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Abstract. Random wavelet expansion is introduced in the study of stationary self-similar
generalized random fields. It is motivated by a model of natural images, in which 2D views
of objectsare randomly scaled and transl ated because the objectsare randomly distributed in
the 3D space. It is demonstrated that any stationary self-similar random field defined on the
dual space of a Schwartz space of smooth rapidly decreasing functions hasarandom wavel et
expansion representation. To explicitly construct stationary self-similar random fields, ran-
dom wavel et expansion representations incorporating random functionals of the following
threetypesare considered: (1) amultiple stochastic integral over the product domain of scale
and translate, (2) an iterated one, first integrating over the scale domain, and (3) an iterated
one, first integrating over the translate domain. We show that random wavelet expansion
givesrise to a variety of stationary self-similar random fields, including such well-known
processes as the linear fractional stable motions.

1. Introduction

Self-similar distributions (ssd’s henceforth) form an intensively studied area in
probability theory [21-23, 4, 5, 20, 1, 19, 18, 2]. Interest in such distributions orig-
inated in physics, especially renormalization group theory and critical phenomena.
Recently ssd's have also gained interest in human vision [16, 17, 11, 6] and image
analysis|[24, 3, 8, 14].

Thisarticleismainly concerned with stationary self-similar generalized random
fields. Dobrushin [4] gave acomplete description of Gaussian ssd’s and also estab-
lished a representation of ssd's subordinated to Gaussian ones, all of which have
finite variances. Tagqu and Wolpert [23] and Magjima [12] investigated the con-
struction of infinite variance self-similar processes with stationary increments sub-
ordinated to Poisson measures. These processes, when differentiated, yield ssd's.

Whereas the above methods are established for specific types of ssd's, the ap-
proach presented here is a general one. Termed “random wavelet expansion”, it
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was motivated by image analysis. It has been noted that natural images exhibit
strong scaling property in addition to stationarity. Therefore it is sensible to build
stationary self-similar image models. However, regular functions sampled from
ssd’s are either constant or fractal, which is in contrast with the rich structure
natural images have. For this reason, Mumford [13] proposed that images are
better modeled as generalized functions. As far as the author knows, Mumford
and Gidas [14] obtained the first random wavelet expansion representation as
follows,

[, y) =) Ji(ix +ai, hiy +by), (1.1)

1

where {(A;, a;, b;)} is a random sample from a Poisson point process on R x R2
with intensity measure =1 d da db and J; are independent random generalized
functions from some distribution vg. This representation was derived from a sta-
tistical model on the composition of the object surfacesin natural images. Around
the same time, another image model was proposed in [3] from the perspective that
natural images are generated by projecting the 3D space onto an image film. Since
objects are randomly located in the 3D space, their 2D views are randomly scaled
and translated, leading to (1.1). Section 2 gives more detail on the model and its
connection with (1.1).

The representation (1.1) will be generalized, while still termed “random wave-
let expansion”. A random wavel et expansion representation hastheform (1, ¢) =
(W, ¥, go), where ¢ isatest function on R”, W alinear random functional, and
W, g a(deterministic) continuous wavel et expansion operator with mother wavel et
g andindex H. Then (W, ;) (u, v) isafunctionon R x R”, withu € R corre-
sponding to the scale, and v € R” the translate. The physical meaning of the above
formula can be seen more clearly in light of the model in section 2.

Random wavelet expansion is general in the following sense: any ssd
defined on the dual space of a Schwartz space of smooth rapidly decreasing func-
tions has a random wavelet expansion representation I = \IJ; g W, with ¢ an
infinitely differentiable function with compact support (Theorem 2). Neverthel ess,
the result gives little information on how to characterize a ssd by random
wavel et expansion. To get such information, it is necessary to have ssd's explicitly
constructed.

For the random functional W' in the representation / = W7 , W, the most
natural choiceis stochasticintegrals. As W, ¢ isafunction of scale and trandlate,
W can be a multiple integral over the product domain of the two (scale-trandate
domain); or aniterated integral that first integrates over the translate domain, then
over the scale domain (Theorem 3); or an iterated integral that integrates in the
other order (Theorem 7). These possibilities are investigated in detail in sections
4-6.

In section 4, after setting up the framework of random wavelet expansion, we
will explore theidea of using stochastic integrals that first integrate over the trans-
late domain, to yield a quite general construction scheme. Intuitively, the scheme
is to “stack” along the scale domain different types of stationary random fields,
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each defined on the trandlate domain. If the locations and the types of the stacked
random fields form a stationary point process, then under certain independence
condition for these random fiel ds, the superimposition of their “ projections’ along
the scale domain is a ssd. The idea of the scheme also enables us to better under-
stand the spatial structure underlying self-similarity. In section 4.3 we consider the
rel ationship between symmetry and self-similarity. Wewill show that, under certain
minor conditions, a stationary random field is self-similar if it is self-similar with
respect to both symmetric test functions and anti-symmetric ones (Theorem 4). On
the other hand, by employing a stochastic integral that is not stationary along the
scale domain, we obtain stationary random fields that are self-similar with respect
to symmetric test functions while not to anti-symmetric ones, or vice versa. The
resultsdemonstrate that the stationarity of arandom integral aongthe scaledomain
plays a non-trivial rolein ensuring self-similarity.

Section 5 studies in detail random wavelet expansion representations that in-
corporate multiple stochastic integrals. All the ssd’sin this section are constructed
based on a ssimple fact. That is, random wavelet expansion converts scalings and
trandations into diffeomorphisms of the scale-translate domain that have Jacobian
1. As will be seen, as Poisson random measures, stable symmetric random mea-
sures, and many other random measures that underlie infinitely divisible random
fields are invariant under such diffeomorphisms, they can be combined with ran-
dom wavelet expansion to get ssd's. A rich class of stable symmetric ssd's can be
constructed in thisway. Briefly, if M isan a-stable symmetric measure, « € (0, 2),
then for representations (1o, ¢) = [(V, yp)dM and (I, ¢) = [ (Y, u¢)dM,

the necessary and sufficient condition for I, 2 Iy, isthat ¢ and h be scaled and
translated versions of each other, up to asign (Theorem 5).

In section 6, we consider the case where W is an iterated stochastic integral
that first integrates over the scale domain. The integral will be combined with a
“dual” operator L, p; of W, p (see Eqg. (3.3)). Random wavelet expansion in this
section givesriseto the familiar linear fractional or log-linear stable motionson R
[18], giving these random processes an underlying spatial structure. First, it will be
demonstrated that letting ¢ = 1j04, t € R, the process X; = (W, L, g1j0,+) can
be alinear fractional stable motion, alog-linear fractional stable motion, or smply
aL évy mation (Proposition 8). This formally argues that these motions arise from
the random wavel et expansion representation / = L, ,, W. Ontheother hand, as /
can not be directly imposed on an indicator function, to make the argument precise,
wewill show that X, isthelimitindistribution of (I, ¢, ) for asequence of smooth
rapidly decreasing functions ¢, (Theorem 8). Such limiting procedure is called
“discretization” in some literature [4].

The other parts of the article are organized as the following. Section 3 fixes
notation, defines the expansion operator ¥, z and collects some of its important
functional properties. In particular, the dual operator of W, 5 will be quite useful
(Lemma 1). Section 7 gives proofs of the technical results on functional properties
of W, . Finaly, section 8 discusses possible generalization of random wavelet
expansion to random fields invariant under transformations that consist a finitely
generated commultative Lie group.
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2. Animage analysis background

In this section we present an image analysis background for random wavel et expan-
sion, toillustrate how the latter naturally arises from statistical modeling of natural
images.

One remarkable empirical property of natural imagesis their apparent statisti-
cal scaleinvariance. That is, the marginal distributions of many statistics of natural
images are invariant when the images are scaled. This natural phenomenon is of
interest in biological vision aswell asin computer vision.

The statistical model devised in [3] to explain the origin of scaling of natural
images regards such images as 2D views of the 3D world through the lens of a
camera. The model is based on several assumptions:

(1) The objects are simplified as planar templates parallel to the camera image
plane. Each object has a fixed reference point, so that its spatial location refers
to the location of its reference point;

(2) Assuming sparseness of the objectsin the 3D world, anatural imageisapprox-
imately the arithmetic sum of the 2D views of the objects;

(3) Thelocations of the objects form apoint processin the 3D space;

(4) The shape of an object isindependent of its spatial location.

Set up appropriate coordinate systems in the 3D space and on the camera image
plane so that a point with coordinates (A, y, z) in space is at distance A from the
cameralens and its projection on theimage planeisat (—y /A, —z/A).

Given an object, let f (&, n) beits“standard view”, which isafunction describ-
ingthelight or color intensity insideits 2D view, whenitislocated at (1, 0, 0). Then
by projectivegeometry, if theobjectismovedto (1, y, z), A > 0, theintensity inside
its2D view ischangedto f (A& + y, An+z). Letting (1;, y;, z;) bethelocations of
the objects, and f; the standard views of the objects, the above assumptions of the
model imply that animage I canbewrittenas (€, 1) = Y, fi(Ai&+yi, Ain+2zi),
with { f;} independent of {(;, y;, z;)}, which is exactly (1.1). Due to the obvious
random scaling and translation of the template functions f; in its summation, (1.1)
is caled “random wavelet expansion” in [14]. It is a sSimple matter to verify that
if {(A;, yi,z)} is arandom sample from a Poisson point process with intensity
measure A1 d dy dz, then, formally, I is stationary as well as scale invariant.

In accord with the view of [13], theimage I is considered a generalized func-
tion. As a mathematical simplification, assume the templates are identical and let
g bethe standard view of the templates. Then for any test function ¢,

(1. 8) =3 [ 5ut = yiohun =z 9.y de . 2.1)

Let »; = e", v; = —(i,z), x = (&, n). Define function W,¢ : (u,v) —
[ g(e"x+v)p(x)dx,then(l, ¢p) = (W, Wep), WithW = 3", 8(u —u;)8(v—v;).
Then I hasthe (formal) representation

I=WW. 2.2)
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For the representation (2.1), I has to be composed of countably many randomly
scaled and trandated copies of g. The representation (2.2) on the other hand dis-
penses with this requirement, hence allowing generalization. Since the essence of
(2.2) isthe combination of arandom functiona (W) and a (continuous) determin-
istic expansion (W, with theindex H# = 1 omitted), we will still call it “random
wavelet expansion”.

3. Preliminaries
3.1. Notation

A multiple index is an n-tuple ¢ = (ag, ..., a,), with «; € N U {0}. Denote
le| =Y ;. Givenx € R" and ¢ € C*°(R"), denote

31l (x)

dxyt ... 0xy" '

o
x¥=x3txpy, Bap(x) =

Denote by S(R") the Schwartz space of real-valued smooth rapidly decreasing
functionson R” ([7], pp 20-23). Denote

Cy°(R") = {¢ € S(R") : ¢ has compact support}
Si(RY) = {¢p € SR : /x“¢(x)dx =0, o] <k}, k>1.

The topology of S (R") isinherited from S(RR™). For convenience, we will occa-
sionally use Sp(R") for S(R™). All Sx(R™) are nuclear linear topological spaces
([7], pp 73 & 86). By convention, S; (R") stands for the space of continuous linear
functionals on S (R"), equipped with the weak topology. The o -algebra of Borel
subsets of S; (R") with respect to the weak topology is denoted by B(S; (R")). For
F e S (R") and ¢ € S(R") we often write (F, ¢) for F(¢).

Wewill refer to linear random functional on topological space as random func-
tional. Given R”, following [4], a generalized random process (n = 1) or field
(n > 1) on R" is a probability measure n on (S;(R"), B), for some k > 0,
with B the weak topology generated by cylinder sets. A random functional F on
Sr(R™) iscaled arepresentation of ., if thec.f. of F isthe sameasthat of u, i.e.,
E[e" 9] = [P udw), ¢ € S(R").

Givent > 0and v € R", define scaling operator S, and translation operator
T, such that for any regular function ¢ on R”,

(i) (x) =17"p(t7x), (Tud)(x) = p(x —v).

Denote by S; and T, the adjoint operators of S; and T, on S (R"). Notice that
if F e S (R") happens to be a regular function, then S;F is a regular function
with (S F)(x) = F(rx) and T,) F is another regular function with (77 F)(x) =
F(x +v).
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Definition 1. Fix H € R. A probability measure i on S, (R") is called stationary
and self-similar with index H (H-ss) if

w(A) = p(@"sH7MA), w(A) = p(T)TA), >0, veR”,
A € B(S,(R")). (3.1

If u satisfies (3.1), then we call it an H-ssd.

By Bochner’s theorem for nuclear spaces[7], if F isarandom functional rep-
resentation of ., then  is H-ssiff ¢ € S, (F, ¢) 2 (F, tH5,T,¢). Formally, this
can be regarded as F (x) 2 tHF(tx 4+ v).

3.2. Definition and functional properties of W, y

Definition 2. Given a function g and H € R, wavelet expansion operator W, g
on S (R™), with “ mother wavelet” ¢ and index H, is defined by

Wt = [ Mgx g dr, pe SR (32
Comparingwith (2.1), itisseenthat (e¢*, v) can bethought of asthe spatial location
of an object, with ¢ the distance of the object fromthe camera lens, and v the shift
of the object inthe 3D space, parallel to theimage plane. Furthermore, e v isthe
translate of the 2D view of the object on the image plane.

The following obvious duality on W, z is useful in proving several properties of
W, p, and also useful in the construction of «-stable fractional fields in section 6.

Lemmal. Supposeg, ¢ € S(R™). Thenfor any H € R,

(Ve md) U, v) = (Vg n—ng)(—u, —e "v). (33

Lemma?2. Fixk,! € {O}UN, H € R,and p € (0, oo],suchthat p(n+k—H) > n
and/ > —H. Then

(1) Giveng e S¢(R"), W, g isa continuous operator from S;(R") into L” (R x
R™);

(2) Onthe other hand, given ¢ € S;(R"), themap g — W, y¢ isa continuous
operator from Sy (R") into LP (R x R™);

(3) Givenanyinteger m > max{k, [}, define

e(anfk)u e(H+l)u

) = ey 0 T

A+ l—o,0). (34)

TherearefunctionsR € C(Sx(R™"))and Q € C(S;(R"))withR(0) = Q(0) =
0, such that

|(We, 5 ¢)(u, v)| < R(8)Q(@)h(u, v), (3.9)



Construction of stationary self-similar generalized fields 275

@ fm > maxi{k,l,n + k — H} (by assumption, thisimpliesm > n/p), then
for h defined by (34), h € LP(R x R"), and F(v) = [°_ h(u,v)du €
C(R™ N LP(R™).

Lemma3. Givenany 0 # ¢ € C;°(R") and H € R, ¥, y isa 1-1 map from
S(R™) into C®(R x R™).

Proofs of Lemma 2 and Lemma 3 are put off until section 7.

4. Random Wavelet Expansion
4.1. Definition and existence of random wavelet expansion representation for ssd
With W, replaced by W, 5, where g € S (R") for certaink € {O}UNand H € R,
representation (2.2) is now modified to

I=w;,W. (4.1)

We term (4.1) random wavelet expansion. The operator W, y is related to
scaling and tranglation by the next lemma, which can be easily proved using

(T Ser0$) (x) = (Sevod) (x — vo) = e~ "0 (e™°(x — vo))
aswell as change of variable in integration.
Lemmad4. For any ug € R and vg € R",

(Ve 1 TupSero®) (u, v) = €10 (U 0o Ve 1) (u, v). (4.2)
where the operator U, ., iS defined by
(Uug,vo /), v) = f(u + uo, v+ e"vo). (4.3)

for any regular function f on R x R”.

We will refer to any Uy, or Uy ,,, if well-defined, as U-transform. Based on
Lemma 4, we have ageneral result on (4.1), which isthe principle idea of random
wavel et expansion.

Theorem 1. Suppose that

(1) Fisalinear topological space of functionson R x R”;

(2) W isarandom functional on F such that it is invariant under Uy , for any
(u, v) and such that its c.f. C is continuous on F;

(3) W, p isacontinuous operator from Si (R") to F.

Then C o W, p isthec.f. of an H-ssd on S; (R").

Proof. Let L = C o W, . Thenclearly L(0) = C(0) = 1. Because W, p islinear
and C is positive definite, L is also positive definite. Condition (3) as well as the
continuity of C impliesthe continuity of L. Since S(R") isnuclear, by Theorem 2

on p.350 of [7], L isthe c.f. of a probability distribution on S; (R").
Since C isinvariant under Uy , for any (u, v) € R x R", then

L(eHuTvSe“¢) = C(Uu,v\pg,H‘P) = C(\pg,H(ﬁ) = L(d))’ NS SIQ(Rn)
Therefore, the probability distribution determined by L is H-ss. ]
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Theorem 1 gives an effective way to construct ssd's. On the other hand, it raises
the question whether such 7 and W exist. The following result, which in essence
is a tautology, shows that for any ssd on S; (R"), we can find a random wavelet
expansion which gives rise to the random field.

Theorem 2. Given! € {0} UN, suppose 1 isan H-ssd on S;(R"). Then for any
g € C3°(R"), thereisalinear topological space F of functionson R x R" aswell
asarandomfunctional W on F, such that . admits the randomwavelet expansion
representation (4.1).

Proof. Write £ = §(R"). By Lemma 3, ¥, y isa1-1 linear map from £ into
C*®(R x R"). Therangeof W, y,i.e, Q2 = WV, y(£),isalinear space. Introduce a
topology 7 on 2 suchthat A € 7 if and only if \IJ;H(A) isanopensetin €. Then
F = (R, T) isalinear topological spaceisomorphicto £, withisomorphism W, 4.
Consequently, (F', B(F")) and (£, B(£')) are isomorphic as measurable spaces
withisomorphism \If; g With B(F") and B(£') the o -al gebras with respect to weak
topologiesof F" and &', respectively. Definev on 7' by v(A) = M((\I/;H)—l(A)).
Let W = {(W, f): f € Q} besuchtha (W, f)(w) = o(f), » € F. Then
I =W7 ;W isarepresentation of . O

4.2. " Sack-and-project” scheme for random wavelet expansion

As discussed in section 1, the random functional W in random wavelet expansion
(4.1) can be three types of stochastic integrals. In this subsection we explore those
which first integrate over the trandate domain. The consideration leads us to a
general scheme as the following.

Suppose £ isalinear topological space of functions on R” and is closed under
tranglation. Given set A, let X = {X;, A € A} beafamily of real-valued random

functionalson &, with each X being stationary, i.e., for v € R", X 2 T)X,. As
sumeY isamarked stationary point process on R, with each mark in A. Denote by
{(u;, A;), i € Z} arandom sample from Y, with u; € R thecoordinateand A; € A
the mark of the i-th point, respectively. Let {Z;, i € Z} be arandom process, such
that Z; € X and

LAZui, 7)) = LAZ D = LAXqD), (4.4)

with X; 2 X;, and X; independent of each other. Given function f (u, v), u € R,
ve R let f(u,-) bethemapv — f(u, v).

Theorem 3. Suppose F isalinear topological space of functionson R x R”, such
that f(u,-) € Eforall f € F,u € R.GivenY and {Z;} as above, suppose for
each f € F, with probability 1,

(W, )= AZi, fui,") (4.5)

1

is well-defined, and E[¢!": /)] is continuous on . If ¥, 4 isa continuous map
from S, (R") to F,then I = \IJ;’HW is a representation of an H-ssd on S (R").
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Remark. From(4.5)itisseenthat (W, f)isobtainedby firstgetting (Z;, f(u;,-)),
which can be regarded as integration over the translate domain with «; fixed, then
taking the sum over al u;, which corresponds to integration over the scale domain.

Proof. By Theorem 1, we only need to check that the distribution of W isinvariant
under U;jo and Uy, For thefirst one, since (Us 0 f)(u, v) = f(u + s, v),

(ULW, )= (W, Usof) =Y (Zi, fu; +5.-)),

1
implying U oW is determined by the sequence {(u; + s, i),k € Z} via (4.5).
SinceY is stationary, {(u; + s, A;)} 24 {(u;, A;), n € Z}, and thus U;OW 2 w.
For invariance under U, since (Uo; f)(u,v) = f(u, v+ €“t), letting 1; =
elig,

(UG W, f) =W, Uoif) =Y (Zir (T, £)wi,)) = Y ATy Zi, fui, ).

Because by (4.4), conditiona on {u;, A;}, {Z;} isindependent of {u;}, therefore,
DT Zis fl ) 2 DT K, flus, ) = 0K fwi, )

1 1 1

BN Zi, fui),s

(©) ;
where (a) and (¢) aredueto (4.4), and (b) to the stationarity of all X, . This proves
ug,w2w. o

We now give an example of ssd's constructed with the above scheme. Fix A to

be a singleton. Then there is no need to specify the marks of the point process Y.
LetY = {¢ +i,i € Z}, with ¢ ~ Uniform[0, 1). Let X be a white noise process
on R" with c.f. C(¢) = exp(—(¢, ¢)). Thenby I = \JJ;HW and (4.5),

o0

(o)=Y (Bi,(Weud)(C +i,), (4.6)

I=—00
with B; 24 X and ¢, B1, Bo, ... independent of each other.

Proposition 1. Fixk,/ >0, H € R,and g € S;(R"), suchthatn + 2k > 2H and
I > —H.Then I in (4.6) is well-defined and determines an H-ssd on S} (R").

Proof. First, by Lemma2, ¥, g isacontinuousoperator from S;(R") into L2(R x
R™). Let F = W, 1 (Si(R™)), regarded as a subspace of L?(R x R"). To show W
iswell-defined on F, first, by

1 00
/ ( Z / |(We, ) (u +1, v)|2dv> du
0 I=—00 R

=/ |(Wg. 1) (u, v)[* dudv < o0,
RxR»
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we have
S@) = Z/R |(We. w)( + i, v)[>dv < 00, w.p.1

Second, whenever S(u) < oo, by the independence of
ni = (Bi, W n)(u +i,-)) ~N(Q, /R |(We 1) (u + i, v)|* dv)

from each each other, ), n; isawell-defined Gaussian random variable. Therefore
W iswell-defined.
Thecf.of Wis

1 00
C(f)=E[ei<W’f)]=/ exp(— Z/ | +1, v>|2dv> du, feF.
0 R?

i=—00

Byle™ —e™| <|x—yl,x,y>0,for f,g € F,

> /R(|f(u~|—i,v)|2—|g(u+i,v)|2)dv du

i=—00

1
C(f) - Co)l 5/0

<If2= g%l < If — gl2ll £ +gll2,

and so C is continuous on F. By Theorem 3, I = \P;’HW, determines an H-ssd
on S/ (R™). O

The “ stack-and-project” scheme in Theorem 3 has a useful variant. Loosely
speaking, whereas the representation (4.5) “stacks’ n-dimensional random fields
along the scale domain, the variant stacks (n + 1)-dimensional random fields in-
stead.

Corollary 1. Suppose F isalinear topological spaceof functionsonR x R” andis
closed under Ug,,, v € R". Givenset A, let {X,, L € A} beafamily of real-valued

random functionals on F that satisfy X, D U, X, v € R". DefineY and {Z;} as
in Theorem 3. Suppose for each f € F, '

(W, f) = (Zi, Uu.0f), 4.7)

1

iswell-defined w.p. 1 and the c.f. of W is continuouson F. If W, 5 isa continuous
operator from S (R") to F, then I = \Il;’ W is well-defined and determines an

H-ssdon S; (R").

Note that in (4.7), U, o is trandation along the scale domain by u. The proof
of Corollary 1 follows closely the one for Theorem 3, and hence is omitted.
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4.3. Symmetry and self-similarity

Given atest function ¢, arandom generalized function I iscalled H-sswith respect

tog,if (I, ¢) 2 e (I, T,S.u¢p), u € R, v e R". Denote by E the reflection with
respect to O,

E:¢px)—> ¢(—x). (4.8

A function ¢ is symmetric (with respect to 0), if ¢ = E¢, and anti-symmetric, if
¢ =—E9.

We are interested in the relationship between symmetry and self-similarity. By
the observation that symmetric functions and their translated and scaled versions
are the “building-blocks’ of “good” functions (e.g., in the sense of L?-theory of
wavelets), one may ask if it is true that as long as I is H-ss with respect to al
symmetric functions, it is H-ss. Using the “ stack-and-project” scheme, we can get
aquite complete answer to this question. First, as we will see next, in general, the
answer is negative. There are stationary random fields that are H-sswith respect to
all symmetric test functions, while not to anti-symmetric ones, and vice versa. Then
we will show that under two more conditions which are quite mild, self-similarity
with respect to both symmetric functions and anti-symmetric functions guarantees
self-similarity. The proofs demonstrate the importance of stationarity along the
scale domain in ensuring self-similarity.

Fix L > 0.Let N beaPoisson measureon [0, L] x R" with Lebesgue intensity
measure. Suppose Ny, k € Z arei.i.d.~ N. Then define

[e.e]

(WL fy= Y (—1)’</ fu+kL, v)Ni(du, dv). 4.9

Pl [0.L]xR"

Note that W stacks the stochastic integrals at fixed locations kL, k € Z. Further-
more, the signs of these integrals change alternatively.

Proposition 2. (1) Fixk,l € Nyand H € R, withk > Hand! > —H. Sup-

pose g € Si(R"™) is anti-symmetric with respect to 0, i.e. g = —Eg. Define I, =
II’;HWL- Then for ¢ € §;(R") symmetricand u € R,

(. ) 2 ™1y, Suup). (4.10)

(2) Ontheother hand, for R” = R, if g(x) = ¢ (x) = ); e2and H =0,

T
then thereis L > 0, such that I; = \D;HWL is not H-ss with respect to ¢. Note
that I, isstationary.

Proof. (1) Because¢ = E¢ and g = —Eg, itisnot hard to show (¥, y¢)(u, v) =
— (W, no)(u, —v). Therefore, givenk > 1,

/ (Vg n®)(u + kL, v) Ni(du, dv)
[0,L] xR

- —/[0 . (W n¢) (W + kL, —v)Ni(du, dv), w.p.l
, L] xRR"
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On the other hand, because N(A) 2 N(A), A € B(R), where A = {(u, —v) :
(u,v) € A},

/[O )L ) NG, dv
LIxRn®

24 / (W 1) ( + kL, v)Ni (du, dv).
[0,L]xR"

The above two formulas, together with the independence among Ny, imply

(I, ¢) = Z/ C D (W yp) (u + kL, v) Ny (du, dv) (4.11)

2 Z/ (Wy 1) + kL, v) Ni(du, dv)
— 0,L] xR~

2 / (W 1) (. v) N(du, dv),
RxRr

where N is a Poisson measure on R x R”. As will be proved in section 5.2, the
right hand sideisan H-ssd. Therefore, I, is H-sswith respect to ¢.

(2) Firstof all, sinceinthiscasek =1 = 1and H = 0, by (1), /1 is H-sswith
respectto al ¢ € S;(R™) symmetric. It is easy to check

ML S d) 2 (—1™(IL. ). ¢ € SR, m € Z.

Then (2) can be proved if for some L > 0, ¢;(t) = E[e!"'2:9)] has non-zero
imaginary part. By (4.11),

(k+1)L )
oL(t) = EXp{ / / (elt(—l)k\llg_H¢ _ 1) dv du} ,
k n

and hence, letting

(k+1)L
KO =30 [ [ (ot noyu, v~ v,

we have

Im gz (1) = K(’)sm(

(k+1)L
> (- 1)"/ /sm(t (Vo 1) (u, v)) dv du

k=—00
=KD din(p(r)),

We demonstrate Im ¢, (t) # 0 by showing p®®(0) # 0. First, letting H = 0,
A=¢c",andu = v,

2\,2 2

2

= e Et“+ nE?),
N uw
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. 1
with o2 = Y and ¢ ~ N(—ruoc?, o). Then E¢? = 3%u20? + 62, E¢ =

—iuo?, and hence

_ A /LZ Mz
Pende0 = el ot | (1- 472

1 M(l + 214)73/2 1 vz ex UZ
= e e - T
Var 1+e2 ) P 2@+ o)

(4.12)
Therefore,
PO
(k+1)L
Z %= 1)/ /((‘l’g ), v)3dvdu
k=—o00
@ (—D*=D 1 GEDL LB 2 3 2
Z @)% 3 m/<l_§> e"p{—f}didu

(k+1)L eSu

= -1 (k_l)/ ————du,
9\/§7T k;w( ) kL (1+e2)*

where (a) is dueto change of variable v = v/1 + ¢24¢ /+/3. Thenfor some L > 0,
p®(0) +# 0. Otherwise, letting L — oo, there would be

o0 e3u 0 e3u 00 673“
—————du = —————du = ——d
/0 (1+62u)4 u /;OO (1+62u)4 u /0 (1_|_e—2u)4 u

00 eSu
_ f 7,
0 (1+€2”)4

which isimpossible. The second part is thus proved. ]

Similarly, we can construct stationary random fields which are H-ss with
respect to al ¢ anti-symmetric, while not ¢ symmetric.

Corollary 2. (1) Fixk,! e N,and H € R,withk > H and/ > —H. Suppose
g € Sx(R") is symmetric with respect to 0. Define I = \I/* »Wer. Then (4.10)
holdsfor all ¢ € S;(R") anti-symmetric;

1 .
@) If h(x) = ) e*/2and ¢ = 1", and H = —1, then thereis L > O,
T
such that /;, = W} ;, W isnot H-sswith respect to .

Proof. (1) can be proved as in Proposition 2. For (2), letting g = ¢ = &/, there

is Wy gy = —W, 416, and hence (I, y) 2 —(¥ * e1We. ). As proved in
Proposition 2, for some L > 0, ¥* H+1WL isnot (H + 1)-ss with respect to ¢.
Therefore, I; isnot H-sswith respect toy. ]
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In light of Proposition 2 and Corollary 2, anatural question isthat in order for
arandom field to be H-ss, whether it isenough for thefield to be H-sswith respect
toal ¢ withg¢ = E¢ or ¢ = —E¢. With two more assumptions, the answer is
affirmative.

Theorem 4. Suppose I is an ergodic stationary generalized random field on
S;(R™), such that its c.f. C satisfies |C(¢)| = |[C(E¢)|, » € S;(R™). If [ is H-SS
with respect to any ¢ € S;(R") satisfying either ¢ = E¢p or ¢ = —E¢p, then [ is
H-ss.

Proof. Fix ¢ € S;(R"). GivenA > Oand ¢ € R”, defined = A7 §,¢ and h, (x) =
ot/2+x)+¢(/2—x).Itisseen h; € S;(R™). Then

hi(x) = hi(=x), @)+ ¢ —x) = (T—1j2h)(x). (4.13)
For R > 0,
£ [eiu, 0 o L [ in1E d,} w 1 [ p [e-00+00=1] 41
|Br| JBg |Br| J By
1 .
2| [ ar.
|BR| Bgr

where (a) is due to Fubini’s theorem, (b) to (4.13) and the stationarity of I.
Similarly,

E |:ei(1’9> X —

iV T EO) dt:| _ 1 E [eiu, AHtht)jI dt
|BR| JBg

|Br| JBg

Because i issymmetric and I is H-sswith respect to /, the right hand sides of the
above two formulas are equal, leading to

E |:ei<l, ) o 1 ST Eg) dt} —F [eiu,e) « 1 Qi1 T E6) dt]
|BRI J By |BR| JBg

Let R — oo.Because I isstationary ergodic, by dominated convergence theorem,
C(p)C(Ep) = C(O)C(ES). (4.14)

Similarly, by considering ¢ (1/2 4+ x) — ¢ (/2 — x) € §;(R"), we can also get
C(p)C(E¢p) =C@O)C(ED). (4.15)
By IC(9)| = |C(E@)|, ¢ € S§;(R"), (4.14) implies|C(¢)| = |C(O)].1f C(¢) =
0, then C(®) = 0. If C(¢) # O, then by (4.14) and (4.15), C(¢)/C(0) € R.
Therefore, arg[C(¢)] — arg[C(P)] € nZ. Since ® = A7 S, ¢ is continuous in A,

arg[C(¢)] = arg[C(9)]. Therefore, C(¢) = C@©O) = C(AHS,¢), proving I is
H-ss. ]
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5. Infinitely divisible Ssd's

Comparing with the other ssd's, infinitely divisible ssd's can be studied in more
detail. For al the representations in this section, we utilize a simple property of
U-transform, that is, the transform

Aug.vg + (u, v) = (u+uo, v+ €"vo)

associated with U by Uy v f (1, v) = f(Ayg,ue, v)), is adiffeomorphism with
Jacobian 1. Thus, given arandom functional (W, f) = [ f(u,v) M(du, dv), if
the random measure M isinvariant under any change of variable with Jacobian 1,
then

(W, Usgooo f) =/foAuo,vodM2/fdM= (W, £),

and by Theorem 1, I = w;’ W determines an H-ssd with the stochastic integral
representation

(I, ¢) = /(\I!g,yqﬁ)(u, v) M (du, dv). (5.1

Itisrelatively easy to find random measures invariant under diffeomorphism with
Jacobian 1, such as Poisson measure with Lebesgue intensity measure and stable
symmetric random measure with L ebesgue control measure. For spectral represen-
tations of infinitely divisible random fields, the above property of U -transform can
be similarly utilized.

5.1. Ageneral spectral representation of infinitely divisible ssd's

Spectral representations of infinitely divisible random fields were studied in detail
in [15]. Given an infinitely divisible random measure A on a Euclidean space £
with control measure A, if f : £ — R is measurable and satisfy certain integra-
bility conditions, then it is A-integrable, and & = [ f d A isaninfinitely divisible
random variable, with

i£1_ . _} 2 2
E[e"]=exp : ia(s)f(s) 2f (s)o“(s)+ Ry(x,f(S))V(s,dX) rds) ¢ .
(5.2
where
ixt
1412

Y, ) =e* -1

We now apply (5.2) to random wavelet expansion to get a general result on
spectral representation of infinitely divisible ssd's.
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Proposition 3. Assume v(u, v, dx) = v(dx) and A(du, dv) = dudv. SUppose
the Lévy measure v satisfies the condition

/ lIyIV(dy) < 00. (5.3
NE

Fixk,] >0, H e R,and g € Sy (R"), suchthatk > Hand! > —H.Ifa(s) =a
and o2(s) = o2 for constantsa and o, then (I, ¢) = [ W, y¢ dA determinesan
H-ssdon §/(R"), with c.f.

C(¢) = E[¢'" 7]

2
=@<p{—%||wg,ﬂ¢n%+/R [/Ry(x,(‘I/g,H¢)(u,v))V(dx)]dudv}-

(5.4)

xR”

Proof. Becausek > H and! > —H, ¥, y is acontinuous operator from S;(R")
into L1(R x R") aswell asinto L2(R x R"). Furthermore, either k or [ is posi-
tive. Thisimpliesthat for ¢ € Si(R") and ¢ € S;(R"), [ W n¢ = 0. By (5.2),
Ja(u, v) (Ve 1) (u, v)dudv = 0 and hence (5.4) formally holds. It remains to
show (5.4) is well-defined.

First, sincek > H and! > —H, by Lemma2, for p =1, 2, ¥, g isacontin-
uous operator from S;(R") into L? (R x R™), and hence, ||\Dg,H¢||,’Z isfinite and
continuousin ¢.

Second, thereis D > 0, suchthat |y (x, 1)| < Dx2(|t|+1%),t € R, x € [-1, 1].
Because for any Lévy measure v(dx), f_llxzv(dx) < 00, therefore,

1
/ / |y (x, (Wg, g)(u, v)| v(dx) dudv
RxR® J-1

1
= D (I1%ndlls+ ||wg,H¢||§)/lx2v<dx> < o0,

which also shows thefirst integral is continuousin ¢.
Third, thereis D’ > 0, such that |y (x,7)| < D’|xt|,t € R, x € R\ (-1, 1).
Then by (5.3),

fR Rnfl 1|V(x’ (W 110) (1, v))| v(dx) du dv

< D’II‘I’g,H¢|I1/ . lx[v(dx) < oo,
|x]>
which also shows the integral on the left hand side is continuousin ¢.
Therefore, the integral [, g Jr ¥ (X, (We, 1 ¢) (1, v)) v(dx) du dv converges
and continuous in ¢. The proof that the random field determined by (5.4) is H-ss
is routine and hence is omitted. O

The proof of Proposition 3 only uses the continuity of W, p asan operator into
L' andinto L2. The sameidea s used to prove the following variant of (5.4).
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Corollary 3. Suppose p € L1(R x R") N L?(R x R"). Define a convolution-like
transform

Kofwo) = [ pu-co—ensndcdr.  (69)

RxR
Then, with the same assumptions on v, &, I, and H asin Proposition 3, the repre-
sentation

(I, ¢) = /(Kp\Dg’HqS)dA. (5.6)

iswell-defined and determinesan H-ssd on S;(R") with c.f. C(K, ¥, g¢) with C,
given by (5.4).

Proof. By the generalized Minkowski inequality, |K, fll, < Il fllillell,, 1 <
p < oo Let f =W, y¢pandp = 1,2 Since ¥, y is a continuous operator
from & = S;(R") into F = LY(R x R"), it follows that K,V p isacontinuous
operator from £ into F aswell asinto L2(R x R"). Then following Proposition 3,
C(K,V, no) iswell-defined and continuous in ¢.

It remains to be shown that C (K, ¥, g¢) isinvariant under any U-transform.
Thiscan bedoneby first checking K, Uy, = U, K, and then using theinvariance
of C(f) under U-transforms. O

5.2. Ssd's constructed from Poisson point processes

Intherepresentation (5.1), if M isaPoisson measure with Lebesgueintensity mea-
sure, then (5.1) determines a ssd. This observation is part of the following resullt,
where the operator K, defined in (5.5) is applied.

Proposition 4. Fixk,l € {O}UN, H € R, and g € S;(R"), suchthat H < k and
| > —H.Asofix p € LY(R x R") such that [ gn e ™ |p(u, v)|dudv < oco.
Suppose P isa Poisson point processon R x R”, with Lebesgue intensity measure.
Thenw.p. 1, for random sample {(«;, v;)} from P,

(L, ¢) =D (Ko W ud) (i, vi), (5.7)

defines I € S/(R"). Moreover, the representation (5.7) determines an H-ss on
S[(R”) and has finite second moment. The above claims continue to hold if I is
defined by

(L, ¢) =D (Vg nd)(wi, vi), (58

Proof. We only consider (5.7). The representation (5.8) can be treated in the same
way. Letn = |p|. By Lemma2 (3), inorder toshow 7 € Sj(R") w.p. 1, itisenough
toget) " K,h(u;, v;) < oow.p. 1, which, by Campbell’stheorem[10], isimplied by
K,h e L. By the generalized Minkowski inequality, IKyhlle < llellzlikll < oo.
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Similarly, in order to get E[(I, ¢)?] < oo, it is enough that K,h € L?. Letting
M = fo]R" e "|p(u, v)|dudv, the proof proceeds as the following,

2
||I<nh||§=/]R . (/R . |p(u—x,v—e”Xy>|h<x,y>dxdy> du dv
x [R" x [R”

2
= / (/ Ip(x,v—exy)|h(u—x,y)dxdy> dudv
RxR® RxR”

(a)
< / (/ oG, v — e )| dx dy
RxRn» RxR»

/ |,0(x,v—exy)|h2(u—x,y)dxdy) du dv
RxRn

=M (/ |p(x,v—exy)|h2(u—x,y)dxdy)dudv
RxR~ RxR~
= M|lpllllh]3 < oo,
with (a) dueto || fgll5 < I| fll1ll fg?]l1- Itisroutine to show I is H-ss. We omit the
proof for brevity. O

5.3. Sable symmetric ssd's

In representation (5.1), if M is an «-stable symmetric random measure with
L ebesgue control measure du dv, then the representation

(I, ¢) = /(xyg,Hqs)(u, v) M(du, dv), (5.9)

defines an «-stable symmetric random field with c.f. [18],

E [e<l’¢>:| - exp{[l‘R o — (Vg Hp)(u, v)|* du dv} . (5.10)

The conditionsfor (5.10) to bewell-defined and continuous are given in Proposition
5, which immediately follows from Lemma 2 and Theorem 1.

Proposition 5. Suppose k,/ > Oand H € R satisfy a(n + k — H) > n and
[ > —H.Thenfor any g € S;(R™), (5.9) determines an «-stable symmetric H-ssd
on S/(R™).

When « € (0, 2), the representation (5.10) gives rise to arich class of ssd's.

Two functionsin S (R") define the same random field by (5.9) iff they are scaled
and tranglated versions of each other. More specifically, we have

Theorem 5. Suppose o € (0, 2) for the stable symmetric random measure M in
(5.9). Fix k,1 and H as in Proposition 5. Given g, h € S (R"), let I, and I,

be the random fields determined by g and 4 (5.9), respectively. Then I, 2 I if
and only if h = ceP"0S,u T, g for some (ug, vo) € R x R” and ¢ = +1, where
B=nl—a1)—H.
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Proof. The “if” part is easy to verify. To prove the “only if” part, denote E =
R x R". Fix ¢ € §(R") \ {0} with compact support. Forz; € Rand (1, v;) € E,

j=1... .k ddinep = Y5 tiefiT, Su . Thenby (I, p) 2 (I, p), we
get
k o
/ Zti(‘lfg,H¢)(u+ui,v+e“v,-) du dv
E i=1
k o
:/ Zt,-(\llh,qu)(u +ui,v+ev)| dudv. (5.1
Eliz1

Define binary operation « on E by (u1, v1) * (u2, v2) = (u1 + uz, e*2v1 + v2).
Then (E, %) becomes alocal compact Hausdorff group with 0 as the identity and
(u, v)~ = (—u, —e"v). The Lebesgue measure is left-invariant under x, i.e., for
A € B(E) and (u,v) € E, m(A) = m((u, v) * A). On the other hand, letting
A(u, v) = e "™, thereis A(u, v)m(A * (u, v)) = m(A). We can write (5.11) as
k
D 4 (Ve ) (i, v;) * (u, v))

/E i=1
k
D (W ) (i, vi) * (u, v)

1z

By [9], thereis (¢, n) € E,with¢ €e Randn € R”?, and ¢ = £1, such that

o

du dv

o

dudv.

Wi nd)v) = e [am D] g no) ) * @)
= ce”g/“(\llg,ycl))(u +z,e5v+ 7).
By the duality (3.3), letting H' = n — H and replacing u with —u and v with —v,
Wy rh)(u, e"v) = ce"/*(Wy prg)(u — ¢, ev— e n)
= ce”f/"‘(U_{,_efgnllld,’y/g)(u, e'v).

Writingugp = —¢,v0 = —e $n,and g = —na 1+ H' = n(1 —a~ 1) — H, then
by (4.2),
‘~I1¢,H/h — Ce—nuo/a Uuo,vo\pfp,H’g — Ce—nuo/aeH’uo\qu)’H, TuoSel‘Og
= Ceﬁuo\lf(p,H/ TvOSeuog.
By Lemma3, g — W, g is1-1. Therefore, h = ceP 0T, S,uog. O

In contrast, for « = 2, the representation (5.9), which defines a Gaussian ssd
withindex H, ismoreredundant. A Gaussian random field on S;(R") is H-sswith
index H > 0if and only if itsc.f. is C(¢) = e~ B@® with the bilinear functional
B given by

B(p, V) = /nil /Héqg(e”w)l/}(e“a))eZH“ du G(dw), (5.12)
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where §"~1isthe unit spherein R” and G (E) isafinite measure on B(S" 1) such
that G(E) = G(—E), forany E € B(S"1) [4].
Proposition 6. Suppose I admitsarandomwavel et expansionrepresentation (5.9),
with M = B an (n + 1)-dimensional Brownian motion. If the c.f. of I iseBs(@®)
then B, can be represented by (5.12), with G (dw) having a density function
G(dw)
dw

o0
— Gw) = /R ™2 5 ) P it = fo ent" 211 g 1) 2.
(5.13)

wherec, isaconstant only depending onn. Therefore, if g, h € S (R") correspond

to the same density function G, then [ (¥, y¢) (u, v) B(du, dv) 2 SV e u, v)
B(du, dv).

Proof. By (5.10), By (¢, V) = (Vg n¢p, Ve g). Weneedtoidentify the measure
G for B,. Givenu, by g € S(R"), (W, po)(u, ) € S (R"). Thenit is easy to
show that

(W 1) (u, k)= (27)~"/? f e RV, p)(u, v)dv=e"(2)" 28 (k)P(—e k),
and likewise for W, g (u, k). Then
By(p, V) = (Wg. )", (Ve m)")
— 2n)" / / 2H 5 (0) P (=) (—ek) d du
R ]Rn

@ oy /R /R ¢@H=M |5~ 1) 123 (k) (k) dk du,  (5.14)

where (a) is due to variable substitution and |g(—e “k)|2 = |g(e "k)|%. Let
k = ew, wheret € R and @ € S" 1. Then for some constant ¢, dk =
(2r) " c e dt dw, and (5.14) leads to

B = [ [ [ a0 o)) ) dudi do.
R Js—1JR
A comparison of the last integral with (5.12) then leadsto (5.13). |

6. “Projection-first” perspective of random wavelet expansion
6.1. Operator L, p

Comparing with the image model in section 2, integration over the scale domain
is equivalent to projection, whose outcome is a 2D image that contains no direct
information on the spatial distribution of objects in the 3D space. Therefore, in
order to get meaningful random wavelet expansion by first integrating over the
scale domain, the incorporated continuous wavel et expansion should be afunction
explicitly in the scale as well asin the trandate of 2D view of object on the im-
age, rather than the spatial translate of object parallel to the image. This heuristic
suggests the following
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Definition 3. Define
(Lg.up)(u,v) = (Vg yp)(—u, —e "v). (6.1)
By duality (3.3),

(Lg.up)(u,v) = (Wpn-ng)(u, v). (6.2)

Define R-transform such that for any (ug, vg) € R x R”, and any f measurable
functiononR x R”,

(Rug.vp f) (U, v) = f(u —ug, e™"°(v — v0)). (6.3)

Then there is, for any (uo,vo) € R x R", (Lg uTySe0d)(u,v) = e 1o
(Ruo,voLg,H(p)(ua v).

In analogy to Theorem 1, we have the following results on R-transform and
Lgp.
Theorem 6. Suppose that
(1) Fisalinear topological space of functionson R x R”;
(2) W isarandom functional on F with continuous c.f. C, such that for some g8

constant, and for all f € F and (uo, vo) € R x R?, C(eP“OR, v, f) = C(f);
(3) Lg, p isacontinuous operator from S (R") to F.

Then C o L, y isthec.f. of an (H + g)-ssd on S; (R").

Proof for Theorem 6 issimilar to Theorem 1, and henceis omitted. Thefollow-
ing result implements the idea of first integrating over the scale domain. A random
functional V iscalled g-ssif it is stationary and #* S%, V PviueRr.

Theorem 7. Fix F and Fy as linear topological spaces of functionson R x R”

and R respectively, such that for f € Fandv € R", f(-,v) € Fo. Let A bea

stationary random functional on Fp. Suppose £ is a linear topological space of

functionson R” and V a g-ss random functional on on £. Assume

(1) A and V are independent;

(2) Given f e F, with probability 1, (Af)(v) 2 (A, f(-,v))asafunction of v
belongsto &;

(3) Thecf.Cof W: f — (V, Af) iscontinuouson F.

If Ly g iscontinuousfromSg (R™) into F,thenCoL, y isthecf.ofan (H+8—n)-
ssd on S; (R") which admits a representation

(I, ¢) = (W, Lg.u¢) =(V, ALgud)). (6.4)

Proof. By the continuity of L, y and C, C o L, n determines a probability distri-
bution on S; (R™). Itisenough to prove C satisfies Theorem 6 (2). Given (uo, vo) €
R x R", let fi(u, v) = f(u,e (v —vo)) and fo(u, v) = f(u, e “0v). Then

2w, ap) 2 emoqy, emmmop f)

W, R = (V, AR
(W. Rig.iof) = (V. ARuguof) = =

D

c

e(ﬂ—ﬁ)uou/, Af) = e(ﬂ—ﬁ)uo<W’ 1),

—~
—
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where (a) is due to stationarity of A and independence between A and V, (b) to
stationarity of V, and (c¢) to self-similarity with index g of V. |

Based on Theorem 7, we give an example of ssd constructed a Poisson measure
and an «-stable symmetric measure.

Proposition 7. Given« € (0, 2], fixk,l > 0, H € R suchthat «(/ + H) > n and
n+k—H > 0.Let N and M betwo independent random measures, with N a Pois-
son measure with Lebesgue intensity measure on R, and M an «-stable symmetric
random measure with Lebesgue control measure on R”. Then given g € Si(R"),

(I, ¢) = / f(Lg H®)(u, v) N(du) M(dv), (6.5)

determinesa (H — na~1)-ssd on S;(R").
Proof. Given m large enough, define

o—(H+Du on+k—Hu

h(u, v) = ———————110 00) () + ————

At e oy e T

Then by (6.2) and (3.4), |Lg u¢|l < R(¢)Q(g)h, with R continuous in ¢ and
R(O0) =0.By!/+ H > 0,n+k — H > 0, and the dominated convergence, this
leadsto w.p.1, given random sample {«; } from the Poisson point process associated
with N, fR(Lg,ch))(u, v) N(du) =) ; Lg ¢ (u;, v) isacontinuous function for
al ¢ € §;(R™). Write

1—o0,0)(10). (6.6)

e*(H*H)ui e(n+k7H)ui

th(ui,w:Z AP +ZO Ty = o d) + G, .

u,'ZO

Then by Theorem 7, it is enough to show that w.p. 1, (1) F(v, {u;}) € L%, (2)
G(v, {u;}) € L*. Becausen + k — H > 0, itiseasy to prove (2). The proof for (1)
is divided into two cases.
Caselia > 1. Bya(l+H) > n,fixe € (0,1) suchthatn < a(1—e€)(H +1).
Letﬁ be such that gt + o~ = 1. Thenw.p. 1, §, = Y, ge’" < oo for
=12, withyy = —Be(l + H), y2 = n —a(l —e)l + - H). By Holder’s
mequallty

o
e e~ (+Hu; a/ﬁ —a(1—e)(I+H)u;
Fo upl* =Y | < Z—-
Lo (L e (L [evrv]yme

Integrating both sides gives
—a(1— e)([+H)u,

e o/p E—
/Rn [F (v, {uiH|"dv < §; / Z (1+ Ie‘“'vl)m"‘

dv

< Sa/ﬁS s
=022 L @ e =
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Case2: @ < 1. Fix R > 0. Sincew.p. 1, F(v, {&;}) is acontinuous function,
it is enough to show, flv\>R |F (v, (u;)|* dv < oo, w.p.1. By Fubini’s theorem,
Holder inequality, and Campbell’s theorem,

E [ f P, {ui}>|“dv}
[v[=R

= [ EGro. ey avs [ EF. by

[v|=R

) ef(l+H)u o
_ / / " ) aw
w=r \Jo Q@+ [e "™
00 ,—(+H)u «
5/ Jv| ) / ——du| dv.
[v]>R —oo (Lt e)m

Because e~ U (1+ e )™ < e T 0 o0y () + ™ HUL g 0)(u) €
Ll andn < a(I+ H), thelastintegral converges. Thisimpli&sflv‘zR |F (v, {ui H|*
dv < oo, wW.p. 1.

By (6.6), it isnot hard to see the continuity of the c.f. of 7. Then by Theorem 7
and the fact that the random functional f — [ fdM, f € L®, isn(l—a1)-ss,
Iis(H — na™1)-ss. O

6.2. Construction of linear fractional or log-fractional stable motion
by discretization

In this section we demonstrate that the familiar linear fractional stable motion
(LFSM) or log-fractional stable motion (log-FSM) defined on R can be constructed
from random wavelet expansion. Let R” = R. Suppose M isan «-stable symmetric
random measure. Given k,/ > 0, H € R satisfying the conditions in Proposition
7,for g € Sk (R),

(I, ¢)=(W, Lgno) = fR/R(Lg,Hqﬁ)(u, v) du M(dv), (6.7)

defines aself-similar generalized random processon S (R). We will first show that
if ¢ isreplaced with 1jg ,, the right hand side of (6.7) defines a LFSM. We need
the following result.

Lemmab. Fix f € S(R) and H > —1. Define

Fu,v) = f(e"v) — £(0)L(—00.0)(10)

and for ¢ = +1,

A(c, H, f):/ e f(u,c)du, B(c, H, f):/eH“|f(u,c)|du.
R R
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Then for any v # 0,

o ONIAC)
/ eHuf(u,U)dMZ |U| <A(Sgn(v),H, f)+T>_7’ H#O’
R A(Sign(v), 0, f) — F(O)In|v|, H=0
(6.8)
3 _H . [f (O] | f (O]
/ M F vy du< 1V (B(sgn<v>, Ho )+ )+ o B
R B(sign(v), 0, £) + | £(O) In|v]], H=0
(6.9
Proof. See section 7. O

Proposition 8. FixH € (1/a, 1+1/a).Giveng € Sy (R),k > 1,letG € S;_1(R)
be such that G(—o0) = 0and g = G’. Then

{X;,t e R} = {/ /(Lg,Hl[o,,])(u, v)du M(dv),t € R} (6.10)
R JR

can bewrittenas X, = [ F(v, 1) M(dv), wherefor v # 0, ,

a(sign(t — v)|t —v*# —a(sign(—v)| —v|*H, H#1
F.) =1 Goyin|v| = In|t — o) + (a(l) — a(=1))
[L—o0,n(¥) = L—00,00 ()], H=1
and the constants a(1) and a(—1) are defined by

y— Alc, H-1,6)+GO/H -1, H=#1,
=1 Ac.0.G). H=1

Remark. When H # 1, X, isaLFSM. In[18], aLFSM is represented by X, =
[ F(v, 1) M(dv) with
F(U, t) = a[((t - U)+)H—l/0( _ ((—U)_;’_)H_l/a]
L = v) )TV — ()Y,

with H € (0,1) and H # 1/a. Itis not hard to see that the parameters in F and
F have the same range. When H = 1, (6.10) gives log-fractional stable motion
aswell asthe usual Lévy motion.

Proof. By H € (1/a, 1+ 1/a), the process [ F(v,t) M(dv) is well-defined.
Assume H + 1. Define G intermsof G as f intermsof f in Lenmma5. By

t
(Lg. 110,17 (1, v) =/0 e Hig(e™ (x —v))dx

— e(l_H)u(G(e_u(t _ U)) — G(—e_uv)),
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itisseen

/(Lg,Hl[o,t])(u,v)du :/e<H—1>“é(u,t—u)du—/ eH VG, —v) du.
R R R
(6.11)

The case H # 1 immediately follows from Lemma 5. The case H = 1 can be
similarly proved. O

We next show themain result of thissection, i.e., LFSM can be constructed from
random wavelet expansion by discretization. Fix p € C5°(—1, 1) with [p=1
Givene > 0 and ¢, define

) = e ), eals) = /R pe(s) Lo (x — 5) ds.
Itiseasy tocheck ¢, € C3°(I), where I istheinterval (min{0, ¢} —e, max{0, ¢} +
€). AlSD, ¢/, (x) = SGN(1) [0e () — pelx — )] ad der(x) — Lo ().

Theorem 8. Suppose M isan «-stable symmetric random measure with Lebesgue
control measure. Fixk > 1andg € Sy (R).Let H € (1/a, min{k, 1+1/a}). Define

F.(v,1) =/(Lg,H@,,)(u,v)du.ThenforXin(6.1O),{/ F.(v,1) M(dv)} £>
X,ase€ — Ol.R K

Proof. Dencting by F (v, t) theintegral on theleft hand side of (6.11), the proof is
reduced to showing || Fe (v, t) — F (v, t)|l« — 0,7 € R. Without loss of generality,
assumet > 0. Thenitiseasytosee ¢ (x) = 1, x € (¢, t —€). For simplicity, write
de = ¢e,; aNd ¢ = 1jg 1. Wefirst prove

. o .
!L%ﬁe!(fe,e)u |Fe(v, 1) — F(v,t)|* dv=0. (6.12)
(t—e€,t+€)

Denotetheintegral by I (¢). Let U = (—¢,€), Ve = (t —€,t +¢),and P(u, v) =
eflg(e'v). Then by

Fu(v,1) = F(u,1) = / / Mg (e (x — 1)) (e (x) — ¢ (x)) dx du,
RJR

for some constant K,

I(e) (%)/ (f/ |P(u,x—v)|dxdu> dv
ve€UUVe R UV
< K|:/ (/ /|P(u,x—v)|dudx> dv
vegUe Ue JR
+/ (/ /|P(u,x—v)|dudx) dv],
veVe \Jv. JR



294 Z. Chi

where (a) isdueto ¢ = p oNR \ (U U V), and |p — ¢| < 1. Sinceg € S(R)
and H > 0, then

/ |P(u,v)|du = /Oos”*ﬂg(vs)ws <Mp|™ v#£0
R 0

where M = max { [;° £ 7Y|g(c&)| dE, c = £1} < oo. Therefore,

o o
](e)SKM“[/ ( |x—v|de> dv—i—/ ( |x—v|de> dv:|.
veUe \J U vgVe \J Ve

Denote the above two integrals by I1(¢) and I>(¢), respectively. By o H > 1 and
H<1+41/a,

o
I1(€) = / ( Ix — v H dx) dv
veUe \JU,
1 o
= EH(LH)“/ / Ix —v| Hdx)] dv—o0.
[v[=1 \J/-1

Similarly, I>(¢) — 0. Therefore, I(¢) — 0 and (6.12) is proved.

Fort =0,¢,ase — 0, by Proposition 8, f:fj |F(v, T)|* dv — 0. To demon-

strate || Fe — F|lo — 0, it remainsto be shown that
T+4e€
f |Fe(v, T)|% dv — O.
T—€

First consider the limit for r = 0. Denote J (1, v) = Ly pée(u, v) and let
I =max{l, |H]}.Sincek > 1landk+ 1> H,l < k. Fix f € S(R), such that
fO = g € SK(R). Integration by parts gives

J(u,v) = f efg(e" (x — v))pe (x) dx
R

= (-1 / DI () F (5 — ) — F( (x4 1 - )] d

Denote
Ju) = (=T £ o) — fe (x +1))].

Then J (u, v) = /€, p ™ (x)j(x — v, u) dx. Firstassume H ¢ N. Then! — H ¢
(—1, 1) \ {O}. Then by (6.9), thereis M = M (), such that

[

€
<M (|x—v|l_H+|x+t—v|l_H+l> dx < o0.

—€

pg*l)(x)j(x —v,u)| dudx
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Therefore, by Fubini’s theorem and (6.8),

/J(u,v)du:/e/pe([*l)(x)j(x—v,u)dudx
R —e JR

= (-1 / pd™P () (a(sign(x — v)|x — vl
—a(sgn(x +t —v))|x +1— v'=H) dx,

wherea(c) = A(c, H—1, f),c = £1.Notice p¢ ™ (x) = 1 p?~D(e~1x). Then
it is easy to see for some constant K,

€
f /J(u, v)du
- K € € o € € o
5—l</ (/ |x—v|l_de> dv—i—f (f |x+z—u|’—de) dv).
€“ —e \J—¢ —e \J—¢

Denote the two integrals on the right hand side by I;(¢), i = 1, 2, respectively.
Thenby!+1> H,and H < 1+a 1 ase — 0,

1 1 o
L(e) = elted=H) / / Ix —v|""Hdx| dv— 0.
-1 -1

For I2(¢), because x, v € (—¢, €),whene < /2, |x +t — v| islower bounded
from 0. Therefore I2(¢) — 0 aswell. Thus, for r = 0,

T+e €
/ |Fe(v, )% dv =/ / J(u, v)du
T—€ — |JR

The caseswhere H € N or r = ¢ are similarly proved. Together with (6.12), this
proves Theorem 8. O

o

dv

o

dv — 0.

7. Proofs of technical details

Proof of Lemma 2. We need the following result for the proof.

Lemma 6. Define two sequences of functionals {K,,, m € N} and {b,,, m € N}
on S(R") by

Kin(f) = max{/(1+ [xD)™ ] f ()l dx, sup (1+ IXI)mIf(X)I}, (7.1)

xeR?

xeRn?

b (f) =2" sup [(1+ RO |3af(X)|}, feSMRY. (7.2)

loe|<m

Supposek > 0and g € Sy (R™). Thengiven H € R, for any ¢ € S(R"),
I’lk e(H—n—k)u

v —— K

(W, md)(u, v)| < KAt e o)

m>k,u>0,veR". (7.3

mak4n+1(8)bm (@),
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Assume Lemma 6 is true for now. We prove the 4 statementsin Lemma 2.

(1) To show W, x is acontinuous operator from S;(R") into L (R x R™), fix
m > max{k,l,n/p}. Then [, (1+|v|)~™ dv < 00.By p(n+k— H) > n, (7.3)
implies

/ |“pg,H¢|p
[0,00) xR

< (K ()bm ()" (ﬁ)”/ et A\
= m+k+n+l g m kl [O,oo)xR” (1 + |e—uv|)m

— Kz @bu@) (1) f 7 p(H=n—kusn g, / _dv
k) Jo e (Lt [0])"™P

< 00. (7.9

Ontheother hand, since¢ € S;(R"),foru < 0O, by theduality (3.3) and Lemma
6, we have

| I o(H+Du
v s =¥ n— s " __—Km n bm s
|(We, @) (u, v)|=|(Vg,n—r g)(lul,—e U)|<l!(1+|v|)m HAn+1(P)bm (8)
(7.5)
which, by ! > —H, leadsto
/ Ve n|”
(—00,0) xR
n[ p 0 dv
< Km n bm V2N [J(H+l)ud ey
< Knsrsma@n@)” () [ ertsina [ S <o
(7.6)

Furthermore, by (7.4) and (7.6), for some constant C independent of g and ¢,

Ve, @l p < COm(8) + Kin(8)) (b (P) + K (), (7.7

It is easy to see that as ¢ — O under the topology of S;(R™), b,,(¢) — 0 and
Kn(¢) — 0. As ¥, g islinear, thisimpliesits continuity.

(2) The continuity of g — W, g¢ from Sp(R™) into L7 (R x R"), given ¢ €
S (R™), isobvious by (7.7).

(3) For any m > max{k, I}, (7.3) and (7.5) hold. Define

k nl

R(g) =max {z—le+k+n+1(g), 77 om (8)} » Q@) =max (b (¢), Kmti4n+1(P)} .

Then (3.5) is proved.
(4) The proof of the statement is routine. We therefore omit it for brevity. O
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Proof of Lemma 6. Given u > 0,
(We gd)(u, v)
— oHu f g(e"x + v)p(x) dx = eH—mH / pe " (x —v))g(x)dx = I.
: - (7.8)
If £k > 1, then by Taylor's expansion of ¢ around —e™*v, and g € S, (R"),

101 k=1
[ = ¢H—n=hu E / % (/ X0y (te ™ x — e‘“v)g(x)dx) dt
0 H n

lo|=k

1 k-1
k(1—1t
_ JH-n—ku Z/ kA-o f F +/ Fldr, (79
0 ol lxl<d vl x| ol

lor|=k

where F standsfor x*9,¢ (te *x — e “v)g(x).
If |x| < 3|v], thenfor ¢ € [0, 1], |te™*x — e™*v| > 3e~|v], implying

[0up(te™x —e " V)| < bp(P)(A+e o)™, |al=k, m=>k,...
with b, defined by (7.2). Then

b () f X b (9)Kik(g)
FI< ———— 1+ dx < ——————>2~ (7.10
fﬂ(%vli = 2 [ mfgeoran < 22 ORE - gag

If [x| > 3|v], by (7.1) and (7.2),
X ()| < Kmink+1(2) L+ 1x) ™D 18,01 <27 by (¢), |l =k, m > k,
leading to

/ |F|<bm(¢) Kinntk+1(8) x<bm(¢)Km+n+k+l(g)
x> 3ol 2" Jirjzdemupp) (A4 [xpmn T T (L4 e u)m

(7.12)

Because K, isincreasing in m, from (7.9)—(7.11) it is seen that

e(H—n—k)u

1 k(1— l)k_l
—————— by (P) Kt ——dt.
Sy o @) Kttt (8) > /O i

|(Wg. ), v)| = 1+e lor|=k

The summation on the right is equal to n¥/k!, completing the proof of (7.3) for
k> 1.
If k =0, then I in (7.8) is decomposed into

[=eH—mu ( f = |¢(e_“(x—v))g(x)dx+ fl . |¢(e—“(x—v))g(x)dbc).
x|I=5lv x|=35lv

Argument leading to (7.10) and (7.11) still apply, and hence (7.3) isproved. O
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Proof of Lemma 3. Define operator V,, ,, : ¢ (x) — e /¢ (e "x — v). Then

(W 5 ), v) = T2 V_, _0).

Following the proof of (5.14), it is seen that

/ (. Viog) 2 dudv = ¢ f Hok / (e 8) 2 du dt.
RxRn Rn R

withc = (27)". Lett = ¢*|&|. Thenu = Int — In|&| and hence
f (. Vo) P dudv = cf |¢3<s>|2/ U3 di de
RxR" R R,
—c [ 1) e e (7.12)

If (W m)(u, v) = 0,then (¢, V_, —,g) = 0, and by (7.12), |¢(£)[%c;.r = O.
Therefore, for ¢y, # 0, $(6) = 0. Let Z = {w € §" 1 : ¢4, = 0} and regard
it as atopological subspace of §”~1. Denote by Z° the inner part of Z. We prove
that aslong as g # 0, Z° = @. First, if ¢, , = 0, thenfor al ¢+ > 0, g(rw) = 0.
Assume Z° # (3. Denote by C the cone {tw : t € Ry, w € Z°}. Then C isopen
and g =00nC.Givene, & € C,3%3(§) = [pa(—)1*Ix*e ¥ ¥ g(x)dx = 0. Let
& — 0. SinceOisontheboundary of C,and g € S(R"), then fR,, x%g(x)dx =0.
Since g has compact support, then g = 0.

The contradiction shows Z° = @. Thisimplies that the set of £ with $(£) = 0
isdensein R”. Since ¢ is continuous, thisimplies ¢(£) = 0, and hence ¢ = 0.

|

Proof of Lemma 5. To prove (6.8), first assume H # 0. Then for any v # 0, write
v = c|v| and use change of variable to get

/eH”f(u, v)du

00 0
=/ eH”f(e”v)du—i—/ e (f(e"v) — £(0) du
0 —00

In|v|

= o™ /IT e f(ce")y du + |v|—Hf e (f(ce") — £(0)) du
njv

—0o0
0

= |y~ (/ooeH“f(ce”)du+/ e (f(ce*) — f£(0) du
0

—00

Injv|
—/ e £(0) du)
0

— o[ (A(c, H. )+ %) _ %0)

The case where H = 0 is also straightforward. The proof for (6.9) is similar to
(6.8) and hence is omitted. ]
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8. Discussion

In addition to invariance under scaling and translation, we can introduce invari-
ance under other transformations, such as orthogonal transformations, which form
acompact group S O (n) and commute with scaling. Indeed, if C(¢) isthec.f. of an
ssd, then C(¢) = fso(,,) C(¢ o g)dm(g), where m isthe Haar measureon SO (n),
determines an ssd which is also rotation invariant.

More generally, suppose G is an Abelian Lie group of transformations on R”
with afinite number of generators A1, ... Ag. Givent = (t1,..., 1), lett - A =
> tiA;. Then elements in G can be represented by ¢4 = []e/“i. Define an
operator S; ontest functions ¢ to be (S,¢)(x) = J (! 4)¢p (! Ax), where J (-) isthe
Jacobian. Let S} betheadjoint of S;. Formally defineawavel et expansionwith mul-
tipleindex H = (Hy, ..., H) by (W, gd)(t, v) = et J(SFTrg)-¢. Wethen get,
forany 1o € R¥ and vg € R, (Wg 11 Tyy Sig®) (£, v) = (Wg ) (t + 10, v+ €' Avp).
Introduce operator Uy, ., such that (Uyy v, (2, v) = f(t + 10, v+ ¢4y, Thenwe
can construct random fields invariant under U, which induce via W} ,, random
fieldsinvariant under G.
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