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This supplementary material has two sections. Section S1 contains proofs

of the theoretical results of the paper. Section S2 is a discussion on possible

extension to wear processes other than the Gamma processes considered in the

paper.

S1. Proofs

Proof of Proposition 3.1. Given i 6= j, let S(t) = P (Ti > t1, Tj > t2)

for t = (t1, t2). Then S(t) = E[P (Ti > t1, Tj > t2 |W)] = E[e−Hi(t1)−Hj(t2)]. If

t1 ≤ t2, then by Hi(t1) + Hj(t2) = Hi(t1) + Hj(t1) + [Hj(t2) − Hj(t1)] and

independence between {H(s), s ≤ t1} and {H(s) − H(t1), s > t1}, S(t) =

e−Ψ(κ{i,j},t1)−[Ψ(κj ,t2)−Ψ(κj ,t1)]. Since lnS(t) can be written as f(t1) + g(t2) for

two univariate functions f and g, D1D2[lnS(t)] = 0, giving θ∗TiTj (t) = 1. The

case t1 ≥ t2 can be shown likewise.

Proof of Theorem 3.2. With a little abuse of notation, denote Hi(t, u) =

Hi(u)−Hi(t) and Ψ(a, t, u) = Ψ(a, u)−Ψ(a, t) for 0 ≤ t ≤ u. Let

ψ(a, t) =

∫ ∞
0

(1− e−a′s)ϕ(ds | t). (S1.1)

Then ∂Ψ(a, t)/∂t = ψ(a, t) for almost every t. Given data Dobs, fix ε > 0, such

that τj−1 < τj − ε for j ≥ 1. Then

P (yi − ε < Ti ≤ yi for i ∈ D and Ti > yi for i ∈ N |W)

=

N∏
j=1

∏
i∈Dj

[
e−Hi(τj−ε) − e−Hi(τj)

] ∏
i∈Nj

e−Hi(τj)


=

N∏
j=1

∏
i∈Dj

e−Hi(τj−ε)[1− e−Hi(τj−ε,τj)]
∏
i∈Nj

e−Hi(τj)

 .
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By Hi(τj − ε) =
∑j

l=1Hi(τl−1, τl − ε) +
∑j−1

l=1 Hi(τl − ε, τl) and a similar decom-

position of Hi(τj), the right hand side is equal to

N∏
j=1

∏
i∈Dj

e−
∑j

l=1Hi(τl−1,τl−ε)−
∑j−1

l=1 Hi(τl−ε,τl)

×
∏
i∈Nj

e−
∑j

l=1Hi(τl−1,τl−ε)−
∑j

l=1Hi(τl−ε,τl) ×
∏
i∈Dj

[
1− e−Hi(τj−ε,τj)

] ,

which, after rearranging the terms and changing indexes, is equal to

N∏
j=1

e−∑
i∈Rj

Hi(τj−1,τj−ε)
e
−

∑
i∈R′

j
Hi(τj−ε,τj) ∏

i∈Dj

[
1− e−Hi(τj−ε,τj)

] .

Since W = (H1, . . . ,Hn) has independent increments, taking expectation with

respect to its law yields

P (yi − ε < Ti ≤ yi for i ∈ D and Ti > yi for i ∈ N ) =
N∏
j=1

φ1j(ε)
N∏
j=1

φ2j(ε),

(S1.2)

where for each j ≤ N , φ1j(ε) = e−Ψ(%j ,τj−1,τj−ε) and

φ2j(ε) = E

e−
∑

i∈R′
j
Hi(τj−ε,τj) ∏

i∈Dj

[1− e−Hi(τj−ε,τj)]

 .

As ε → 0, φ1j(ε) → φ1j(0) = e−Ψ(%j ,τj−1,τj). On the other hand, expansion of∏
i∈Dj

[1− e−Hi(τj−ε,τj)] gives

φ2j(ε) = E

 ∑
T⊂Dj

(−1)|T | e
−

∑
i∈R′

j
∪T Hi(τj−ε,τj)


=
∑
T⊂Dj

(−1)|T | e−Ψ(ωj+κT , τj−ε, τj).

If Dj = ∅, then φ2j(ε) = e−Ψ(ωj ,τj−ε,τj) → 1. If Dj 6= ∅, by Ψ(a, τj − ε, τj) =

ψ(a, τj)ε+ o(ε), Taylor expansion of e−Ψ(ωj+κT ,τj−ε,τj) yields

φ2j(ε) =
∑
T⊂Dj

(−1)|T | [1−Ψ(ωj + κT , τj − ε, τj) + o(ε)]

= −ε
∑
T⊂Dj

(−1)|T | ψ(ωj + κT , τj) + o(ε),
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where
∑

T⊂Dj
(−1)|T | = 0 is used in the second equality. Then,

φ2j(ε)

ε
→ −

∑
T⊂Dj

(−1)|T |ψ(ωj + κT , τj)

= −
∫ ∑

T⊂Dj

(−1)|T |[1− e−(ωj+κT )′s]ϕ(ds | τj)

=

∫
e−ω

′
js
∑
T⊂Dj

(−1)|T |e−κ
′
T s ϕ(ds | τj)

=

∫
e−ω

′
js
∏
i∈Dj

(1− e−κ′is)ϕ(ds | τj) ds.

Noting κ′is = si, (3.3) follows by dividing (S1.2) by εnT and letting ε→ 0.

Proof of Proposition 3.3. From Theorem 3.2, we have

L(γ, h, c |Dobs) =

N∏
j=1

e−φj(c)
∏

Dj 6=∅

ψj(c),

where

φj(c) =

∫ τj

τj−1

dt

∫
(1− e−%

′
js) cν(cds | t) =

∫ τj

τj−1

dt

∫
c(1− e−%

′
js/c)ν(ds | t),

and for each j with Dj 6= ∅,

ψj(c) =

∫
e−ω

′
js
∏
i∈Dj

(1− e−si) cν(cds | τj)

=

∫
ce−ω

′
js/c

∏
i∈Dj

(1− e−si/c) ν(ds | τj).

For c > 0 and x > 0, c(1− e−x/c) ≤ x and as c→∞, c(1− e−x/c)→ x. So

by (3.4) and dominated convergence,

N∑
j=1

φj(c)→
N∑
j=1

∫ τj

τj−1

dt

∫
%′js ν(ds | t)

=

N∑
j=1

∫ τj

τj−1

∑
i∈Rj

∫
si ν(ds | t)

dt

=
n∑
i=1

∑
j: i∈Rj

∫ τj

τj−1

m′i(t) dt =
n∑
i=1

∫ yi

0
m′i(t) dt =

n∑
i=1

mi(yi).
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On the other hand, by (3.4), with probability 1, m′i(τj) =
∫
si ν(ds | τj) <∞ for

all j ≤ N . If |Dj | = 1, then

ψj(c)→
∏
i∈Dj

∫
si ν(ds | τj) = m′i(τj),

while if |Dj | > 1, then by c
∏
i∈Dj

(1 − e−si/c) → 0, ψj(c) → 0. Therefore, the

limit of
∏

Dj 6=∅ ψj(c) is nonzero if and only if each nonempty Dj is a singleton,

in which case the limit is
∏
δi=1m

′(yi). This finishes the proof.

Proof of Proposition 3.4. To prove (3.5), it suffices to consider n = 2.

If T1 = T2 = t, then N = nT = 1, τ1 = t, D = D1 = {1, 2}, N = N1 = ∅ and

R1 = {1, 2}. Then by Theorem 3.2, it is straightforward to get the likelihood

equal to e−Ψ(κ1+κ2,t)[ψ(κ1, t)+ψ(κ2, t)−ψ(κ1+κ2, t)], where ψ is defined in (S1.1).

By homogeneity, Ψ(a, t) = Ψ1(a)Ψ2(t). Then the likelihood can be written as

e−Ψ1(κ1+κ2)Ψ2(t)[Ψ1(κ1) + Ψ1(κ2)−Ψ1(κ1 + κ2)]Ψ′2(t). Integrating the likelihood

over t from 0 to ∞ then yields (3.5).

Next, for a ∈ Rn+, Ψ1(a) =
∫

(1− e−a′s)cν0(cds) =
∫

(1− e−a′s/c) ν0(ds). By

dominated convergence, Ψ1(a) →
∫
a′s ν0(ds) < ∞ as c → ∞. For i 6= j, this

leads to Ψ1(κi) + Ψ1(κj) − Ψ1(κi + κj) → 0. On the other hand, Ψ1(κi) > 0,

otherwise
∫

dt
∫
si ν(ds | t) = 0, contradicting the assumption that Hi 6= 0. As a

result, P (Ti = Tj)→ 0, and hence the claim.

Proof of Proposition 4.1. By H ∼ G P(α, c), for t, u > 0, E[e−uH(t)] =

e−α(t)M(u), where M(u) = ln(1 + u/c). Since G(t) = cH(α−1(t)) is a pure

jump process and E[e−uG(t)] = E[e−ucH(α−1(t))] = exp{−α(α−1(t))M(uc)} =

exp{−t ln(1+u)}, G is a standard Gamma process. For i ≤ n, write γ̃i = γi/c and

Fi(t) = 1 − exp{−G(t)γ̃i}. Let U1, . . . , Un be i.i.d. ∼ U(0, 1) independent of H.

Given H, Si := F ∗i (Ui) are independent following distributions Fi, respectively,

implying that α−1(Si) are independent and P (α−1(Si) > t |H) = 1− Fi(α(t)) =

exp{−G(α(ti))γ̃i} = exp{−H(ti)γi} = P (Ti > t |H). As a result, (T1, . . . , Tn) ∼
(α−1(S1), . . . , α−1(Sn)). By definition, Si = inf{t > 0 : exp{−G(t)γ̃i} ≤ 1 −
Ui} = inf{t > 0 : G(t) ≥ − ln(1− Ui)/γ̃i} = G∗(ηi/γi), where ηi = −c ln(1− Ui)
are i.i.d. ∼ Exp(c) and independent of H.

Proof of Theorem 4.2. Since G is strictly increasing, G∗(θ) = inf{t >
0 : G(t) > θ}, i.e., G∗(θ) is the first passage time of G across level θ. For

ease of notation, denote τ(θ) = G∗(θ) and ζ(θ) = G(G∗(θ)) in the rest of the
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proof. For t > 0, P (τ(θ) ≤ t) = P (G(t) ≥ θ). Since G(t) ∼ Gamma(t, 1), we

see that (4.1) holds. To show (4.2), from classical results (cf. Bertoin (1996)),

P (τ(θ) > 0, ζ(θ) > θ) = 1 for every θ > 0. Therefore, if we can show that τ(θ)

and ζ(θ) have a joint probability density at any t > 0 and s > θ as follows,

fθ(t, s) = f(t, s, θ) =
e−s

Γ(t)

∫ θ

0

zt−1 dz

s− z
, (S1.3)

then we obtain the conditional distribution in Theorem 4.2.

By Theorem 49.2 of Sato (1999), for any q, u, v > 0 with u 6= v,∫ ∞
0

e−uθE
[
e−qτ(θ)−v(ζ(θ)−θ)

]
dθ =

1

u− v

[
1− ψq(u)

ψq(v)

]
, (S1.4)

where, denoting by gt the probability density function of G(t),

ψq(u) = exp

{∫ ∞
0

t−1e−qt dt

∫ ∞
0

(e−us − 1)gt(s) ds

}
,

If we can show that, for f in (S1.3),∫ ∞
0

e−uθ
[∫ ∞

0
dt

∫ ∞
θ

e−qt−v(s−θ)f(t, s, θ) ds

]
dθ =

1

u− v

[
1− ψq(u)

ψq(v)

]
, (S1.5)

then the left hand sides of (S1.4) and (S1.5) are equal. Because the Laplace

transform is one-to-one, this implies the joint density of τ(θ) and ζ(θ) is fθ(t, s) =

f(t, s, θ).

We evaluate the left hand side of (S1.5), denoted by L. Plugging (S1.3),

L =

∫ ∞
0

e−uθ
{∫ ∞

0
dt

∫ ∞
θ

e−qt−v(s−θ)
[
e−s

Γ(t)

∫ θ

0

zt−1 dz

s− z

]
ds

}
dθ

=

∫
I {t ≥ 0, 0 < z ≤ θ ≤ s} e−(u−v)θ−qt−(v+1)s zt−1

Γ(t)(s− z)
dθ ds dz dt.

Integrate over θ and then make change of variable y = s− z to get

L =
1

u− v

∫
I {t ≥ 0, 0 < z ≤ s} e−qt−(v+1)s

×
[
e−(u−v)z − e−(u−v)s

] zt−1

Γ(t)(s− z)
ds dz dt

=
1

u− v

∫
I {t, y, z ≥ 0} e−qt−(u+1)z

[
e−(v+1)y − e−(u+1)y

] zt−1

Γ(t)y
dy dz dt.

Now, integrate over z > 0 and then over t > 0 to get

L =
1

u− v

∫
I {t, y ≥ 0} e−qt

[
e−(v+1)y − e−(u+1)y

] dy dt

(u+ 1)ty

=
1

u− v
1

q + ln(u+ 1)

∫ ∞
0

(e−vy − e−uy)e
−y dy

y
.
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Then, by the Frullani integral (Bertoin (1996)), i.e.,
∫∞

0 s−1(1 − e−as)e−bs ds =

ln(1 + a/b), a = 0 or b > max(0,−a), we get

L =
1

u− v
ln(u+ 1)− ln(v + 1)

q + ln(u+ 1)
.

The right hand side of (S1.5) is easier. By gt(s) = st−1e−s/Γ(t) and the

Frullani integral,

ψq(u) = exp

[∫ ∞
0

t−1e−qt dt

∫ ∞
0

(e−us − 1)
st−1e−s

Γ(t)
ds

]
= exp

{∫ ∞
0

t−1e−qt
[

1

(u+ 1)t
− 1

]
dt

}
=

q

q + ln(u+ 1)
.

Similarly, ψq(v) can be computed. As a result, the right hand side of (S1.5) is

1

u− v

[
1− ψq(u)

ψq(v)

]
=

1

u− v

[
1− q + ln(v + 1)

q + ln(u+ 1)

]
= L,

finishing the proof of (4.2).

For the rest of the proof, suppose (τ1, r1) = (τ(θ1), ζ(θ1)) has been sampled

and there is some s < n such that θs ≤ r1 < θs+1. Then the first s failure times

τ(θ1), . . . , τ(θs) are clearly equal to τ1. On the other hand, since τ(θ1) is a

stopping time of G, the sampling of (τ(θs+1), ζ(θs+1)) described in the theorem

is a direct consequence of the strong Markov property of G (cf. Bertoin (1996)).

The same argument also applies to the sampling of the other failure times and

the values of G at those times.

S2. Possible Extensions

Most attention of the paper is on homogeneous Gamma processes as models

for the wear process H. Here we briefly discuss how its results could be extended

to other pure jump processes, in particular, the Beta processes, which contain

Dirichlet processes as a subclass (Lee and Kim (2004)).

A Beta process is typically specified by its corresponding cumulative hazard

process

A(t) =

∫
[0,t]

dF (t)

1− F (t−)
, with F (t) = 1− e−H(t).

From a practical point of view, it is reasonable to assume that the Lévy measure

of A varies smoothly over time, so that

E[e−θA(t)] = exp

{
−
∫ t

0
dv

∫ 1

0
(1− e−θz) a(z, v) dz

}
, θ ≥ 0,
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where a(z, t) = α(t)z−1(1 − z)σ(t)−1 with α(t) ≥ 0, σ(t) > 0, and z ∈ (0, 1).

Thus, the Lévy measure of A is ϕA(dz | t) = (1 − e−θz) a(z, t) dz. Now from

dH(t) = − ln[1 − dA(t)] (Hjort (1990), p. 1274), the Lévy measure of H is

ϕH(ds | t) = f0(s, t) ds, with

f0(s, t) = e−sa(1− e−s, t) = α(t)e−σ(t)s/(1− e−s), s > 0, t > 0.

Suppose 0 < inf σ ≤ supσ < ∞ and supα < ∞. Let c = supσ and F (t) =∫ t
0 α/c. It is easy to check that h(s, t) := f0(s, t) − α(t)e−cs/s is nonnega-

tive, bounded, and integrable. As a result, H is the sum of a process following

G P(cF, c) and an independent compound Poisson process with time-dependent

Lévy density h. Sampling for compound Poisson processes is standard (De-

vroye (1986)). Then sampling of survival data from W = γH can be done by

combining the DFS algorithm and the sampling for the compound Poisson pro-

cess (Chi (2012)). Similar conclusion can be made under the weaker condition

0 < inft≤b σ(t) ≤ supt≤b σ(t) < ∞ and supt≤b α(t) < ∞ for any finite b > 0,

which is satisfied by Dirichlet processes as they have α(t) being constant and

1− σ(t) being a cumulative distribution function on (0,∞).

On the other hand, for the above H, in general the joint likelihood function

(3.3) for W = γH has no semi-closed form formula. In particular, a closed form

expression of the function Ψ therein is unavailable. This makes it difficult to do

model selection and posterior sampling of both β and the parameters of H, even

though the posterior sampling of β alone can be done (Damien, Laud, and Smith

(1996); Laud, Damien, and Smith (1998); Lee and Kim (2004)).

Notice that since f0(s, t) − α(t)e−cs/s = O(1) as s → 0, the Beta and the

Gamma processes are similar in terms of generating small jumps. They are

significantly different only when generating large jumps. Consequently, if a data

set exhibits few ties or implies the underlying wear process rarely generates large

jumps, then, in order to fit the data, a Gamma process is likely to be a good

substitute for a Beta process.

Finally, we briefly comment on possible extensions to the generalized Beta

processes which were briefly discussed at the end of Section 3.3. In probability

theory, the sampling of failure times is closely related to the sampling of the so-

called first-passage events of a process. For a large class of pure jump processes

with stationary increments, including the generalized Beta processes, an exact
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sampling method for the first-passage events has been found (Chi (2012)). It

should not be difficult to extend the method to the same type processes but

with nonstationary increments and to the sampling of failure times with ties.

However, it is still an open question whether likelihood functions can be derived

for such processes in closed or semi-closed form.
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