2 − |g(u + i, v)|2) dv
∣∣∣∣∣ du

≤ ‖f 2 − g2‖1 ≤ ‖f − g‖2‖f + g‖2,

and so C is continuous on F . By Theorem 3, I = �∗
g,HW , determines an H -ssd

on S ′
l (R

n). ��
The “stack-and-project” scheme in Theorem 3 has a useful variant. Loosely

speaking, whereas the representation (4.5) “stacks” n-dimensional random fields
along the scale domain, the variant stacks (n + 1)-dimensional random fields in-
stead.

Corollary 1. Suppose F is a linear topological space of functions on R×R
n and is

closed under U0,v , v ∈ R
n. Given set 8, let {Xλ, λ ∈ 8} be a family of real-valued

random functionals on F that satisfy Xλ
D= U∗

0,vXλ, v ∈ R
n. Define Y and {Zi} as

in Theorem 3. Suppose for each f ∈ F ,

〈W,f 〉 =
∑
i

〈Zi, Uui,0f 〉, (4.7)

is well-defined w.p. 1 and the c.f. of W is continuous on F . If �g,H is a continuous
operator from Sk(R

n) to F , then I = �∗
g,HW is well-defined and determines an

H -ssd on S ′
k(R

n).

Note that in (4.7), Uu,0 is translation along the scale domain by u. The proof
of Corollary 1 follows closely the one for Theorem 3, and hence is omitted.



Construction of stationary self-similar generalized fields 279

4.3. Symmetry and self-similarity

Given a test function φ, a random generalized function I is calledH -ss with respect

to φ, if 〈I, φ〉 D= eHu〈I, TvSeuφ〉, u ∈ R, v ∈ R
n. Denote by E the reflection with

respect to 0,

E : φ(x) → φ(−x). (4.8)

A function φ is symmetric (with respect to 0), if φ = Eφ, and anti-symmetric, if
φ = −Eφ.

We are interested in the relationship between symmetry and self-similarity. By
the observation that symmetric functions and their translated and scaled versions
are the “building-blocks” of “good” functions (e.g., in the sense of L2-theory of
wavelets), one may ask if it is true that as long as I is H -ss with respect to all
symmetric functions, it is H -ss. Using the “stack-and-project” scheme, we can get
a quite complete answer to this question. First, as we will see next, in general, the
answer is negative. There are stationary random fields that are H -ss with respect to
all symmetric test functions, while not to anti-symmetric ones, and vice versa. Then
we will show that under two more conditions which are quite mild, self-similarity
with respect to both symmetric functions and anti-symmetric functions guarantees
self-similarity. The proofs demonstrate the importance of stationarity along the
scale domain in ensuring self-similarity.

Fix L > 0. Let N be a Poisson measure on [0, L]×R
n with Lebesgue intensity

measure. Suppose Nk, k ∈ Z are i.i.d.∼ N . Then define

〈WL, f 〉 =
∞∑

k=−∞
(−1)k

∫
[0,L]×Rn

f (u + kL, v)Nk(du, dv). (4.9)

Note that WL stacks the stochastic integrals at fixed locations kL, k ∈ Z. Further-
more, the signs of these integrals change alternatively.

Proposition 2. (1) Fix k, l ∈ N, and H ∈ R, with k > H and l > −H . Sup-
pose g ∈ Sk(R

n) is anti-symmetric with respect to 0, i.e. g = −Eg. Define IL =
�∗
g,HWL. Then for φ ∈ Sl (R

n) symmetric and u ∈ R,

〈IL, φ〉 D= eHu〈IL, Seuφ〉. (4.10)

(2) On the other hand, for R
n = R, if g(x) = φ(x) = x√

2π
e−x2/2 and H = 0,

then there is L > 0, such that IL = �∗
g,HWL is not H -ss with respect to φ. Note

that IL is stationary.

Proof. (1) Because φ = Eφ and g = −Eg, it is not hard to show (�g,Hφ)(u, v) =
−(�g,Hφ)(u,−v). Therefore, given k ≥ 1,∫

[0,L]×Rn

(�g,Hφ)(u + kL, v)Nk(du, dv)

= −
∫

[0,L]×Rn

(�g,Hφ)(u + kL,−v)Nk(du, dv), w.p.1
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On the other hand, because N(Ã)
D= N(A), A ∈ B(R), where Ã = {(u,−v) :

(u, v) ∈ A}, ∫
[0,L]×Rn

(�g,Hφ)(u + kL,−v)Nk(du, dv)

D=
∫

[0,L]×Rn

(�g,Hφ)(u + kL, v)Nk(du, dv).

The above two formulas, together with the independence among Nk , imply

〈IL, φ〉 =
∞∑

k=−∞

∫
[0,L]×Rn

(−1)k(�g,Hφ)(u + kL, v)Nk(du, dv) (4.11)

D=
∞∑

k=−∞

∫
[0,L]×Rn

(�g,Hφ)(u + kL, v)Nk(du, dv)

D=
∫

R×Rn

(�g,Hφ)(u, v) Ñ(du, dv),

where Ñ is a Poisson measure on R × R
n. As will be proved in section 5.2, the

right hand side is an H -ssd. Therefore, IL is H -ss with respect to φ.
(2) First of all, since in this case k = l = 1 and H = 0, by (1), IL is H -ss with

respect to all φ ∈ Sl (R
n) symmetric. It is easy to check

emLH 〈IL, SemLφ〉 D= (−1)m〈IL, φ〉, φ ∈ Sl (R
n), m ∈ Z.

Then (2) can be proved if for some L > 0, ϕL(t) = E[eit〈IL,φ〉] has non-zero
imaginary part. By (4.11),

ϕL(t) = exp

{ ∞∑
k=−∞

∫ (k+1)L

kL

∫
Rn

(
eit (−1)k�g,H φ − 1

)
dv du

}
,

and hence, letting

K(t) =
∑

(−1)k
∫ (k+1)L

kL

∫
Rn

(cos((�g,Hφ)(u, v)) − 1) dv du,

we have

Im ϕL(t) = eK(t) sin

( ∞∑
k=−∞

(−1)k
∫ (k+1)L

kL

∫
sin(t · (�g,Hφ)(u, v)) dv du

)

= eK(t) sin(p(t)),

We demonstrate Im ϕL(t) �≡ 0 by showing p(3)(0) �= 0. First, letting H = 0,
λ = eu, and µ = v,

(�g,Hφ)(u, v) =
∫

(λx + µ)x

2π
exp

{
− (1 + λ2)x2 + 2λµx + µ2

2

}
dx

= σ√
2π

e−µ2σ2

2 (λEζ 2 + µEζ),
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with σ 2 = 1

1 + λ2
and ζ ∼ N (−λµσ 2, σ ). Then Eζ 2 = λ2µ2σ 4 + σ 2, Eζ =

−λµσ 2, and hence

(�g,Hφ)(u, v) = λ√
2π(1 + λ2)3

exp

{
− µ2

2(1 + λ2)

}(
1 − µ2

1 + λ2

)

= 1√
2π

eu(1 + e2u)−3/2
(

1 − v2

1 + e2u

)
exp

{
− v2

2(1 + e2u)

}
.

(4.12)

Therefore,

p(3)(0)

=
∞∑

k=−∞
(−1)(k−1)

∫ (k+1)L

kL

∫
((�g,Hφ)(u, v))

3 dv du

(a)=
∞∑

k=−∞

(−1)(k−1)

(2π)3/2

1√
3

∫ (k+1)L

kL

e3u

(1 + e2u)4

∫ (
1 − ζ 2

3

)3

exp

{
−ζ 2

2

}
dζ du

= 2

9
√

3π

∞∑
k=−∞

(−1)(k−1)
∫ (k+1)L

kL

e3u

(1 + e2u)4
du,

where (a) is due to change of variable v = √
1 + e2uζ/

√
3. Then for some L > 0,

p(3)(0) �= 0. Otherwise, letting L → ∞, there would be

∫ ∞

0

e3u

(1 + e2u)4
du =

∫ 0

−∞
e3u

(1 + e2u)4
du =

∫ ∞

0

e−3u

(1 + e−2u)4
du

=
∫ ∞

0

e5u

(1 + e2u)4
du,

which is impossible. The second part is thus proved. ��
Similarly, we can construct stationary random fields which are H -ss with

respect to all φ anti-symmetric, while not φ symmetric.

Corollary 2. (1) Fix k, l ∈ N, and H ∈ R, with k > H and l > −H . Suppose
g ∈ Sk(R

n) is symmetric with respect to 0. Define IL = �∗
g,HWL. Then (4.10)

holds for all φ ∈ Sl (R
n) anti-symmetric;

(2) If h(x) = 1√
2π

e−x2/2 and ψ = h′′, and H = −1, then there is L > 0,

such that IL = �∗
h,HW is not H -ss with respect to ψ .

Proof. (1) can be proved as in Proposition 2. For (2), letting g = φ = h′, there

is �h,Hψ = −�g,H+1φ, and hence 〈IL, ψ〉 D= −〈�∗
g,H+1WL, φ〉. As proved in

Proposition 2, for some L > 0, �∗
g,H+1WL is not (H + 1)-ss with respect to φ.

Therefore, IL is not H -ss with respect to ψ . ��
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In light of Proposition 2 and Corollary 2, a natural question is that in order for
a random field to be H -ss, whether it is enough for the field to be H -ss with respect
to all φ with φ = Eφ or φ = −Eφ. With two more assumptions, the answer is
affirmative.

Theorem 4. Suppose I is an ergodic stationary generalized random field on
Sl (R

n), such that its c.f. C satisfies |C(φ)| = |C(Eφ)|, φ ∈ Sl (R
n). If I is H -ss

with respect to any φ ∈ Sl (R
n) satisfying either φ = Eφ or φ = −Eφ, then I is

H -ss.

Proof. Fix φ ∈ Sl (R
n). Given λ > 0 and t ∈ R

n, define θ = λHSλφ and ht (x) =
φ(t/2 + x) + φ(t/2 − x). It is seen ht ∈ Sl (R

n). Then

ht (x) = ht (−x), φ(x) + φ(t − x) = (T−t/2ht )(x). (4.13)

For R > 0,

E

[
ei〈I, φ〉 × 1

|BR|
∫
BR

ei〈I, T−tEφ〉 dt
]

(a)= 1

|BR|
∫
BR

E
[
ei〈I, φ(·)+φ(t−·)〉

]
dt

(b)= 1

|BR|
∫
BR

E
[
ei〈I, ht 〉

]
dt.

where (a) is due to Fubini’s theorem, (b) to (4.13) and the stationarity of I .
Similarly,

E

[
ei〈I, θ〉 × 1

|BR|
∫
BR

ei〈I, T−tEθ〉 dt
]

= 1

|BR|
∫
BR

E
[
ei〈I, λ

H Sλht 〉
]
dt

Because h is symmetric and I is H -ss with respect to h, the right hand sides of the
above two formulas are equal, leading to

E

[
ei〈I, φ〉 × 1

|BR|
∫
BR

ei〈I, T−tEφ〉 dt
]

= E

[
ei〈I,θ〉 × 1

|BR|
∫
BR

ei〈I, T−tEθ〉 dt
]
.

Let R → ∞. Because I is stationary ergodic, by dominated convergence theorem,

C(φ)C(Eφ) = C(θ)C(Eθ). (4.14)

Similarly, by considering φ(t/2 + x) − φ(t/2 − x) ∈ Sl (R
n), we can also get

C(φ)C(Eφ) = C(θ)C(Eθ). (4.15)

By |C(φ)| = |C(Eφ)|, φ ∈ Sl (R
n), (4.14) implies |C(φ)| = |C(θ)|. IfC(φ) =

0, then C(θ) = 0. If C(φ) �= 0, then by (4.14) and (4.15), C(φ)/C(θ) ∈ R.
Therefore, arg[C(φ)] − arg[C(θ)] ∈ πZ. Since θ = λHSλφ is continuous in λ,
arg[C(φ)] = arg[C(θ)]. Therefore, C(φ) = C(θ) = C(λHSλφ), proving I is
H -ss. ��
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5. Infinitely divisible Ssd’s

Comparing with the other ssd’s, infinitely divisible ssd’s can be studied in more
detail. For all the representations in this section, we utilize a simple property of
U -transform, that is, the transform

Au0,v0 : (u, v) → (u + u0, v + euv0)

associated with U by Uu0,v0f (u, v) = f (Au0,v0(u, v)), is a diffeomorphism with
Jacobian 1. Thus, given a random functional 〈W, f 〉 = ∫

f (u, v)M(du, dv), if
the random measure M is invariant under any change of variable with Jacobian 1,
then

〈W, Uu0,v0f 〉 =
∫

f ◦ Au0,v0 dM
D=

∫
f dM = 〈W, f 〉,

and by Theorem 1, I = �∗
g,HW determines an H -ssd with the stochastic integral

representation

〈I, φ〉 =
∫
(�g,Hφ)(u, v)M(du, dv). (5.1)

It is relatively easy to find random measures invariant under diffeomorphism with
Jacobian 1, such as Poisson measure with Lebesgue intensity measure and stable
symmetric random measure with Lebesgue control measure. For spectral represen-
tations of infinitely divisible random fields, the above property of U -transform can
be similarly utilized.

5.1. A general spectral representation of infinitely divisible ssd’s

Spectral representations of infinitely divisible random fields were studied in detail
in [15]. Given an infinitely divisible random measure 8 on a Euclidean space E
with control measure λ, if f : E → R is measurable and satisfy certain integra-
bility conditions, then it is 8-integrable, and ξ = ∫

f d8 is an infinitely divisible
random variable, with

E[eiξ ]=exp

{∫
E

[
ia(s)f (s)− 1

2
f 2(s)σ 2(s)+

∫
R

γ (x, f (s)) ν(s, dx)

]
λ(ds)

}
.

(5.2)

where

γ (x, t) = eixt − 1 − ixt

1 + x2
.

We now apply (5.2) to random wavelet expansion to get a general result on
spectral representation of infinitely divisible ssd’s.
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Proposition 3. Assume ν(u, v, dx) ≡ ν(dx) and λ(du, dv) = du dv. Suppose
the Lévy measure ν satisfies the condition∫

|y|≥1
|y| ν(dy) < ∞. (5.3)

Fix k, l ≥ 0, H ∈ R, and g ∈ Sk(R
n), such that k > H and l > −H . If a(s) ≡ a

and σ 2(s) ≡ σ 2 for constants a and σ , then 〈I, φ〉 = ∫
�g,Hφ d8 determines an

H -ssd on S ′
l (R

n), with c.f.

C(φ) = E[ei〈I, φ〉]

= exp

{
−σ 2

2
‖�g,Hφ‖2

2 +
∫

R×Rn

[∫
R

γ (x, (�g,Hφ)(u, v)) ν(dx)

]
dudv

}
.

(5.4)

Proof. Because k > H and l > −H , �g,H is a continuous operator from Sl (R
n)

into L1(R × R
n) as well as into L2(R × R

n). Furthermore, either k or l is posi-
tive. This implies that for g ∈ Sk(R

n) and φ ∈ Sl (R
n),

∫
�g,Hφ = 0. By (5.2),∫

a(u, v)(�g,Hφ)(u, v) du dv = 0 and hence (5.4) formally holds. It remains to
show (5.4) is well-defined.

First, since k > H and l > −H , by Lemma 2, for p = 1, 2, �g,H is a contin-
uous operator from Sl (R

n) into Lp(R × R
n), and hence, ‖�g,Hφ‖pp is finite and

continuous in φ.
Second, there isD > 0, such that |γ (x, t)| ≤ Dx2(|t |+t2), t ∈ R, x ∈ [−1, 1].

Because for any Lévy measure ν(dx),
∫ 1
−1 x

2ν(dx) < ∞, therefore,

∫
R×Rn

∫ 1

−1

∣∣γ (x, (�g,Hφ)(u, v))
∣∣ ν(dx) du dv

≤ D
(
‖�g,Hφ‖1 + ‖�g,Hφ‖2

2

) ∫ 1

−1
x2 ν(dx) < ∞,

which also shows the first integral is continuous in φ.
Third, there is D′ > 0, such that |γ (x, t)| ≤ D′|xt |, t ∈ R, x ∈ R \ (−1, 1).

Then by (5.3), ∫
R×Rn

∫
|x|>1

∣∣γ (x, (�g,Hφ)(u, v))
∣∣ ν(dx) du dv

≤ D′‖�g,Hφ‖1

∫
|x|>1

|x| ν(dx) < ∞,

which also shows the integral on the left hand side is continuous in φ.
Therefore, the integral

∫
R×Rn

∫
R
γ (x, (�g,Hφ)(u, v)) ν(dx) du dv converges

and continuous in φ. The proof that the random field determined by (5.4) is H -ss
is routine and hence is omitted. ��

The proof of Proposition 3 only uses the continuity of �g,H as an operator into
L1 and into L2. The same idea is used to prove the following variant of (5.4).
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Corollary 3. Suppose ρ ∈ L1(R × R
n) ∩ L2(R × R

n). Define a convolution-like
transform

Kρf (u, v) =
∫

R×Rn

ρ(u − ζ, v − eu−ζ η)f (ζ, η) dζ dη. (5.5)

Then, with the same assumptions on ν, k, l, and H as in Proposition 3, the repre-
sentation

〈I, φ〉 =
∫
(Kρ�g,Hφ) d8. (5.6)

is well-defined and determines an H -ssd on S ′
l (R

n) with c.f. C(Kρ�g,Hφ) with C,
given by (5.4).

Proof. By the generalized Minkowski inequality, ‖Kρf ‖p ≤ ‖f ‖1‖ρ‖p, 1 ≤
p < ∞. Let f = �g,Hφ and p = 1, 2. Since �g,H is a continuous operator
from E = Sl (R

n) into F = L1(R × R
n), it follows that Kρ�g,H is a continuous

operator from E into F as well as into L2(R × R
n). Then following Proposition 3,

C(Kρ�g,Hφ) is well-defined and continuous in φ.
It remains to be shown that C(Kρ�g,Hφ) is invariant under any U -transform.

This can be done by first checkingKρUu,v = Uu,vKρ and then using the invariance
of C(f ) under U -transforms. ��

5.2. Ssd’s constructed from Poisson point processes

In the representation (5.1), if M is a Poisson measure with Lebesgue intensity mea-
sure, then (5.1) determines a ssd. This observation is part of the following result,
where the operator Kρ defined in (5.5) is applied.

Proposition 4. Fix k, l ∈ {0} ∪ N, H ∈ R, and g ∈ Sk(R
n), such that H < k and

l > −H . Also fix ρ ∈ L1(R × R
n) such that

∫
R×Rn e

−nu|ρ(u, v)| du dv < ∞.
Suppose P is a Poisson point process on R×R

n, with Lebesgue intensity measure.
Then w.p. 1, for random sample {(ui, vi)} from P ,

〈I, φ〉 =
∑
i

(Kρ�g,Hφ)(ui, vi), (5.7)

defines I ∈ S ′
l (R

n). Moreover, the representation (5.7) determines an H -ss on
S ′
l (R

n) and has finite second moment. The above claims continue to hold if I is
defined by

〈I, φ〉 =
∑
i

(�g,Hφ)(ui, vi), (5.8)

Proof. We only consider (5.7). The representation (5.8) can be treated in the same
way. Let η = |ρ|. By Lemma 2 (3), in order to show I ∈ S ′

l (R
n) w.p. 1, it is enough

to get
∑

Kηh(ui, vi) < ∞ w.p. 1, which, by Campbell’s theorem [10], is implied by
Kηh ∈ L1. By the generalized Minkowski inequality, ‖Kηh‖1 ≤ ‖ρ‖1‖h‖1 < ∞.
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Similarly, in order to get E[〈I, φ〉2] < ∞, it is enough that Kηh ∈ L2. Letting
M = ∫

R×Rn e
−nu|ρ(u, v)| du dv, the proof proceeds as the following,

‖Kηh‖2
2 =

∫
R×Rn

(∫
R×Rn

|ρ(u − x, v − eu−xy)|h(x, y) dx dy
)2

du dv

=
∫

R×Rn

(∫
R×Rn

|ρ(x, v − exy)|h(u − x, y) dx dy

)2

du dv

(a)≤
∫

R×Rn

(∫
R×Rn

|ρ(x, v − exy)| dx dy

·
∫

R×Rn

|ρ(x, v − exy)|h2(u − x, y) dx dy

)
du dv

= M

∫
R×Rn

(∫
R×Rn

|ρ(x, v − exy)|h2(u − x, y) dx dy

)
du dv

= M‖ρ‖1‖h‖2
2 < ∞,

with (a) due to ‖fg‖2
2 ≤ ‖f ‖1‖fg2‖1. It is routine to show I is H -ss. We omit the

proof for brevity. ��

5.3. Stable symmetric ssd’s

In representation (5.1), if M is an α-stable symmetric random measure with
Lebesgue control measure du dv, then the representation

〈I, φ〉 =
∫
(�g,Hφ)(u, v)M(du, dv), (5.9)

defines an α-stable symmetric random field with c.f. [18],

E
[
e〈I, φ〉

]
= exp

{∫
R×Rn

−|(�g,Hφ)(u, v)|α du dv
}
. (5.10)

The conditions for (5.10) to be well-defined and continuous are given in Proposition
5, which immediately follows from Lemma 2 and Theorem 1.

Proposition 5. Suppose k, l ≥ 0 and H ∈ R satisfy α(n + k − H) > n and
l > −H . Then for any g ∈ Sk(R

n), (5.9) determines an α-stable symmetric H -ssd
on S ′

l (R
n).

When α ∈ (0, 2), the representation (5.10) gives rise to a rich class of ssd’s.
Two functions in Sk(R

n) define the same random field by (5.9) iff they are scaled
and translated versions of each other. More specifically, we have

Theorem 5. Suppose α ∈ (0, 2) for the stable symmetric random measure M in
(5.9). Fix k, l and H as in Proposition 5. Given g, h ∈ Sk(R

n), let Ig and Ih

be the random fields determined by g and h (5.9), respectively. Then Ig
D= Ih if

and only if h = ceβu0Seu0Tv0g for some (u0, v0) ∈ R × R
n and c = ±1, where

β = n(1 − α−1) − H .
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Proof. The “if” part is easy to verify. To prove the “only if” part, denote E =
R × R

n. Fix φ ∈ Sl (R
n) \ {0} with compact support. For tj ∈ R and (uj , vj ) ∈ E,

j = 1, . . . , k, define ρ = ∑k
i=1 tie

Hui Tvi Seui φ. Then by 〈Ig, ρ〉 D= 〈Ih, ρ〉, we
get

∫
E

∣∣∣∣∣
k∑

i=1

ti (�g,Hφ)(u + ui, v + euvi)

∣∣∣∣∣
α

du dv

=
∫
E

∣∣∣∣∣
k∑

i=1

ti (�h,Hφ)(u + ui, v + euvi)

∣∣∣∣∣
α

du dv. (5.11)

Define binary operation ∗ on E by (u1, v1) ∗ (u2, v2) = (u1 + u2, e
u2v1 + v2).

Then (E, ∗) becomes a local compact Hausdorff group with 0 as the identity and
(u, v)−1 = (−u,−e−uv). The Lebesgue measure is left-invariant under ∗, i.e., for
A ∈ B(E) and (u, v) ∈ E, m(A) = m((u, v) ∗ A). On the other hand, letting
J(u, v) = e−nu, there is J(u, v)m(A ∗ (u, v)) = m(A). We can write (5.11) as∫

E

∣∣∣∣∣
k∑

i=1

ti (�g,Hφ)((ui, vi) ∗ (u, v))

∣∣∣∣∣
α

du dv

=
∫
E

∣∣∣∣∣
k∑

i=1

ti (�h,Hφ)((ui, vi) ∗ (u, v))

∣∣∣∣∣
α

du dv.

By [9], there is (ζ, η) ∈ E, with ζ ∈ R and η ∈ R
n, and c = ±1, such that

(�h,Hφ)(u, v) = c
[
J((ζ, η)−1)

]1/α
(�g,Hφ)((u, v) ∗ (ζ, η))

= cenζ/α(�g,Hφ)(u + ζ, eζ v + η).

By the duality (3.3), letting H ′ = n − H and replacing u with −u and v with −v,

(�φ,H ′h)(u, euv) = cenζ/α(�φ,H ′g)(u − ζ, euv − eu−ζ η)

= cenζ/α(U−ζ,−e−ζ η�φ,H ′g)(u, euv).

Writing u0 = −ζ , v0 = −e−ζ η, and β = −nα−1 + H ′ = n(1 − α−1) − H , then
by (4.2),

�φ,H ′h = ce−nu0/αUu0,v0�φ,H ′g = ce−nu0/αeH
′u0�φ,H ′Tv0Seu0g

= ceβu0�φ,H ′Tv0Seu0g.

By Lemma 3, g → �φ,H ′g is 1-1. Therefore, h = ceβu0Tv0Seu0g. ��
In contrast, for α = 2, the representation (5.9), which defines a Gaussian ssd

with index H , is more redundant. A Gaussian random field on Sl (R
n) is H -ss with

index H > 0 if and only if its c.f. is C(φ) = e−B(φ,φ), with the bilinear functional
B given by

B(φ,ψ) =
∫
Sn−1

∫
R

φ̂(euω)ψ̂(euω)e2Hu duG(dω), (5.12)
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where Sn−1 is the unit sphere in R
n and G(E) is a finite measure on B(Sn−1) such

that G(E) = G(−E), for any E ∈ B(Sn−1) [4].

Proposition 6. Suppose I admits a random wavelet expansion representation (5.9),
with M = B an (n+ 1)-dimensional Brownian motion. If the c.f. of I is e−Bg(φ,φ),
then Bg can be represented by (5.12), with G(dω) having a density function

G(dω)

dω
= Ḡ(ω) =

∫
R

cne
(n−2H)u|ĝ(euω)|2 du =

∫ ∞

0
cnt

n−2H−1|ĝ(tω)|2dt.
(5.13)

where cn is a constant only depending on n. Therefore, if g, h ∈ Sk(R
n) correspond

to the same density function Ḡ, then
∫
(�g,Hφ)(u, v)B(du, dv)

D= ∫
�h,Hφ(u, v)

B(du, dv).

Proof. By (5.10), Bg(φ,ψ) = 〈�g,Hφ, �g,Hψ〉. We need to identify the measure
G for Bg . Given u, by g ∈ Sk(R

n), (�g,Hφ)(u, ·) ∈ Sk(R
n). Then it is easy to

show that

(�g,Hφ)
∧(u, k)=(2π)−n/2

∫
e−ik·v(�g,Hφ)(u, v)dv=eHu(2π)n/2ĝ(k)φ̂(−euk),

and likewise for �̂g,Hψ(u, k). Then

Bg(φ,ψ) = 〈(�g,Hφ)
∧, (�g,Hψ)∧〉

= (2π)n
∫

R

∫
Rn

e2Hu|ĝ(k)|2φ̂(−euk)ψ̂(−euk) dk du

(a)= (2π)n
∫

R

∫
Rn

e(2H−n)u|ĝ(e−uk)|2φ̂(k)ψ̂(k) dk du, (5.14)

where (a) is due to variable substitution and |ĝ(−e−uk)|2 = |ĝ(e−uk)|2. Let
k = etω, where t ∈ R and ω ∈ Sn−1. Then for some constant cn, dk =
(2π)−ncne

nt dt dω, and (5.14) leads to

Bg(φ,ψ) =
∫

R

∫
Sn−1

∫
R

cne
2H(t−u)enu|ĝ(euω)|2φ̂(etω)ψ̂(etω) du dt dω.

A comparison of the last integral with (5.12) then leads to (5.13). ��

6. “Projection-first” perspective of random wavelet expansion

6.1. Operator Lg,H

Comparing with the image model in section 2, integration over the scale domain
is equivalent to projection, whose outcome is a 2D image that contains no direct
information on the spatial distribution of objects in the 3D space. Therefore, in
order to get meaningful random wavelet expansion by first integrating over the
scale domain, the incorporated continuous wavelet expansion should be a function
explicitly in the scale as well as in the translate of 2D view of object on the im-
age, rather than the spatial translate of object parallel to the image. This heuristic
suggests the following
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Definition 3. Define

(Lg,Hφ)(u, v) = (�g,Hφ)(−u,−e−uv). (6.1)

By duality (3.3),

(Lg,Hφ)(u, v) = (�φ,n−Hg)(u, v). (6.2)

Define R-transform such that for any (u0, v0) ∈ R × R
n, and any f measurable

function on R × R
n,

(Ru0,v0f )(u, v) = f (u − u0, e
−u0(v − v0)). (6.3)

Then there is, for any (u0, v0) ∈ R × R
n, (Lg,HTv0Seu0φ)(u, v) = e−Hu0

(Ru0,v0Lg,Hφ)(u, v).

In analogy to Theorem 1, we have the following results on R-transform and
Lg,H .

Theorem 6. Suppose that

(1) F is a linear topological space of functions on R × R
n;

(2) W is a random functional on F with continuous c.f. C, such that for some β

constant, and for all f ∈ F and (u0, v0) ∈ R×R
n, C(eβu0Ru0,v0f ) = C(f );

(3) Lg,H is a continuous operator from Sk(R
n) to F .

Then C ◦ Lg,H is the c.f. of an (H + β)-ssd on S ′
k(R

n).

Proof for Theorem 6 is similar to Theorem 1, and hence is omitted. The follow-
ing result implements the idea of first integrating over the scale domain. A random

functional V is called β-ss if it is stationary and eβuS∗
euV

D= V , u ∈ R.

Theorem 7. Fix F and F0 as linear topological spaces of functions on R × R
n

and R respectively, such that for f ∈ F and v ∈ R
n, f (· , v) ∈ F0. Let 8 be a

stationary random functional on F0. Suppose E is a linear topological space of
functions on R

n and V a β-ss random functional on on E . Assume

(1) 8 and V are independent;

(2) Given f ∈ F , with probability 1, (8f )(v)
J= 〈8, f (·, v)〉 as a function of v

belongs to E;
(3) The c.f. C of W : f → 〈V, 8f 〉 is continuous on F .

IfLg,H is continuous from Sk(R
n) into F , thenC◦Lg,H is the c.f. of an (H+β−n)-

ssd on S ′
k(R

n) which admits a representation

〈I, φ〉 = 〈W, Lg,Hφ〉 = 〈V, 8(Lg,Hφ)〉. (6.4)

Proof. By the continuity of Lg,H and C, C ◦Lg,H determines a probability distri-
bution on S ′

k(R
n). It is enough to prove C satisfies Theorem 6 (2). Given (u0, v0) ∈

R × R
n, let f1(u, v) = f (u, e−u0(v − v0)) and f2(u, v) = f (u, e−u0v). Then

〈W, Ru0,v0f 〉 = 〈V, 8Ru0,v0f 〉 D=
(a)

〈V, 8f1〉 D=
(b)

enu0〈V, e−nu08f2〉
D=
(c)

e(n−β)u0〈V, 8f 〉 = e(n−β)u0〈W, f 〉,
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where (a) is due to stationarity of 8 and independence between 8 and V , (b) to
stationarity of V , and (c) to self-similarity with index β of V . ��

Based on Theorem 7, we give an example of ssd constructed a Poisson measure
and an α-stable symmetric measure.

Proposition 7. Given α ∈ (0, 2], fix k, l ≥ 0, H ∈ R such that α(l +H) > n and
n+k−H > 0. Let N and M be two independent random measures, with N a Pois-
son measure with Lebesgue intensity measure on R, and M an α-stable symmetric
random measure with Lebesgue control measure on R

n. Then given g ∈ Sk(R
n),

〈I, φ〉 =
∫

Rn

∫
R

(Lg,Hφ)(u, v)N(du)M(dv), (6.5)

determines a (H − nα−1)-ssd on S ′
l (R

n).

Proof. Given m large enough, define

h(u, v) = e−(H+l)u

(1 + |e−uv|)m 1[0,∞)(u) + e(n+k−H)u

(1 + |v|)m 1(−∞,0)(u). (6.6)

Then by (6.2) and (3.4), |Lg,Hφ| ≤ R(φ)Q(g)h, with R continuous in φ and
R(0) = 0. By l + H > 0, n + k − H > 0, and the dominated convergence, this
leads to w.p.1, given random sample {ui} from the Poisson point process associated
with N ,

∫
R
(Lg,Hφ)(u, v)N(du) = ∑

i Lg,Hφ(ui, v) is a continuous function for
all φ ∈ Sl (R

n). Write

∑
i

h(ui, v)=
∑
ui≥0

e−(l+H)ui

(1 + |e−ui v|)m +
∑
ui<0

e(n+k−H)ui

(1 + |v|)m =F(v, {ui}) + G(v, {ui}).

Then by Theorem 7, it is enough to show that w.p. 1, (1) F(v, {ui}) ∈ Lα , (2)
G(v, {ui}) ∈ Lα . Because n+ k −H > 0, it is easy to prove (2). The proof for (1)
is divided into two cases.

Case 1: α > 1. By α(l+H) > n, fix ε ∈ (0, 1) such that n < α(1− ε)(H + l).
Let β be such that β−1 + α−1 = 1. Then w.p. 1, Sp = ∑

ui≥0 e
γpui < ∞ for

p = 1, 2, with γ1 = −βε(l + H), γ2 = n − α(1 − ε)(l + H). By Hölder’s
inequality,

|F(v, {ui})|α =

∑

ui≥0

e−(l+H)ui

(1 + |e−ui v|)m




α

≤ S
α/β

1

∑
ui≥0

e−α(1−ε)(l+H)ui

(1 + |e−ui v|)mα
.

Integrating both sides gives

∫
Rn

|F(v, {ui})|α dv ≤ S
α/β

1

∫
Rn

∑
ui≥0

e−α(1−ε)(l+H)ui

(1 + |e−ui v|)mα
dv

≤ S
α/β

1 S2

∫
Rn

dv

(1 + |v|)mα
< ∞.
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Case 2: α ≤ 1. Fix R > 0. Since w.p. 1, F(v, {ui}) is a continuous function,
it is enough to show,

∫
|v|≥R

|F(v, {ui})|α dv < ∞, w.p.1. By Fubini’s theorem,
Hölder inequality, and Campbell’s theorem,

E

[∫
|v|≥R

|F(v, {ui})|α dv
]

=
∫

|v|≥R

E
(|F(v, {ui})|α) dv ≤

∫
|v|≥R

(E|F(v, {ui})|)α dv

=
∫

|v|≥R

(∫ ∞

0

e−(l+H)u

(1 + |e−uv|)m du

)α

dv

≤
∫

|v|≥R

|v|−α(l+H)

(∫ ∞

−∞
e−(l+H)u

(1 + e−u)m
du

)α

dv.

Because e−(l+H)u(1 + |e−u|)−m ≤ e−(l+H)u1[0,∞)(u) + e(m−l−H)u1(−∞,0)(u) ∈
L1, and n < α(l+H), the last integral converges. This implies

∫
|v|≥R

|F(v, {ui})|α
dv < ∞, w.p. 1.

By (6.6), it is not hard to see the continuity of the c.f. of I . Then by Theorem 7
and the fact that the random functional f → ∫

f dM , f ∈ Lα , is n(1 − α−1)-ss,
I is (H − nα−1)-ss. ��

6.2. Construction of linear fractional or log-fractional stable motion
by discretization

In this section we demonstrate that the familiar linear fractional stable motion
(LFSM) or log-fractional stable motion (log-FSM) defined on R can be constructed
from random wavelet expansion. Let R

n = R. SupposeM is an α-stable symmetric
random measure. Given k, l ≥ 0, H ∈ R satisfying the conditions in Proposition
7, for g ∈ Sk(R),

〈I, φ〉 = 〈W, Lg,Hφ〉 =
∫

R

∫
R

(Lg,Hφ)(u, v) duM(dv), (6.7)

defines a self-similar generalized random process on S ′
l (R). We will first show that

if φ is replaced with 1[0,t], the right hand side of (6.7) defines a LFSM. We need
the following result.

Lemma 5. Fix f ∈ S(R) and H > −1. Define

f̃ (u, v) = f (euv) − f (0)1(−∞,0)(u)

and for c = ±1,

A(c,H, f ) =
∫

R

eHuf̃ (u, c) du, B(c,H, f ) =
∫

R

eHu|f̃ (u, c)| du.
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Then for any v �= 0,

∫
R

eHuf̃ (u, v) du=

 |v|−H

(
A(sign(v),H, f ) + f (0)

H

)
− f (0)

H
, H �= 0,

A(sign(v), 0, f ) − f (0) ln |v|, H = 0

(6.8)∫
R

eHu|f̃ (u, v)| du≤

 |v|−H

(
B(sign(v),H, f ) + |f (0)|

|H |
)

+ |f (0)|
|H | , H �= 0,

B(sign(v), 0, f ) + |f (0) ln |v||, H = 0

(6.9)

Proof. See section 7. ��
Proposition 8. FixH ∈ (1/α, 1+1/α). Given g ∈ Sk(R), k ≥ 1, letG ∈ Sk−1(R)

be such that G(−∞) = 0 and g = G′. Then

{Xt, t ∈ R} =
{∫

R

∫
R

(Lg,H1[0,t])(u, v) duM(dv), t ∈ R

}
(6.10)

can be written as Xt = ∫
F(v, t)M(dv), where for v �= 0, t ,

F(v, t) =



a(sign(t − v))|t − v|1−H − a(sign(−v))| − v|1−H , H �= 1

G(0)(ln |v| − ln |t − v|) + (a(1) − a(−1))
[1(−∞,t)(v) − 1(−∞,0)(v)], H = 1

and the constants a(1) and a(−1) are defined by

a(c) =
{
A(c,H − 1,G) + G(0)(H − 1)−1, H �= 1,
A(c, 0,G), H = 1.

Remark. When H �= 1, Xt is a LFSM. In [18], a LFSM is represented by Xt =∫
F̄ (v, t)M(dv) with

F̄ (v, t) = a[((t − v)+)H̃−1/α − ((−v)+)H̃−1/α]

+b[((t − v)−)H̃−1/α − ((−v)−)H̃−1/α],

with H̃ ∈ (0, 1) and H̃ �= 1/α. It is not hard to see that the parameters in F and
F̄ have the same range. When H = 1, (6.10) gives log-fractional stable motion
as well as the usual Lévy motion.

Proof. By H ∈ (1/α, 1 + 1/α), the process
∫
F(v, t)M(dv) is well-defined.

Assume H �= 1. Define G̃ in terms of G as f̃ in terms of f in Lemma 5. By

(Lg,H1[0,t])(u, v) =
∫ t

0
e−Hug(e−u(x − v)) dx

= e(1−H)u(G(e−u(t − v)) − G(−e−uv)),
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it is seen∫
R

(Lg,H1[0,t])(u, v) du =
∫

R

e(H−1)uG̃(u, t − v) du −
∫

R

e(H−1)uG̃(u,−v) du.

(6.11)

The case H �= 1 immediately follows from Lemma 5. The case H = 1 can be
similarly proved. ��

We next show the main result of this section, i.e., LFSM can be constructed from
random wavelet expansion by discretization. Fix ρ ∈ C∞

0 (−1, 1) with
∫
ρ = 1.

Given ε > 0 and t , define

ρε(x) = ε−1ρ(ε−1x), φε,t (s) =
∫

R

ρε(s)1[0,t](x − s) ds.

It is easy to check φε,t ∈ C∞
0 (I ), where I is the interval (min{0, t}−ε,max{0, t}+

ε). Also, φ′
ε,t (x) = sign(t) [ρε(x) − ρε(x − t)] and φε,t (x) → 1[0,t](x).

Theorem 8. Suppose M is an α-stable symmetric random measure with Lebesgue
control measure. Fix k ≥ 1 and g ∈ Sk(R). LetH ∈ (1/α,min{k, 1+1/α}). Define

Fε(v, t) =
∫

R

(Lg,Hφε,t )(u, v) du. Then forX in (6.10),

{∫
R

Fε(v, t)M(dv)

}
D−→

X, as ε → 0.

Proof. Denoting by F(v, t) the integral on the left hand side of (6.11), the proof is
reduced to showing ‖Fε(v, t)−F(v, t)‖α → 0, t ∈ R. Without loss of generality,
assume t > 0. Then it is easy to see φε(x) = 1, x ∈ (ε, t − ε). For simplicity, write
φε = φε,t and φ = 1[0,t]. We first prove

lim
ε→0

∫
v �∈(−ε,ε)∪
(t−ε,t+ε)

|Fε(v, t) − F(v, t)|α dv = 0. (6.12)

Denote the integral by I (ε). Let Uε = (−ε, ε), Vε = (t − ε, t + ε), and P(u, v) =
eHug(euv). Then by

Fε(v, t) − F(v, t) =
∫

R

∫
R

eHug(eu(x − v))(φε(x) − φ(x)) dx du,

for some constant K ,

I (ε)
(a)≤

∫
v �∈Uε∪Vε

(∫
R

∫
Uε∪Vε

|P(u, x − v)| dx du
)α

dv

≤ K

[∫
v �∈Uε

(∫
Uε

∫
R

|P(u, x − v)| du dx
)α

dv

+
∫
v �∈Vε

(∫
Vε

∫
R

|P(u, x − v)| du dx
)α

dv

]
,
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where (a) is due to φε = φ on R \ (Uε ∪ Vε), and |φε − φ| ≤ 1. Since g ∈ S(R)

and H > 0, then∫
R

|P(u, v)| du =
∫ ∞

0
ξH−1|g(vξ)| dξ ≤ M|v|−H , v �= 0

where M = max
{∫ ∞

0 ξH−1|g(cξ)| dξ, c = ±1
}
< ∞. Therefore,

I (ε)≤KMα

[∫
v �∈Uε

(∫
Uε

|x − v|−H dx

)α

dv+
∫
v �∈Vε

(∫
Vε

|x − v|−H dx

)α

dv

]
.

Denote the above two integrals by I1(ε) and I2(ε), respectively. By αH > 1 and
H < 1 + 1/α,

I1(ε) =
∫
v �∈Uε

(∫
Uε

|x − v|−H dx

)α

dv

= ε1+(1−H)α

∫
|v|≥1

(∫ 1

−1
|x − v|−H dx

)α

dv → 0.

Similarly, I2(ε) → 0. Therefore, I (ε) → 0 and (6.12) is proved.
For τ = 0, t , as ε → 0, by Proposition 8,

∫ τ+ε

τ−ε
|F(v, τ )|α dv → 0. To demon-

strate ‖Fε − F‖α → 0, it remains to be shown that

∫ τ+ε

τ−ε

|Fε(v, τ )|α dv → 0.

First consider the limit for τ = 0. Denote J (u, v) = Lg,Hφε(u, v) and let
l = max{1, "H#}. Since k ≥ 1 and k + 1 > H , l ≤ k. Fix f ∈ S(R), such that
f (l) = g ∈ Sk(R). Integration by parts gives

J (u, v) =
∫

R

eHug(eu(x − v))φε(x) dx

= (−1)l
∫ ε

−ε

e(H−l)uρ(l−1)
ε (x)[f (eu(x − v)) − f (eu(x + t − v))] dx.

Denote

j (x, u) = (−1)le(H−l)u[f (eux) − f (eu(x + t))].

Then J (u, v) = ∫ ε

−ε
ρ
(l−1)
ε (x)j (x − v, u) dx. First assume H �∈ N. Then l −H ∈

(−1, 1) \ {0}. Then by (6.9), there is M = M(ε), such that

∫ ε

−ε

∫
R

∣∣∣ρ(l−1)
ε (x)j (x − v, u)

∣∣∣ du dx
≤ M

∫ ε

−ε

(
|x − v|l−H + |x + t − v|l−H + 1

)
dx < ∞.
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Therefore, by Fubini’s theorem and (6.8),∫
R

J (u, v) du =
∫ ε

−ε

∫
R

ρ(l−1)
ε (x)j (x − v, u) du dx

= (−1)l
∫ ε

−ε

ρ(l−1)
ε (x)(a(sign(x − v))|x − v|l−H

−a(sign(x + t − v))|x + t − v|l−H ) dx,

where a(c) = A(c,H − l, f ), c = ±1. Notice ρ(l−1)
ε (x) = ε−lρ(l−1)(ε−1x). Then

it is easy to see for some constant K ,∫ ε

−ε

∣∣∣∣
∫

J (u, v) du

∣∣∣∣
α

dv

≤ K

εαl

(∫ ε

−ε

(∫ ε

−ε

|x − v|l−H dx

)α

dv+
∫ ε

−ε

(∫ ε

−ε

|x + t − v|l−H dx

)α

dv

)
.

Denote the two integrals on the right hand side by Ii(ε), i = 1, 2, respectively.
Then by l + 1 > H , and H < 1 + α−1, as ε → 0,

I1(ε) = ε1+α(1−H)

∫ 1

−1

(∫ 1

−1
|x − v|l−H dx

)α

dv → 0.

For I2(ε), because x, v ∈ (−ε, ε), when ε < t/2, |x + t − v| is lower bounded
from 0. Therefore I2(ε) → 0 as well. Thus, for τ = 0,∫ τ+ε

τ−ε

|Fε(v, t)|α dv =
∫ ε

−ε

∣∣∣∣
∫

R

J (u, v) du

∣∣∣∣
α

dv → 0.

The cases where H ∈ N or τ = t are similarly proved. Together with (6.12), this
proves Theorem 8. ��

7. Proofs of technical details

Proof of Lemma 2. We need the following result for the proof.

Lemma 6. Define two sequences of functionals {Km, m ∈ N} and {bm, m ∈ N}
on S(Rn) by

Km(f ) = max

{∫
(1 + |x|)m|f (x)| dx, sup

x∈Rn

(1 + |x|)m|f (x)|
}
, (7.1)

bm(f ) = 2m sup
x∈Rn


(1 + |x|)m

∑
|α|≤m

|∂αf (x)|

 , f ∈ S(Rn). (7.2)

Suppose k ≥ 0 and g ∈ Sk(R
n). Then given H ∈ R, for any φ ∈ S(Rn),

|(�g,Hφ)(u, v)| ≤ nk

k!

e(H−n−k)u

(1 + |e−uv|)mKm+k+n+1(g)bm(φ),

m ≥ k, u ≥ 0, v ∈ R
n. (7.3)
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Assume Lemma 6 is true for now. We prove the 4 statements in Lemma 2.
(1) To show �g,H is a continuous operator from Sl (R

n) into Lp(R × R
n), fix

m > max{k, l, n/p}. Then
∫
Rn(1 + |v|)−mp dv < ∞. By p(n+ k−H) > n, (7.3)

implies

∫
[0,∞)×Rn

|�g,Hφ|p

≤ (Km+k+n+1(g)bm(φ))
p

(
nk

k!

)p ∫
[0,∞)×Rn

(
e(H−n−k)u

(1 + |e−uv|)m
)p

du dv

= (Km+k+n+1(g)bm(φ))
p

(
nk

k!

)p ∫ ∞

0
ep(H−n−k)u+nu du

∫
Rn

dv

(1 + |v|)mp
< ∞. (7.4)

On the other hand, since φ ∈ Sl (R
n), for u < 0, by the duality (3.3) and Lemma

6, we have

|(�g,Hφ)(u, v)|=|(�φ,n−Hg)(|u|,−e|u|v)|≤ nl

l!

e(H+l)u

(1 + |v|)mKm+l+n+1(φ)bm(g),

(7.5)

which, by l > −H , leads to

∫
(−∞,0)×Rn

|�g,Hφ|p

≤ (Km+l+n+1(φ)bm(g))
p

(
nl

l!

)p ∫ 0

−∞
ep(H+l)u du

∫
Rn

dv

(1 + |v|)mp < ∞.

(7.6)

Furthermore, by (7.4) and (7.6), for some constant C independent of g and φ,

‖�g,Hφ‖p ≤ C(bm(g) + Km(g))(bm(φ) + Km(φ)), (7.7)

It is easy to see that as φ → 0 under the topology of Sl (R
n), bm(φ) → 0 and

Km(φ) → 0. As �g,H is linear, this implies its continuity.
(2) The continuity of g → �g,Hφ from Sk(R

n) into Lp(R × R
n), given φ ∈

Sl (R
n), is obvious by (7.7).

(3) For any m ≥ max{k, l}, (7.3) and (7.5) hold. Define

R(g)=max

{
nk

k!
Km+k+n+1(g),

nl

l!
bm(g)

}
, Q(φ)=max {bm(φ),Km+l+n+1(φ)} .

Then (3.5) is proved.
(4) The proof of the statement is routine. We therefore omit it for brevity. ��
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Proof of Lemma 6. Given u ≥ 0,

(�g,Hφ)(u, v)

= eHu

∫
Rn

g(eux + v)φ(x) dx = e(H−n)u

∫
Rn

φ(e−u(x − v))g(x) dx = I.

(7.8)

If k ≥ 1, then by Taylor’s expansion of φ around −e−uv, and g ∈ Sk(R
n),

I = e(H−n−k)u
∑
|α|=k

∫ 1

0

k(1 − t)k−1

α!

(∫
Rn

xα∂αφ(te
−ux − e−uv)g(x) dx

)
dt

= e(H−n−k)u
∑
|α|=k

∫ 1

0

k(1 − t)k−1

α!

(∫
|x|≤ 1

2 |v|
F +

∫
|x|≥ 1

2 |v|
F

)
dt, (7.9)

where F stands for xα∂αφ(te−ux − e−uv)g(x).
If |x| ≤ 1

2 |v|, then for t ∈ [0, 1], |te−ux − e−uv| ≥ 1
2e

−u|v|, implying

|∂αφ(te−ux − e−uv)| ≤ bm(φ)(1 + e−u|v|)−m, |α| = k, m ≥ k, . . .

with bm defined by (7.2). Then∫
|x|≤ 1

2 |v|
|F | ≤ bm(φ)

(1 + e−u|v|)m
∫
(1 + |x|)k|g(x)| dx ≤ bm(φ)Kk(g)

(1 + e−u|v|)m . (7.10)

If |x| ≥ 1
2 |v|, by (7.1) and (7.2),

|xαg(x)| ≤ Km+n+k+1(g)(1 + |x|)−(m+n+1), |∂αφ|≤2−mbm(φ), |α|=k,m ≥ k,

leading to∫
|x|≥ 1

2 |v|
|F | ≤ bm(φ)

2m

∫
|x|≥ 1

2 e
−u|v|

Km+n+k+1(g)

(1 + |x|)m+n+1
dx ≤ bm(φ)Km+n+k+1(g)

(1 + e−u|v|)m .

(7.11)

Because Km is increasing in m, from (7.9)–(7.11) it is seen that

|(�g,Hφ)(u, v)| ≤ e(H−n−k)u

(1 + e−u|v|)m bm(φ)Km+n+k+1(g)
∑
|α|=k

∫ 1

0

k(1 − t)k−1

α!
dt.

The summation on the right is equal to nk/k!, completing the proof of (7.3) for
k ≥ 1.

If k = 0, then I in (7.8) is decomposed into

I =e(H−n)u

(∫
|x|≤1

2 |v|
φ(e−u(x − v))g(x) dx+

∫
|x|≥ 1

2 |v|
φ(e−u(x − v))g(x) dx

)
.

Argument leading to (7.10) and (7.11) still apply, and hence (7.3) is proved. ��



298 Z. Chi

Proof of Lemma 3. Define operator Vu,v : φ(x) → e−nu/2φ(e−ux − v). Then

(�g,Hφ)(u, v) = e(H−n/2)u(φ, V−u,−vg).

Following the proof of (5.14), it is seen that∫
R×Rn

|(φ, Vu,vg)|2 du dv = c

∫
Rn

|φ̂(ξ)|2
∫

R

|ĝ(euξ)|2 du dξ.

with c = (2π)n. Let t = eu|ξ |. Then u = ln t − ln |ξ | and hence∫
R×Rn

|(φ, Vu,vg)|2 du dv = c

∫
Rn

|φ̂(ξ)|2
∫

R+
t−1|ĝ(tω)|2 dt dξ

= c

∫
Rn

|φ̂(ξ)|2cg,ω dξ. (7.12)

If (�g,Hφ)(u, v) ≡ 0, then (φ, V−u,−vg) ≡ 0, and by (7.12), |φ̂(ξ)|2cg,ω = 0.
Therefore, for cg,ω �= 0, φ̂(ξ) = 0. Let Z = {

ω ∈ Sn−1 : cg,ω = 0
}

and regard
it as a topological subspace of Sn−1. Denote by Z◦ the inner part of Z. We prove
that as long as g �= 0, Z◦ = ∅. First, if cg,ω = 0, then for all t > 0, ĝ(tω) = 0.
Assume Z◦ �= ∅. Denote by C the cone {tω : t ∈ R+, ω ∈ Z◦}. Then C is open
and ĝ ≡ 0 on C. Given α, ξ ∈ C, ∂αĝ(ξ) = ∫

Rn(−i)|α|xαe−iξ ·xg(x) dx = 0. Let
ξ → 0. Since 0 is on the boundary of C, and ĝ ∈ S(Rn), then

∫
Rn x

αg(x) dx ≡ 0.
Since g has compact support, then g = 0.

The contradiction shows Z◦ = ∅. This implies that the set of ξ with φ̂(ξ) = 0
is dense in R

n. Since φ̂ is continuous, this implies φ̂(ξ) ≡ 0, and hence φ = 0.
��

Proof of Lemma 5. To prove (6.8), first assume H �= 0. Then for any v �= 0, write
v = c|v| and use change of variable to get∫

eHuf̃ (u, v) du

=
∫ ∞

0
eHuf (euv) du +

∫ 0

−∞
eHu(f (euv) − f (0)) du

= |v|−H

∫ ∞

ln |v|
eHuf (ceu) du + |v|−H

∫ ln |v|

−∞
eHu(f (ceu) − f (0)) du

= |v|−H

(∫ ∞

0
eHuf (ceu) du +

∫ 0

−∞
eHu(f (ceu) − f (0)) du

−
∫ ln |v|

0
eHuf (0) du

)

= |v|−H

(
A(c,H, f ) + f (0)

H

)
− f (0)

H
.

The case where H = 0 is also straightforward. The proof for (6.9) is similar to
(6.8) and hence is omitted. ��
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8. Discussion

In addition to invariance under scaling and translation, we can introduce invari-
ance under other transformations, such as orthogonal transformations, which form
a compact group SO(n) and commute with scaling. Indeed, if C(φ) is the c.f. of an
ssd, then C̃(φ) = ∫

SO(n)
C(φ ◦ g)dm(g), where m is the Haar measure on SO(n),

determines an ssd which is also rotation invariant.
More generally, suppose G is an Abelian Lie group of transformations on R

n

with a finite number of generators A1, . . . Ak . Given t = (t1, . . . , tk), let t · A =∑
i tiAi . Then elements in G can be represented by et ·A = ∏

etiAi . Define an
operator St on test functions φ to be (Stφ)(x) = J (et ·A)φ(et ·Ax), where J (·) is the
Jacobian. Let S∗

t be the adjoint of St . Formally define a wavelet expansion with mul-
tiple indexH = (H1, . . . , Hk) by (�g,Hφ)(t, v) = et ·H

∫
(S∗

t T
∗
v g)·φ. We then get,

for any t0 ∈ R
k and v0 ∈ R

n, (�g,HTv0St0φ)(t, v) = (�g,Hφ)(t + t0, v + et ·Av0).
Introduce operator Ut0,v0 such that (Ut0,v0f )(t, v) = f (t + t0, v + et ·A). Then we
can construct random fields invariant under U∗

t,v , which induce via �∗
g,H random

fields invariant under G.
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