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Abstract

We establish several methods for constructing stationary self-similar random �elds (ssf ’s) on
the integer lattice by “random wavelet expansion”, which stands for representation of random
�elds by sums of randomly scaled and translated functions, or more generally, by composites
of random functionals and deterministic wavelet expansion. To construct ssf ’s on the integer
lattice, random wavelet expansion is applied to the indicator functions of unit cubes at integer
sites. We demonstrate how to construct Gaussian, symmetric stable, and Poisson ssf ’s by random
wavelet expansion with mother wavelets having compact support or non-compact support. We
also generalize ssf ’s to stationary random �elds which are invariant under independent scaling
along di�erent coordinate axes. Finally, we investigate the construction of ssf ’s by combining
wavelet expansion and multiple stochastic integrals. c© 2001 Elsevier Science B.V. All rights
reserved.

Keywords: Stationary self-similar; Random wavelet expansion; Multiple stochastic integral;
Invariance under independent scaling

1. Introduction

This article establishes several methods to construct stationary and self-similar
random �elds (ssf’s) on the integer lattice Zd. The methods are based upon “random
wavelet expansion”, which is motivated by probabilistic image modeling.
Ssf’s on Zd can be constructed by taking the increments of random �elds de�ned

on Rd. For instance, if Y (t) is a self-similar process with stationary increments on R,
then X = {Xs; s ∈ Z}, with Xs = Y (s + 1) − Y (s), is a ssf on Z (Samorodnitsky and
Taqqu, 1994, Sections 7:2 and 7:10). Other points of views have also been used in the
construction of ssf’s on Z. Sinai (1976) established a method to construct Gaussian
ssf’s on Zd by studying the bifurcation points of a family of curves de�ned in a certain
space of probability distributions. Dobrushin (1979) studied ssf’s on Zd by regarding
them as discretized ssf’s de�ned on continuum.
Ssf’s on the integer lattice constructed in this article are also examples of discretiza-

tion, which may be understood in the context of image analysis. Given a function
f de�ned on R2, its digitized image I = {Iij; i; j ∈ Z} is obtained as the following.
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Fix d¿ 0. Divide R2 into disjoint d × d squares. Then the value of Iij, termed the
“pixel value” of I at (i; j), is given by

Iij =
1
d2

∫ (i+1)d

id

∫ ( j+1)d

jd
f(a; b) da db: (1.1)

Discretization per se is not related to stationarity and self-similarity of the probability
distribution of images. On the other hand, it has been shown that natural images have
many empirical scale-invariant properties (Ruderman, 1994; Field, 1994; Mumford and
Gidas, 2000). To explain this natural phenomenon, several probabilistic image models
have been developed. The term “random wavelet expansion” was coined by Mumford
and Gidas (1998), who developed a stationary self-similar image model by considering
the composition of the object surfaces in an image. The model proposed by Chi (1998)
is from a di�erent point of view. Think of the objects in the 3-D world as planar
templates parallel to the image plane. Ignoring the e�ect of occlusion, an image of the
3-D world is the arithmetic sum of the 2-D views of all the objects, through the lens
of a camera. Given an object, assume that when it is located in front of the lens, at
distance 1, its 2-D view is described by a function g(a; b) on R2. Then, within a suitable
projective coordinate system, if the object is located at (t; y; z), with t its distance from
the camera, then its 2-D view becomes g(t−1a + y; t−1b + z). Suppose the locations
of all the objects in the 3-D world consist {(tk ; yk ; zk)}. For simplicity, assume all the
objects look the same. Then an image f of the 3-D world can be written as

f(a; b) =
∑
k

2-D view of the kth object =
∑
k

g(t−1k a+ yk ; t−1k b+ zk); (1.2)

with g the 2-D view of any of the objects when it is located in front of the lens, at
distance 1. Since {(tk ; yk ; zk)} is a random sample from a stochastic point process, f
is also random. It can be shown that under certain conditions for the point process, the
probability distribution of f is scale and translation invariant (Chi, 2000a; Mumford
and Gidas, 2000). Also see Proposition 3.2. Because f is the arithmetic sum of ran-
domly scaled and translated copies of function g, therefore comes the term “random
wavelet expansion”.
To transform the above image model to random �elds de�ned on Zd, let I be the

digitization of f. Letting Sij = [ id; (i + 1)d)× [jd; (j + 1)d), by (1.1) and (1.2),

Iij =
1
d2
∑
k

∫
Sij
g(t−1k a+ yk ; t−1k b+ zk) da db:

Write tk =euk , vk =(yk ; zk), x=(a; b). Assume d=1 and denote �ij(x)= 1[i; i+1)×[ j; j+1)
(x). Then Iij =

∑
k

∫
g(euk x + vk)�ij(x) dx. Denoting 	g�(u; v)=

∫
g(eux + v)�(x) dx

for any function �, we get

Iij = 〈W;	g�ij〉; (1.3)

with W =
∑

k �(u− uk ; v− vk).
Eq. (1.3) indicates two things. First, 	g can be regarded as an expansion of

function by scaled and translated copies of g and can be used to build probabilistic
image models. With a little abuse of terminology, we call 	g “wavelet expansion
with mother wavelet g”, although what the term commonly means is a little di�erent
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from 	g. Despite this, there should be no confusion caused by such usage of the term.
Second, random functionals W di�erent from the sum of randomly located � func-
tions can also be combined with 	g, resulting in di�erent probability distributions on
images.
Now we can generalize random wavelet expansion as the composite of a random

functional W and the wavelet expansion 	g. The idea of random wavelet expansion
has been developed for di�erent function spaces to get di�erent stationary self-similar
random �elds (Chi, 2000a,b; Chi, 1998; Mumford and Gidas, 2000). In this paper,
random wavelet expansion will be de�ned only for indicator functions of unit squares
at integer grid points, i.e., 1[i; i+1)×[ j; j+1).
The so-called “random wavelet expansion” is di�erent from the construction of ssf’s

by wavelet expansion in its commonly used sense (see, e.g., Meyer et al. (1999) and
the references therein). In the latter, wavelets are scaled by factors 2n, n ∈ Z, and
shifted by j2n, j ∈ Z, and ssf’s arise when the wavelet coe�cients are random. In
contrast, for random wavelet expansion (1.3), besides the fundamental di�erence that
g is randomly scaled and translated, for all the examples in the paper, the wavelet
coe�cients are determined by the scales. In order to get ssf’s with a given index H
(see De�nition 1), the coe�cient of g(ta+ b) is t H .
In image modeling, it is quite natural to assume an object is bounded. In terms

of wavelet expansion, this implies that the mother wavelet g has compact support.
In Section 3, random wavelet expansion using such mother wavelets will be used to
construct ssf’s. On the other hand, random wavelet expansion using mother wavelet
with non-compact support can also be applied to construct ssf’s, while with more re-
strictions on the parameters of the random �elds. This will be shown in Section 4.
With random wavelet expansion, stationary self-similarity can be generalized without
extra di�culty. In Section 5, after generalizing wavelet expansion 	g, stationary ran-
dom �elds invariant under “independent scaling” along the coordinate axes will be
constructed. All the ssf’s constructed in Sections 3–5 can be represented by single
stochastic integrals. As is well known, one can construct non-Gaussian ssf’s from
the Wick powers (multiple Wiener–It̂o integrals) of Gaussian ones (Dobrushin, 1979;
Taqqu, 1978,1979). To get analogous results for random wavelet expansion, in Section
6, we will investigate how to incorporate it with multiple stochastic integrals. The so-
lution given in this section can be regarded as a generalization of the tensor product
of ssf’s.
In the next section, we will �x notation. The results on ssf’s on the integer lattice

will be presented in subsequent sections.

2. Notation

Given r=(r1; : : : ; rd), s=(s1; : : : ; sd) ∈ Rd, write r6s if ri6si, for all i=1; : : : ; d.
If c is a scalar, then let it also denote the d dimensional vector (c; : : : ; c). Denote the
cube [r1; s1)× · · · × [rd; sd)⊂Rd by [r; s).
Given random �eld X = {Xs; s ∈ Zd} on Zd, we will always assume that Xs are

real-valued. Given t ∈ Zd and k ∈ N, de�ne translation Tt and scaling Sk such that
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X ′=TtX and X ′′= SkX are random �elds on Zd with

X ′
s =Xs+t ; X ′′

s =
1
kd

k(s+1)−1∑
r = ks

Xr (2.1)

for all s ∈ Zd, where ∑k(s+1)−1
r = ks stands for summation over all r=(r1; : : : ; rd) ∈ Zd

with ksi6ri6k(si + 1)− 1, i=1; : : : ; d.

De�nition 1. The random �eld X is called stationary and self-similar with index H

(H -ss), if for any s ∈ Zd, X D= TsX , and for any k ∈ N, X D= kHSkX .

Translation and scaling for functions on Rd are similarly de�ned. Given function
�(x) on Rd, for t ∈ Rd, and � ∈ (0;∞), de�ne operators Tt and S� such that

(Tt�)(x)=�(x + t) (S��)(x)= �−d�(�−1x):

Denote by S the Schwartz space of in�nitely di�erentiable functions �(x1; : : : ; xd)
on Rd such that for any m; n1; : : : ; nd¿0,

lim
|x|→∞

(1 + |x|)m @
n1+···+ndf(x)
@n1x1 · · · @ndxd =0:

Let C∞
0 (Rd) be the space of in�nitely di�erentiable functions with compact support.

Clearly C∞
0 (Rd)⊂S. The wavelet g will be chosen from S or C∞

0 (Rd). For more
on the space S, see Gel’fand and Vilenkin (1964).
Next, we de�ne wavelet expansion 	g, which is more general than the one introduced

in Section 1. The new de�nition of 	g has an index, allowing us to construct ssf’s
with di�erent indices.

De�nition 2. Given g ∈ S with
∫
g=0, de�ne transformation 	g, such that for any

measurable function � on Rd, 	g� is a function on R× Rd and

(	g�)(u; v)=
∫
eHug(eux + v)�(x) dx=e(H−d)u

∫
g(x)(TvSeu�)(x) dx; (2.2)

where u ∈ R; v ∈ Rd, whenever the integrals in (2.2) are well-de�ned. We call 	g a
wavelet expansion with index H and “mother wavelet” g.

Following the idea of discretization in Section 1, for any s ∈ Zd, let �s= 1[s; s+1).
From now on we will assume W a random measure. Then (1.3) is rewritten as

Xs=
∫
R×Rd

(	g�s)(u; v)W (du; dv); s ∈ Zd: (2.3)

It is easy to check that given t ∈ Zd and k ∈ N, there are

(TtX )s=
∫
(	gTt�s) dW; (SkX )s=

∫
(	gSk�s) dW: (2.4)

For example, for the second identify, letting X ′′= SkX , for all s ∈ Zd, we have

X ′′
s =

1
kd

k(s+1)−1∑
r = ks

∫
(	g�r) dW =

1
kd

∫
(	g1[ks; k(s+1))) dW =

∫
(	gSk�s) dW:
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In the subsequent sections, we will construct ssf’s on Zd by (2.3). Most of the con-
structions will be based on stochastic integrals with respect to Poisson and symmetric
�-stable processes. Details on such integrals can be found in Kallenberg and Szulga
(1989); Major (1981) and Samorodnitsky and Taqqu (1994).

3. Random wavelet expansion using wavelets with compact support

In this section we will construct stationary and self-similar random �elds on Zd
by random wavelet expansion with mother wavelet having compact support. We need
some functional properties of 	g�s.

Lemma 3.1. Suppose g ∈ C∞
0 (Rd) and the integral of g along any line parallel to

each coordinate axis is 0; i.e.; for all i=1; : : : ; d; and �xed (x1; : : : ; xd) ∈ Rd;∫
R
g(x1; : : : ; xi−1; z; xi+1; : : : ; xd) dz=0: (3.1)

De�ne the wavelet expansion 	g by (2:2). If H ∈ (0; d); then for �s= 1[s; s+1); with
s ∈ Zd; and for any p¿ 0; 	g�s ∈ Lp(R× Rd).

The condition (3.1) implies
∫
g=0 and allows us to construct, for any H ∈ (0; d),

symmetric �-stable or Poisson ssf’s with index H . The discussion at the end of the
section shows that under (3.1), the high-frequency part of the random �eld constructed
from g is kept limited, which is necessary for the random �eld to be well de�ned.
The proof of Lemma 3.1 will be given in Section 7. The second lemma, which
is straightforward, reveals the relationship between translation, scaling, and wavelet
expansion.

Lemma 3.2. Given s ∈ Zd; let �s= 1[s; s+1). Then for any t ∈ Zd; and k ∈ N;
(	gTt�s)(u; v)= (	g�s)(u; v+ eut);

(	gkHSk�s)(u; v)= (	g�s)(u+ log k; v): (3.2)

Based on the results, we can construct various ssf’s on Zd. As an example, we
show how to construct symmetric �-stable ssf’s in the following. The argument for the
construction is standard for all the ssf’s in the subsequent sections.

Proposition 3.1. Let � ∈ (0; 2] and W be a symmetric �-stable random measure on
R × Rd; with the Lebesgue control measure. Assume the index of 	g is H ∈ (0; d).
Then

Xs=
∫
R×Rd

(	g�s)(u; v)W (du; dv); s ∈ Zd (3.3)

is a well-de�ned ssf with index H .

Proof. By Lemma 3.1, it is clear that X is well de�ned. It remains to show that X is
a ssf with index H . First, given s ∈ Zd, let X̃ =TsX . Then given {s1; : : : ; sN}⊂Zd, by
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(2.4), the characteristic function of (X̃ s1 ; : : : ; X̃ sN ) is

exp

(
−
∫ ∣∣∣∣∣

N∑
l= 1

xl	g�sl+s

∣∣∣∣∣
�)

= exp

(
−
∫ ∣∣∣∣∣

N∑
l= 1

xl	gTs�sl

∣∣∣∣∣
�)

= exp
(
−
∫

|	gTsf|�
)
;

with f=
∑N

l= 1 xl�sl . By Lemma 3.2, (	gTsf)(u; v)= (	gf)(u; v+e
us). Since the trans-

formation (u; v)→ (u; v+eus) has Jacobian 1,
∫ |	gTsf|�=

∫ |	gf|�, which is the char-
acteristic function of (Xs1 ; : : : ; XsN ). This proves that the distribution of X is stationary.
By similar argument, it can be shown that X is self-similar with index H .

We now construct Poisson ssf’s on Zd. We have the following result.

Proposition 3.2. Suppose Z is a Poisson point process on R × Rd with intensity
measure du dv. If the index of 	g is H ∈ (0; d); then with probability 1; given random
sample {(ui; vi)} from Z;

Xs=
∫
(	g�s)(u; v) dZ(u; v)=

∑
i

(	g�s)(ui; vi) (3.4)

converges absolutely for all s ∈ Zd. Furthermore; the random �eld X = {Xs; s ∈ Zd}
is a ssf with index H .

Proof. For each s ∈ Zd, since 	g�s ∈ L1, then by Campbell’s theorem (Kingman,
1993), with probability 1, Xs=

∑
i(	g�s)(ui; vi) converges absolutely. Because Zd is

countable, with probability one, Xs is well de�ned for all s ∈ Zd, and hence X is well
de�ned. It is straightforward that X is H -ss.

We can give the random �eld in Proposition 3.2 an intuitive explanation. Write

X =

{∑
i

(	g�s)(ui; vi); s ∈ Zd
}
=
∑
i

{
(	g�s)(ui; vi); s ∈ Zd

}
=
∑
i

eHui Ii;

where each Ii= {Iis; s ∈ Zd} is given by Iis=
∫
[s; s+1) g(e

ui x+vi) dx, and can be regarded
as the digitized image of g(eui x + vi). Then X is the weighted sum of the images Ii,
each being modulated by eHui . Given any g(eui x + vi), suppose its support is J1 ×
· · · × Jd. Because along any line parallel to any coordinate axis, the integral of g is 0
(Eq. (3.1)), it is not di�cult to see that, whenever Jj ⊂ [t; t +1), for some j=1; : : : ; d
and t ∈ Z, there is ∫[s; s+1) g(eui x + vi)= 0, for any s ∈ Zd. This implies that Ii=0, or
in other words, g(eui x+ vi) is “invisible” in the image X . Therefore, when the support
of g(eui x+ vi) is small, the function is visible in X only when it is close to an integer
point so that the latter is within the support of the former.
It is clear that terms of the form g(eui x+vi) with large ui make up the high-frequency

part of the image X . At the same time, these functions have small support. As ui → ∞,
the volume of the support of g(eui x+vi) decreases like e−dui . By the above discussion,
it is seen that it becomes increasingly unlikely for g(eui x + vi) to be visible in X .
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Together with H ¡d, this leads to the conclusion that the high-frequency part of
X is limited. On the other hand, terms of the form g(eui x + vi) having negative ui
with large absolute values make up the low-frequency part of X . Since their images
Ii are weighted by eHui with H ¿ 0, the contribution to the pixel values of X by Ii
decreases exponentially fast as ui → −∞. This implies that the low-frequency part of
X is also limited. This is consistent with the mathematical conclusion that one can get
well-de�ned Poisson ssf’s by random wavelet expansion.

4. Random wavelet expansion using wavelets with non-compact support

The mother wavelet g in Section 3 has compact support and satis�es the condition
(3.1) of having vanishing integrals along any line parallel to any coordinate axis. In
this section, we will show that wavelets without these two properties can also be used
for constructing ssf’s on the integer lattice. Understandably, in order to do this, we
need more restrictions on the index H .

Lemma 4.1. Suppose g ∈ S. For any s ∈ Zd; let �s= 1[s; s+1). Given p ∈ (1;∞);
�x q¿ 1 such that p−1 + q−1 = 1. If H ∈ (0; d=q); then 	g�s ∈ Lp(R× Rd).

Lemma 4.1 will be proved in Section 7. We now can get a result similar to
Proposition 3.1 for random wavelet expansion with wavelets not having compact sup-
port. The constructed ssf’s is symmetric �-stable.

Proposition 4.1. Given � ∈ (1; 2]; let W be a symmetric �-stable random measure on
R×Rd; with the Lebesgue control measure. Given g ∈ S; assume the index of 	g is
H ∈ (0; (1− �−1)d). Then

Xs=
∫
(	g�s)(u; v)W (du; dv); s ∈ Zd

is a well-de�ned ssf with index H .

The proof of Proposition 4.1 is almost identical to Proposition 3.1, hence is omitted.
It is worth considering the case d=1 in more detail. We have

Proposition 4.2. Suppose d=1. Given g ∈ S; let G(x) be the in�nitely di�erentiable
function with limx→−∞G(x)= 0 and G′(x)= g(x). Then for X = {Xs; s ∈ Z} given in
Proposition 4:1; there is Xs=Y (s+ 1)− Y (s); with

Y = {Yt; t ∈ R}=
{∫

R×R
e(H−1)u[G(eut + v)− G(v)]W (du; dv); t ∈ R

}
: (4.1)

Furthermore; given g ∈ S; Y is well de�ned in the following two cases:

(1) � ∈ (1; 2]; and H ∈ (0; 1− �−1);
(2)

∫
g=0; � ∈ (0; 2]; and H ∈ (0; 1).

Proof. First, from
∫
eHug(eux+ v)1[s; s+1)(x) dx=e(H−1)[G(eu(s+1)+ v)−G(eus+ v)];

there is Xs=Y (s+ 1)− Y (s).
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For the remaining part of Proposition 4.2, we only prove part (2). Part (1) can be
proved similarly. Without loss of generality, assume t=1. Then there is∫

R×R
e(H−1)�u|G(eu + v)− G(v)|� du dv

=
∫ ∞

0

∫ ∞

−∞
�(H−1)�−1|G(�+ v)− G(v)|� d� dv: (4.2)

Divide the integral on the right-hand side into two, one on {�¿1}, the other one on
{�61}. For the �rst integral, since ∫ g=0 implies G ∈ S, then by �rst integrating
over v and noting H ¡ 1, it is seen the integral is �nite. For the integral on {�61},
given k¿1 with k�¿ 1, as g ∈ S, there is a constant C, such that for all x ∈ (0; 1) and
v ∈ R \ (−2; 2), |g(x+ v)|6C(1 + |v|)−k . Then, letting h(�; v)= �−1|G(�+ v)−G(v)|,
there is

h(�; v)6 1(−2;2)(v) sup{h(�; v): |v|62; � ∈ (0; 1)}+1R\(−2;2)(v)1�
∫ �

0
|g(x+v)| dx

6C′1(−2;2)(v) + C1R\(−2;2)(v)
1

(1 + |v|)k ;

where C′ is another constant. Then∫ 1

0

∫ ∞

−∞
�(H−1)�−1|G(�+ v)− G(v)|� d� dv=

∫ 1

0

∫ ∞

−∞
�H�−1h�(�; v) d� dv¡∞:

Therefore, the integral in (4.2) converges. Hence, Y is well de�ned.

From (4.2) we also see that

Y D=
{∫ ∞

0

∫ ∞

−∞
�H−1−1=�[G(�t + v)− G(v)]M̃ (d�; dv); t ∈ R

}
;

where M̃ is a symmetric �-stable measure with Lebesgue control measure on R+×R.
By continuity argument, it is possible to extend the integral to G= 1A, with A= [−R; R).
Then for t ¿ 0,

G(�t + v)− G(v)=



1 −R− �t6v¡min(R− �t;−R);
−1 max(R− �t;−R)6v¡R;
0 otherwise:

Similar equalities hold for t ¡ 0. In order for the process de�ned by G to be well
de�ned, it is necessary and su�cient that∫ ∞

0

∫ ∞

−∞
��(H−1)−1|G(�t + v)− G(v)|� d� dv

=2
∫ ∞

0
��(H−1)−1 min(2R; �t) d�¡∞;

which holds if and only if H ∈ (1− �−1; 1).
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5. Stationary random �elds on the integer lattice with more than scale invariance

Random wavelet expansion can also be used to construct stationary random �elds
with self-similarity in a broader sense. For random �elds X de�ned on Rd, such
self-similarity would mean for some h6d, there are constants H1; : : : ; Hh and an
orthogonal decomposition Rd=E1⊕· · ·⊕Eh, such that for any �1; : : : ; �h ¿ 0, X (x) D=
�H11 · · · �Hhh X (�1P1x + · · ·+ �hPhx), with Pj the projection onto Ej.
Before specifying the self-similarity in a broader sense for random �elds on Zd,

we introduce the following notation. Given integer n¿1, if k =(k1; : : : ; kn) ∈ Zn, and
x=(x1; : : : ; xn) ∈ Rn+∪{0}, then denote kx=(k1x1; : : : ; knxn) and kx = kx11 · · · kxhh , when-
ever it is well de�ned. Note the di�erence between kx and k · x= k1x1 + · · ·+ knxn. If
f is a function on R, then for x=(x1; : : : ; xn) ∈ Rn, denote f(x)= (f(x1); : : : ; f(xn)).

De�nition 3. Fix D=(d1; : : : ; dh) ∈ Nh such that
∑h

i= 1 di=d. For each r ∈ Zd, write
r=(r1; : : : ; rh), with ri ∈ Zdi . Given k =(k1; : : : ; kh) ∈ Nh, de�ne SD;k to be a scaling
transformation with dimensional component D and multiple scaling factor k, such that
for any random �eld X on Zd, letting X̃ = SD;kX , there is

X̃ s=
1
kD

h∑
i= 1

ki(si+1)−1∑
ri = kisi

Xr1 :::rh ;

for any s=(s1; : : : ; sh) with si ∈ Zdi . A random �eld X is called stationary self-similar
with multiple index H =(H1; : : : ; Hh) and dimensional component D=(d1; : : : ; dh), or

(H;D)-ss for short, if X is stationary and for any k ∈ Nh, X D= kHSD;kX .

De�nition 4. With D given as in De�nition 3, for each j=1; : : : ; h, let Pj denote the
map from Rd into itself, such that for any x=(x1; : : : ; xd) ∈ Rd; Pjx=(0; xd1+···+dj−1+1;
: : : ; xd1+···+dj ; 0). Denote P=(P1; : : : ; Ph). As a generalization of wavelet expansion 	g,
given multiple index H =(H1; : : : ; Hh), de�ne the transformation 	g;H;D such that for
any measurable function �; 	g;H;D� is a function on (u; v), with u=(u1; : : : ; uh) ∈
Rh; v ∈ Rd, and

(	g;H;D�)(u; v)=
∫
eu·Hg(eu·Px + v)�(x) dx; (5.1)

whenever the integral on the right-hand side is well de�ned. Recall that eu·Px=∑h
i= 1 e

uiPix.

With a little abuse of notation, we also use Pjx to denote (xd1+···+dj−1+1; : : : ; xd1+···+dj).
Parallel to Lemmas 3.1 and 3.2, we have the following properties of 	g;H;D.

Lemma 5.1. Fix g ∈ C∞
0 (Rd) such that it satis�es the condition (3:1). Given s ∈ Zd;

let �= 1[s; s+1). There is a constant C =C(g); and given H =(H1; : : : ; Hh); if Hj ∈
(0; dj); j=1; : : : ; h; there are bounded positive functions fj(uj; vj)=fj(uj; vj; g; Hj; dj)
on R× Rdj ; such that for any p¿ 0; fj ∈ Lp(R× Rdj); and

|(	g;H;D�)(u; v)|6C
h∏

j= 1

fj(uj; Pjv): (5.2)
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Lemma 5.2. Let �s= 1[s; s+1); ∀s ∈ Zd. Then any t ∈ Zd; and k =(k1; : : : ; kh) ∈ Nh;
(	g;H;DTt�s)(u; v)= (	g;H;D�s)(u; v+ eu·Pt);

kH

kD

k(s+1)−1∑
r = ks

(	g;H;D�r)(u; v)= (	g;H;D�s)(u+ log k; v): (5.3)

Proofs of Lemma 5.1 and Lemma 5.2 will be given in Section 7. From these two
lemmas we get the following result, which generalizes Proposition 3.1.

Proposition 5.1. Given � ∈ (0; 2]; suppose W is a symmetric �-stable random measure
on R×Rd with the Lebesgue control measure. Assume for 	g;H;D with H =(H1; : : : ; Hh)
and D=(d1; : : : ; dh); there is Hj ∈ (0; dj); for any j=1; : : : ; h. Then

Xs=
∫
R×Rd

(	g;H;D�s)(u; v)W (du; dv); s ∈ Zd (5.4)

is a well-de�ned ssf with index (H;D).

The proof for the result follows the same line as Proposition 3.1, while using the
above two lemmas. We omit the details.

6. Multiple stochastic integral representations of stationary self-similar random
�elds on the integer lattice

The ssf’s on the integer lattice we have so far constructed can be represented by
single stochastic integrals. That is, the ssf’s with characteristic functions (3.3), (3.4),
and (5.4) have the following representation:

Xs=
∫
(	g1[s; s+1))(u; v) dZ(u; v); (6.1)

where Z is a symmetric �-stable random measure or a Poisson random measure on
R × Rd, with the Lebesgue control measure. On the other hand, by using multiple
Wiener–Itô integrals on the spectral domain, a large class of non-Gaussian ssf’s can
be constructed (Dobrushin, 1979). The same ssf’s can also be constructed using a
di�erent type of multiple Wiener–Itô integrals (Taqqu, 1978, 1979). By the analogy
between Fourier transform and wavelet expansion, one may ask whether it is possible
to combine wavelet expansion with multiple stochastic integrals on the domain of scale
and translate, to get ssf’s. In this section, this question will be explored.
Lemma 5.1 points out a way to answer the question. In particular, it o�ers a per-

spective on the free variable x in the expansion (5.1). That is, each coordinate xj in
x=(x1; : : : ; xd) is free, and can be associated with a pair of scale and translate inde-
pendent of the others. It is possible to impose di�erent stochastic integrals on these
independent scales and translates to get ssf’s. As can be seen later, this perspective
generalizes the idea of tensor products of ssf’s. In contrast, in the construction in
Dobrushin (1979); Taqqu (1978, 1979), the variable x was taken as a single iden-
tity without “inner” freedom. This perspective can be formulated into another way to
combine wavelet expansion with multiple stochastic integrals to get ssf’s (Chi, 2000b).
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We now combine multiple stochastic integrals with results in Section 5. Let g ∈
C∞
0 (Rd) be a function satisfying the condition (3.1). Fix H =(H1; : : : ; Hh) and D=
(d1; : : : ; dh). Then de�ne 	g;H;D as in (5.1).
The multiple stochastic integral we will use is de�ned in Kallenberg and Szulga

(1989). Suppose for j=1; : : : ; h; Zj is a Poisson random measure or a symmetric
�-stable random measure on R × Rdj , with the Lebesgue control measure. For sim-
plicity, assume Z1; : : : ; Zh are independent.

Proposition 6.1. Suppose for j=1; : : : ; h; Hj ∈ (0; dj). Then; given random measures
Z1; : : : ; Zh as above; such that for each s ∈ Zd;

Xs=
∫
R×Rd1

· · ·
∫
R×Rdh

(	g;H;D1[s; s+1))(u; v) dZ1(u1; v1) · · · dZh(uh; vh); s ∈ Zd;
(6.2)

is a ssf with index H1 + · · ·+ Hh.

Proof. That X is well-de�ned with probability 1 is a direct consequence of
Lemma 5.1, the results on multiple Wiener–Itô integrals (Major, 1981), and Theo-
rem 6:2 of Kallenberg and Szulga (1989). It is straightforward to show that X is
(H1 + · · ·+ Hh)-ss. The details of the proof is omitted for simplicity.

The representation (6.2) is a generalization of tensors of ssf’s. Indeed, if g= g1
⊗· · ·⊗gh, then X constructed in (6.2) equals X (1)⊗· · ·⊗X (h), where X (j) = {X (j)s ; s ∈
Zdj} is de�ned by the single stochastic integral X ( j)s =

∫
(	j1[s; s+1))(u; v) dZj(u; v), with

	j an expansion with wavelet gj and index Hj.

7. Proofs of results on wavelet expansion

In this section we prove the lemmas given in the previous sections. First we prove
Lemmas 3.1 and 5.1, which are based on the following results.

Lemma 7.1. Fix g ∈ C∞
0 [0; e

u0 ] such that it satis�es the condition (3:1). Given
H =(H1; : : : ; Hd); with Hj ∈ (0; 1); de�ne

I(u1; : : : ; ud; v1; : : : ; vd)= eu·H
∫
[0;1)

g(eu1x1 + v1; : : : ; eudxd + vd) dx: (7.1)

For each u ∈ R; let Au= [− eu;−eu + eu0 ] ∪ [0; eu0 ] and Bu= [− eu; eu0 ]. De�ne
C =C(g)= sup(|g|)(1 + eu0 )d: (7.2)

Then

|I(u1; : : : ; ud; v1; : : : ; vd)|

6C
d∏

j= 1

(1[u0 ;∞)(uj) · 1Auj (vj)e(Hj−1)uj + 1(−∞; u0)(uj) · 1Buj (vj)eHjuj): (7.3)

In addition; for u¿u0; m(Au)= 2eu0 ; and for u¡u0; m(Bu)62eu0 .
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Proof. Without loss of generality, assume for j6k; uj¿u0, and for j¿k; uj ¡u0.
Write I = I(u1; : : : ; ud; v1; : : : ; vd). Letting Jj = [vj; euj + vj] ∩ [0; eu0 ], by variable
substitution,

I = e(H1−1)u1 · · · e(Hk−1)uk eHk+1uk+1 · · · eHdud
×
∫
J1
· · ·
∫
Jk

∫
[0;1)

· · ·
∫
[0;1)
g(x1; : : : ; xk ; euk+1xk+1+vk+1; : : : ; eudxd+vd) dx1 · · · dxd:

For j=1; : : : ; k, if Jj = ∅, then I =0. Moreover, by (3.1), it is seen that if [vj; euj +
vj]⊃ [0; eu0 ], then by integrating with respect to xj �rst, there is also I =0. Therefore,
only when vj satis�es [vj; euj +vj]∩ [0; eu0 ] 6= ∅ and [vj; euj +vj] 6⊃ [0; eu0 ], which implies
vj ∈ Auj , can I be non-zero.
On the other hand, for j= k + 1; : : : ; d and x ∈ [0; 1), euj x+ vj ∈ [vj; euj + vj]. Since

the support of g is in [0; eu0 ]d, only when [vj; euj + vj] ∩ [0; eu0 ] 6= ∅, which implies
vj ∈ Buj , can I be non-zero. Therefore, we get

|I |6|I |
d∏

j= 1

(1[u0 ;∞)(uj) · 1Auj (vj) + 1(−∞; u0)(uj) · 1Buj (vj)): (7.4)

For u and v with I 6= 0, since the region of integral I is contained in R= [0; eu0 ]k ×
[0; 1)d−k ,

|I |6 sup(|g|)
k∏

j= 1

e(Hj−1)uj
d∏

j= k+1

eHjujm(R)

6 sup(|g|)(1 + eu0 )d
k∏

j= 1

e(Hj−1)uj
d∏

j= k+1

eHjuj :

This together with (7.4) and (7.2) proves the lemma.

Proof of Lemma 3.1. Without loss of generality, assume the support of g is in [0; eu0 ].
Given index H ∈ (0; d) of the wavelet expansion 	g and �= 1[0;1), let Hj =H=d, for
j=1; : : : ; d. Then from (7.1) and (7.3), for any u ∈ R; v ∈ Rd,

|(	g�)(u; v)| = |I(u; : : : ; u; v1; : : : ; vd)|

6 C
d∏

j= 1

(1[u0 ;∞)(u) · 1Au(vj)e(H=d−1)u + 1(−∞; u0)(u) · 1Bu(vj)eHu=d)

= C(1[u0 ;∞)(u)1Adu (v)e
(H−d)u + 1(−∞; u0)(u) · 1Bdu (v)eHu): (7.5)

Then it is easy to see that 	g� ∈ L∞(R×Rd). For the Lp bound on |(	g�)(u; v)1[u0 ;∞)

(u)|, for any 0¡p¡∞, since H ∈ (0; d) and m(Adu)= (2eu0 )d is a constant,∫
|(	g�)(u; v)1[u0 ;∞)(u)|p du dv6Cp

∫ ∞

u0
du
∫
Adu

ep(H−d)u dv

6Cp(2eu0 )d
∫ ∞

u0
ep(H−d)u du¡∞
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For the Lp bound on (	g�)(u; v)1(−∞; u0](u), for any 0¡p¡∞, since H ∈ (0; d) and
m(Bdu)62

dedu0 , then∫
|(	g�)(u; v)1(−∞; u0](u)|p du dv6Cp

∫ u0

−∞
du
∫
Bdu

epHu dv

6Cp(2eu0 )d
∫ u0

−∞
epHu du¡∞:

Therefore (	g�)(u; v) ∈ Lp. For �= 1[s; s+1) with arbitrary s ∈ Zd, the result is similarly
proved.

With more complex notation, Lemma 5.1 can be similarly proved. The key step is
again to get from (7.3) a bound on |(	g;H;D�)(u; v)| similar to (7.5). For simplicity,
the details of the proof is omitted.

Proof of Lemma 4.1. Let N =2
√
d. Without loss of generality, we will only consider

�= 1[0;1). To show the function is Lp integrable, consider (	g�)(u; v) on 3 regions,
R1 = {(u; v): u¿0; |v|¿Neu}; R2 = {(u; v): u¿0; |v|¡Neu}, and R3 = {(u; v): u¡ 0}.
For the region R1, by variable substitution,

(	g�)(u; v)= eHu
∫
[0;1)

g(eux + v) dx=e(H−d)u
∫
[v; v+eu·1)

g(x) dx: (7.6)

Since g∈S, there is a constant C1¿ 0, such that |g(x)|6C1(1+ |x|)−2d−2, for all x ∈
Rd. Then |(	g�)(u; v)|6e(H−d)u ∫

[v; v+eu·1) C1(1 + |x|)−2d−2 dx. Given any x ∈ [v; v +
eu · 1), since |v|¿Neu for (u; v) ∈ R1, there is |x|¿|v| − |v − x|¿|v| − |eu · 1|= |v| −√
deu¿ 1

2 |v|. Therefore, we get, for some constant C2,

|(	g�)(u; v)|6e(H−d)u
∫
|x|¿ 1

2 |v|

C1
(1 + |x|)2d+2 dx6

C2e(H−d)u

(1 + |v|)d+1 ; (u; v) ∈ R1:

Since H ¡ (1 − p−1)d¡d, it is then clear the integral of |(	g�)(u; v)|p over R1
is �nite.
For the second region R2, from (7.6) we get |(	g�)(u; v)|6e(H−d)u ∫ |g|. Therefore,

for a constant C3,∫
R2
|(	g�)(u; v)|p du dv6C3

∫
u¿0

|v|¡Neu
ep(H−d)u du dv

6C3

∫
u¿0

ep(H−d)uNdedu du:

From p(H−d)+d=p(H−(1−p−1)d)¡ 0, we get that the integral over R2 is �nite.
Finally, for (u; v) ∈ R3, since u¡ 0; eu ¡ 1. Therefore, for any x ∈ [0; 1); |eux +

v|6|eu · 1| + |v|6√
d + |v|. By g ∈ S, it is then seen for some constant C4, there is

|g(eux + v)|6C4(1 + |v|)−d−1, for all x ∈ [0; 1), v ∈ Rd. By (7.6), this implies that

|(	g�)(u; v)|6eHu
∫
[0;1)

C4
(1 + |v|)d+1 dx=

C4eHu

(1 + |v|)d+1 :
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Integrate |(	g�)(u; v)|p over the region {u¡ 0} × Rd. Since H ¿ 0, then the integral
on R3 is also �nite. This completes the proof that 	g� ∈ Lp(R× Rd).

Proof of Lemma 5.2. For the �rst equation in (5.3), for any t ∈ Zd,

(	g;H;DTt�s)(u; v) =
∫
eu·Hg(eu·Px + v)Tt�s(x) dx

=
∫
eu·Hg(eu·Px + v)�s(x − t) dx

=
∫
eu·Hg(eu·P(x + t) + v)�s(x) dx

= (	g;H;D�s)(u; v+ eu·Pt):

For the second equation in (5.3), for any k =(k1; : : : ; kh) ∈ Nd; s=(s1; : : : ; sh) ∈ Zd,
and x=(x1; : : : ; xh) ∈ Rd.

�̃s(x) =
1
kD

∑
kisi6ri6
ki(si+1)−1

�r1 ::: rh(x)=
1
kD

∑
kisi6ri6
ki(si+1)−1

h∏
i= 1

1[ri ; ri+1)(xi)

=
1
kD

h∏
i= 1

1[kisi ; ki(si+1))(xi)=
1
kD

h∏
i= 1

1[si ; si+1)

(
xi
ki

)
=

1
elog k·D

�s(e−log k·Px):

Therefore,

kH

kD


	g;H;D ∑

kisi6ri6(ki+1)si−1
�r1 ::: rh


 (u; v)

=
∫
kH eu·Hg(eu·Px + v)�̃s(x) dx

=
∫
e(log k)·H eu·Hg(eu·Px + v)e−log k·D�s(e−(log k)·Px) dx

=
∫
e(log k+u)·Hg(e(log k+u)·Px + v)�s(x) dx=(	g;H;D�s)(u+ log k; v):

This completes the proof of Lemma 5.2.
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Meyer, Y., Sellan, F., Taqqu, M.S., 1999. Wavelets, generalized white noise and fractional integration: the
synthesis of fractional brownian motion. J. Fourier Anal. Appl. 5, 466–494.

Mumford, D.B., Gidas, B., 2000. Stochastic models for generic images, submitted for publication.
Ruderman, D.L., 1994. The statistics of natural images. Comput. Neural Systems 5, 517–548.
Samorodnitsky, G., Taqqu, M.S., 1994. Stable Non-Gaussian Random Processes, Stochastic Models with
In�nite Variance, Stochastic Modeling. Chapman & Hall, New York.

Taqqu, M.S., 1978. A representation for self-similar processes. Stochastic Processes Appl. 7, 55–64.
Taqqu, M.S., 1979. Convergence of integrated processes of arbitrary Hermint rank. Z. Wahrsch. Verw.
Gebiete 50, 53–83.


