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The First-Order Asymptotic of Waiting Times with
Distortion Between Stationary Processes

Zhiyi Chi

Abstract—Let and be two independent stationary processes on
general metric spaces, with distributions and , respectively. The
first-order asymptotic of the waiting time ( ) between and ,
allowing distortion, is established in the presence of one-sided -mixing
conditions for . With probability one, log ( ) has the same
limit as log ( ( )), where ( ( )) is the

-measure of the -ball around ( . . . ), with respect to a
given distortion measure. Large deviations techniques are used to get
the convergence of log ( ( )). First, a sequence of
functions in terms of the marginal distributions of and as
well as are constructed and demonstrated to converge to a function

( ). The functions and ( ) are different from
rate distortion functions. Then log ( ( )) is shown to
converge to ( ) with probability one.

Index Terms—Large deviation, -mixing, relative entropy, string
matching, waiting times.

I. INTRODUCTION

This correspondence generalizes the results of Yang and Kieffer
(1998), Dembo and Kontoyiannis (1999), and Yang and Zhang
(1999) on the first-order asymptotics of waiting times between two
independent stationary processes to the case allowing distortion and
more general mixing conditions.

In recent years, there has been increasing interest in the asymptotic
properties of waiting times between stationary processes, due to their
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applications in coding theory and DNA analysis. The idea of using
waiting times for coding was first introduced in [4]. Most of the pre-
vious studies focus on the case of exact matching (see [4]–[8]; and
the references therein). This correspondence will be mainly concerned
with the first-order asymptotics of the waiting times for matching al-
lowing distortion, which have been studied in several recent publica-
tions ([9], [1]–[3]).

Let X = fXn; n � 1g andY = fYn; n � 1g be independent
processes taking values in Polish spaces(A1X ; FX) and(A1Y ; FY ),
with distributionsP andQ, respectively. Givena = fan; n � 1g,
denoteaji = (ai; . . . ; aj). Denote by�(Xj

i ) the�-field generated by
X

j
i , and likewise forY j

i .
Given a measurable function�: AX�AY ! [0; 1), the distortion

measure�n for anyxn1 2 A
n
X andyn1 2 A

n
Y is defined as

�n(x
n
1 ; y

n
1 ) =

1

n

n

i=1

�(xi; yi): (1.1)

Forxn1 2 A
n
X andD � 0, denote

B(xn1 ; D) = fyn1 2 A
n
Y : �n(x

n
1 ; y

n
1 ) � Dg: (1.2)

GivenD � 0, for samplesx, y fromX, Y , respectively, the waiting
timeWn(D) until aD-close version ofxn1 first appears iny is

Wn(D) = Wn(x
n
1 ; y; D) = inffk � 1: yk+n�1k 2 B(xn1 ; D)g:

For finiteAX andAY , Yang and Kieffer (1998) proved that ifY is
an independent and identically distributed (i.i.d.) process or akth-order
Markov process with positive transition probabilities, andX is a sta-
tionary ergodic process, then

1

n
log Wn(D)! R(P; Q; D) (P �Q)–a.s. (1.3)

for some functionR(P; Q; D), given as the solution of a variational
problem in terms of relative entropy. Similar results were obtained in
[9] as well. More recently, using large deviations techniques, Dembo
and Kontoyiannis (1999) and Yang and Zhang (1999) independently
proved (1.3) for general spacesAX andAY , whenY is i.i.d., while the
second paper established finer higher order asymptotics forWn(D).
We will use large deviations techniques to generalize these authors’
results on the first-order asymptotic oflog Wn(D) to the case where
Y is not i.i.d., which often comes up in applications and significantly
complicates analysis. Specifically, we will considerY which satisfies
the following mixing condition: there are constantsC � 1; d � 1,
such that for anyA 2 �(Y n

1 ) andB 2 �(Y1n+d+1)

( 
�

): Q(A)Q(B) < CQ(A\B)

( +): Q(A \B) < CQ(A)Q(B):

The above “one-sided” -mixing conditions( 
�

) and ( +) were
explored in detail in [10] and [11]. It is known that forY ergodic
and mixing, condition( 

�

) plus condition( +) is equivalent to
 -mixing ([12]), which is satisfied bykth-order Markov processes
on finite spaces with positive transition probabilities. Recall thatY is
called -mixing if limk!1  (k) = 0, where

 (k) = sup
Q(A \B)

Q(A)Q(B)
� 1 : A 2 �(Y r

1 );

B 2 �(Y1r+k+1); r � 1 :

Following the methodology in [1], the first step to (1.3) is to establish
a strong approximation ofWn(D) byQ(B(Xn

1 ; D)).

0018–9448/01$10.00 © 2001 IEEE
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Proposition 1: Let X andY be two independent stationary pro-
cesses onA1X andA1Y , with distributionsP andQ, respectively. Sup-
poseQ(B(Xn

1 ; D)) > 0 eventuallyP -a.s. IfX is ergodic andY
satisfies condition( �), then

1

n
log Wn(D) = �

1

n
log Q(B(Xn

1 ; D)) + o(1);

n!1; (P �Q)–a.s. (1.4)

We omit the proof for Proposition 1 because it follows the same
line as the one in [8], which is for a strong approximation when the
matching is exact andY is -mixing. A similar result was also proved
in [9]. Equation (1.4) has also been proved under summable�-mixing
condition forY , i.e., �(k) < 1, with ([1], [2])

�(k) = supfjQ(BjA)�Q(B)j: A 2 �(Y r
1 );

B 2 �(Y1r+k+1); r � 1g:

While  -mixing implies�-mixing, in general there are no further im-
plications between them. More details on the mixing conditions can be
found in [12].

We now come to the first main issue in establishing the asymptotics
of the waiting times, forY not being i.i.d. By (1.4), in order to prove
(1.3), it is enough to get

log Q(B(Xn
1 ; D))! �R(P; Q; D):

ForY being i.i.d.,R(P; Q; D) is obtained as the solution to a varia-
tional problem in terms ofP1 andQ1, where forn � 1,Pn andQn are
the marginals ofXn

1 andY n
1 , respectively. In contrast, forY only sat-

isfying the one-sided -mixing conditions, the definition and existence
ofR(P; Q; D) need to be addressed. To begin with, givenD > 0 and
n � 1, define

Rn(Pn; Qn; D) =
1

n
inf

A

D(�(�jxn1 )kQn(�))dPn(x
n
1 ):

� 2 Pn; �1 = Pn; �
(n)
� � D (1.5)

wherePn = P(An
X�A

n
Y ) is the set of probability measures onAn

X�
An
Y , �1 theAn

X -marginal of�

�
(n)
� = �n(x

n
1 ; y

n
1 ) d�(x

n
1 ; y

n
1 )

andD(�k�) the relative entropy between� and�, defined as1

D(�k�) =
log

d�

d�
d�; if d�

d�
exists

1; otherwise.

We then define the functionR(P; Q; D) as

R(P; Q; D) = lim
n!1

Rn(Pn; Qn; D): (1.6)

R(P; Q; D) is a generalization of the joint entropy. Indeed, ifAX =
AY and discrete, then with�(x; y) = 111x(y), we get exact matching
and

Rn(Pn; Qn; 0) = n
�1
H(Pn) + n

�1
D(PnkQn):

1Whenn > 1,R (P ; Q ; D) defined here are different from those in [1].

Therefore, in this special case, ifH(X) < 1, thenR(P; Q; 0) =
H(X) +D(XkY ), provided eitherR(P; Q; 0) orD(XjY ) exists.

Under regular conditions

Rn(Pn; Qn; D)

=
1

n
inf D(�kPn �Qn): � 2 Pn; �1 = Pn; �

(n)
� � D :

It is worth noting that the functionsRn(Pn; Qn; D) are different from
then-symbol rate distortion functionsRn(Pn; D), defined as ([13],
[14])

Rn(Pn;D)=
1

n
inf D(�kPn � �2): �2Pn; �1=Pn; �

(n)
� �D :

Indeed, in [3], it was shown that

Rn(Pn; D) = inffRn(Pn; �; D): � 2 P(An
Y )g:

In addition, ifX satisfieslim supn!1Rn(Pn; D) < 1, then for
the rate distortion functionR(P; D) = infn�1Rn(Pn; D), there is
R(P; D) = limn!1Rn(Pn; D) ([14, p. 93]).

Similar to the rate-distortion function, the convergence in (1.6) in
general is a nontrivial problem, except for the case whereY is an i.i.d.
process. Denote

Dav =E�(X1; Y1); Dmax = ess sup
(X ;Y )

�(X1; Y1)

D
(n)
min =EP ess inf

Y
�n(X

n
1 ; Y

n
1 ) ; Dmin = lim

n!1
D

(n)
min:

(1.7)

Obviously,E�n(Xn
1 ; Y

n
1 ) = Dav. We will assume

Dmax <1; D
(n)
min < Dav; for all n � 1: (1.8)

It is easy to show that the limit in (1.7) exists. Therefore,Dmin is finite
as well.

Using log-moment generating functions ([2, Proposition 1]; [3, Prop-
erty 1]), it can be shown that forD 2 (D

(n)
min; Dav)

Rn(Pn; Qn; D) = ��n(D) (1.9)

where��n(D) = sup�2RRR[�D��n(�)] is the Fenchel–Legendre trans-
form of �, with

�n(�) =
1

n A

log
A

e
n�� (x ; y )

dQn(y
n
1 ) dPn(x

n
1 ):

(1.10)

The supremum in the definition of��n(D) can be achieved over� � 0,
i.e.,

Rn(Pn; Qn; D)

= sup
��0

[�D � �n(D)]

= sup
��0

�D �
1

n A

log
A

e
n�� (x ; y )

dQn(y
n
1 )

� dPn(x
n
1 ) : (1.11)

ForD � Dav, (1.9) still holds. First

Rn(Pn; Qn; D) = 0; D � Dav
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as can be seen by taking

d�(xn1 ; y
n

1 ) = dPn(x
n

1 )dQn(y
n

1 )

in (1.5). Second, since�0

n(0) = E�n(x
n

1 ; y
n

1 ) � D and�00

n(�) � 0,
�D � �n(�) is nondecreasing on(1; 0], and achieves its supremum
at� = 0, thus,sup

��0[�D � �n(�)] = 0.
We will show that the condition( �) guarantees the convergence of

Rn(Pn; Qn; D).

Theorem 1: LetX andY be two independent stationary processes
with distributionsP andQ, respectively. IfX is ergodic andY satis-
fies condition( �), thenRn(Pn; Qn; D) andR(P; Q; D) are con-
tinuous functions on(Dmin; 1), and

Rn(Pn; Qn; D)
u:c:
�! R(P; Q; D)

where
u:c:
�! stands for uniform convergence on any compact set. In ad-

dition, forD � Dav, R(P; Q; D) = 0.

For the case of exact matching, argument similar to that for The-
orem 1 leads to to the following.

Proposition 2: P � Q and Y satisfies condition( +), then
n�1D(PnkQn) ! D(XkY ).

The proof for Proposition 2 is rather simple. Because this correspon-
dence is mainly concerned with matching allowing distortion, the proof
will be relegated to the Appendix.

The second main issue in establishing the first-order asymptotic of
the waiting times is to show

lim
n!1

log Q(B(xn1 ; D)) = �R(P; Q; D)

for almost all random sample fromX. To make a connection between
the desired convergence and the Large Deviation Principle (LDP), con-
sider the special case whereAX = f�g is a singleton. Consequently,
A1X is a singleton. LetZ = fZn; n � 1g be a process on[0; 1) such
thatZn = �(�; Yn). Then the desired convergence is implied by the
LDP of f�ng, with �n the law of(Z1 + . . . + Zn)=n. Furthermore,
by (1.11) and (1.6),R(P; Q; D) is the rate function for the LDP of
f�ng, provided it satisfies the condition of Gärtner–Ellis theorem ([14,
pp. 43–54]). It is known that ifZ satisfies condition( �), thenf�ng
indeed satisfies LDP ([10]).

Theorem 2: LetX andY be two independent stationary processes,
with distributionsP andQ, respectively. IfX is ergodic andY satisfies
both conditions( �) and( +), then forD 2 (Dmin; 1), there is

1

n
log Q(B(Xn

1 ; D))! �R(P; Q; D); P–a.s. (1.12)

The above results immediately lead to the first-order asymptotic of
the waiting timesWn(D).

Corollary 1: LetX andY be two independent stationary processes
onAX andAY , respectively. IfX is ergodic andY satisfies both con-
ditions ( �) and( +), thenWn(D) have the first-order asymptotic
(1.3).

The proof of Theorem 2 consists of two parts. First, we show the
asymptotic upper bound

lim sup
n!1

n�1 log Q(B(Xn

1 ; D)) � �R(P; Q; D); P–a.s.

Given largek � 1, define two auxiliary processes

U (k) = U (k)
n ; n � 1

and

V (k) = V (k)
n ; n � 1

such thatU (k) is given by

U (k)
n = (Xn; . . . ; Xn+k�1) 2 A

k

X

andV (k) is an i.i.d. process onAkY , with V (k)
1 � Qk. By condition

( �) and the continuity ofR(P; Q; D) in D, the proof for the
upper bound in terms ofP andQ can be reduced to those for a
sequence of upper bounds in terms of the distributions ofU (k) and
V (k). Then we can apply the results in [2] and [3] toU (k) andV (k),
k = 1; 2; . . . ; and eventually prove the asymptotic upper bound for
n�1 log Q(B(Xn

1 ; D)).
Second, we show

lim inf
n!1

n�1 log Q(B(Xn

1 ; D)) � �R(P; Q; D); P–a.s.

The idea is again to reduce the proof to the case where the second
process is i.i.d. The large deviations technique used for the proof is
the standard exponential change of measures based on the log-moment
generating functions ([14, pp. 31–34]). To prove the lower bound for
almost all random samplesx fromX, we define a series of empirical
log-moment generating functions in terms ofx andY . BecauseY is
not i.i.d., it is essential that the log-moment generating functions be
devised appropriately to have several asymptotic properties necessary
for the proof of the lower bound. Also becauseY is not i.i.d., a random
perturbation argument is employed in the proof.

In Section II, the convergence ofRn(Pn; Qn; D) to R(P; Q; D)
is proved. In Section III, theP -almost sure convergence

n�1 log Q(B(Xn

1 ; D))! �R(P; Q; D)

is established. In the proofs we will use Hammersley’s lemma on ap-
proximate subadditivity, which can be found in [11]. For convenience,
part of the result is quoted as follows.

Lemma 1: Assumefhn; n � 1g is a sequence such that

hm+n � hm + hn +�m+n; m; n � 1

with f�n; n � 1g is a nondecreasing nonnegative sequence satisfying
1

n=1

�n

n(n+ 1)
<1:

ThenL = limn!1[hn=n] exists andL < 1.

II. CONVERGENCE OFRn(Pn; Qn; D) AND ASYMPTOTICS OF

R(P; Q; D)

Proof of Theroem 1:The proof is based on the following lemmas.

Lemma 2: SupposeY satisfies condition( �). Fix C > 0 and
d � 1 such thatQ(A)Q(B) < CQ(A \ B), n � 1, A 2 �(Y n

1 ),
B 2 �(Y1n+d+1). Then for anym; n � 1 withm+n > d, and� � 0

(m+ n)�m+n(�) � m�m(�) + n�n(�)� log C + dDmax�;

(2.1)

Furthermore, givenk � 1, for n � 1, denoting

n = s(k + d) + r; s =
n

k + d
; 0 � r < k + d (2.2)

we have

�n(�) �
sk

n
�k(�)�

s

n
log C +

(sd+ r)Dmax�

n
: (2.3)
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Lemma 3: If �n are continuous convex functions onRRR and
�n(�)! �(�), with j�(�)j <1, for all � 2 RRR, then�n

u:c:
�! �.

Lemma 4: If Y satisfies( 
�

), then

�(�) = lim
n!1

�n(�) (2.4)

exists and is convex and continuous. Furthermore,�n(�)
u:c:
�! �(�)

and

lim
�!�1

�(�)

�
= Dmin: (2.5)

Assuming the above three lemmas for now, since

Rn(Pn; Qn; D) = ��(D)

is convex in D, by Lemma 3, we only need to prove that
Rn(Pn; Qn; D) converge pointwise toR(P; Q; D) on (Dmin; 1),
andR(P; Q; D) < 1.

We will prove that givenD, Rn(Pn; Qn; D) is an approximately
subadditive sequence. To this end, given� 2 (0; (D � Dmin)=4), as
n is large enough,D(n)

min < Dmin + � < D � 3�, which implies that
as� ! �1

�D � �n(�) � � D �D
(n)
min ! �1:

Then�D��n(�) can achieve its supremum��n(D) on(�1; 0]. Let
Sn=f��0 : �D��n(�)=��n(D)g. We show that for someN�1;

n�N Sn is bounded. From (2.2), it is seen that

lim
n!1

[s=n] = 1=(k + d):

Fix k andN large enough, such thatD(k)
min < Dmin+ �, and for all

n=s(k+d)+r�N , with 0 � r<k+d, there is(sd+r)Dmax��n.
Since�k(�)� skn

�1�k(�)� 0, (2.3) leads to

�D � �n(�) � �D �
sk

n
�k(�) +

s

n
log C �

(sd+ r)Dmax �

n

� �D � �k(�) +
s

N
log C � ��: (2.6)

If � < 0 has large enough absolute value, then the right-hand side of
(2.6) is bounded from above by

�D�� D
(k)
min+� �����D��(Dmin+2�)���=�(D�Dmin�3�)<0:

Together with (2.6), this implies that there is�0 < 0, such that for all
n � N

�0D � �n(�0) < 0: (2.7)

Since��n(D) � 0, this shows that for alln � N , Sn � [�0; 0], and
hence

n�N Sn is bounded.
By (2.1), we get

(m+ n)(�D � �m+n(�))

� m(�D� �m(�)) + n(�D � �n(�)) + log C + dDmaxj�j:

Because
n�N Sn is bounded, and

Rk(Pk; Qk; D) = min
��0

[�D � �k(�)]

for all k � 1, letting r0 be an upper bound ofdDmaxj�j over

n�N Sn, the above inequality implies that form; n � N

(m+ n)Rm+n(Pm+n; Qm+n; D)

� mRm(Pm; Qm; D) + nRn(Pn; Qn; D) + r0 + j log Cj:

Therefore,nRn(Pn; Qn; D), as a sequence inn, is approximately
subadditive. By Hammersley’s lemma on approximate subadditivity,

Rn(Pn; Qn; D) is convergent, and the limitR(P; Q; D) � 0 is fi-
nite.

Because allRn(Pn; Qn; D) are convex inD, so isR(P; Q; D).
Then, asR(P; Q; D) is finite, it is continuous. Therefore, by Lemma
3,Rn(Pn; Qn; D)

u:c:
�! R(P; Q; D).

Finally, for D � Dav, by the discussion following (1.11),
Rn(Pn; Qn; D) = 0, n � 1, implyingR(P; Q; D) = 0.

We now prove the lemmas given at the beginning of this section.
First we introduce some notation. Given a finite setJ � NNN , for a =
fan; n� 1g; denoteaJ = fai; i 2 Jg. Denote

�(J) = �(xJ ; yJ ) =
j2J

�(xj ; yj): (2.8)

Furthermore, denote byPJ andQJ the marginal distributions ofXJ

andYJ , respectively.

Proof of Lemma 2:Givenm; n � 1 with m+ nd, let

I = f1; . . . ; mg J = fm+ d+ 1; . . . ; m+ ng:

Then(Pm+n �Qm+n)-almost everywhere onAm+n
X �Am+n

Y , there
is

m+n

i=1

�(xi; yi) � �(I) + �(J) + dDmax:

Since� < 0, then

(m+n)�m+n(�)

= log e
[� �(x ;y )]

dQm+n(y
m+n
1 ) dPm+n(x

m+n
1 )

� log e[��(I)+��(J)+�dD ] dQm+n(y
m+n
1 )

� dPm+n(x
m+n
1 )

= log e��(I)+��(J) dQI[J(yI ; yJ ) dPm+n(x
m+n
1 )

+dDmax�
(a)

� log e��(I)+��(J)C�1 dQI(yI)dQJ(yJ) dPm+n(x
m+n
1 )

+dDmax�

= log e��(I) dQI(yI) dPI(xI)

+ log e��(J) dQI(yJ) dPJ (xJ )

�logC+dDmax�
(b)
=m�m(�)+(n�d)�n�d(�)�logC+dDmax� (2.9)

where(a) is due to condition( �), and(b) the stationarity of both
X andY . On the other hand, because� < 0 and�(x; y) � 0, it is
not hard to see thatn�n(�) � (n� d)�n�d(�), which, together with
(2.9), implies (2.1).

As to (2.3), by (2.9) and induction, it is easy to prove that, ifn =
s(k + d) + r, with 0 � r < k + d

n�n(�) � sk�k(�)� s log C + s dDmax�+ r�r(�):

Becauser�r(�) � rDmax�, then by the above inequality, (2.3) is
proved.

Proof of Lemma 3:GivenM > 0, let a = �(M + 1)��(M),
b = �(�M)� �(�M � 1). Since�n(�)! �(�) pointwise

�n(M + 1)� �n(M)! a; �n(�M)� �n(�M � 1)! b:
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Let c=maxfjaj; jbjg+1. Then for largen, j�n(M+1)��n(M)j�c,
andj�n(�M)��n(�M�1)j�c. Since�n are convex, then for any
y; z2 [�M; M ], j�n(y)��n(z)j� cjy�zj. This shows that�n are
equicontinuous on[�M; M ], which implies uniform convergence to
� on [�M; M ].

Proof of Lemma 4:First, for anym; n � 1, it is easy to see that

(m+ n) ess inf
Y

�m+n(x
m+n
1 ; Y m+n

1 )

� m ess inf
Y

�m(xm1 ; Y
m
1 ) + n ess inf

Y
�n(x

n
1 ; Y

n
1 ):

Take expectation on both sides to get

(m+ n)D
(m+n)
min � mD

(m)
min + nD

(n)
min:

Then�nD(n)
min satisfies approximate subadditivity, and henceDmin =

limn!1D
(n)
min exists. Clearly,0 � Dmin < 1.

We show that�n converge pointwise onRRR. Given� 2 RRR, letn !
1 in (2.3). By (2.2),limn!1[s=n] = 1=(k + d). Then there is

lim inf
n!1

�n(�) �
k

k + d
�k(�)�

log C

k + d
+
dDmax�

k + d
:

Let k ! 1 to get

lim inf
n!1

�n(�) � lim sup
k!1

�k(�):

Therefore,�(�) = limn!1 �n(�) exists. Since�n is convex onRRR
andj�n(�)j � j�jDmax, �(�) is convex andj�(�)j � j�jDmax as
well. Then by Lemma 3,� is continuous and�n

u:c:
�! �.

To prove (2.5), letfn(�) = �n(�)=�andf(�) = �(�)=�. It is easy
to see that bothfn andf are nondecreasing. LetL = lim�!�1 f(�).
It is clear thatL > �1. Given� > 0, fix �0 < 0 such thatf(�0) <
L + �. Forn large enough and� < �0

fn(�) � fn(�0) < f(�0) + � � L+ 2�:

Let � # �1. By fn(�) # D
(n)
min, there isD(n)

min � L+ 2�, which, by
Lemma 4, impliesDmin � L.

To proveL � Dmin, divide (2.3) by�, with � < 0, to get

fn(�) �
sk

n
fk(�) +

s log C

nj�j
�

(sd+ r)Dmax

n

� fk(�) +
s log C

nj�j
+

(sd+ r)Dmax

n
:

Noting that� < 0, fk(�) = �k(�)=� � 0, letn !1 to get

f(�) � fk(�) +
log C

(k + d)j�j
+
dDmax

k + d
:

Letting�! �1, thenk !1, there isL � Dmin, which completes
the proof.

III. T HE FIRST-ORDER ASYMPTOTIC OFlog Q(B(Xn
1 ; D))

In this section the goal is to prove Theorem 2. That is, given two
independent stationary processesX andY , if X is ergodic andY sat-
isfies both conditions( �) and( +), then forD 2 (Dmin; 1), there
is

lim
n!1

1

n
log Q(B(Xn

1 ; D)) = �R(P; Q; D); P–a.s.: (3.1)

We first show that if (3.1) holds forD 2 (Dmin; Dav), then it also
holds forD � Dav. Indeed, given anyD0 2 (Dmin; Dav), by

Q(B(Xn
1 ; D

0)) � Q(B(Xn
1 ; D))

it is easy to see if (3.1) holds forD0, then there is

lim sup
n!1

j log Q(B(Xn
1 ; D))=nj � R(P; Q; D0):

Letting D0 ! Dav, by the continuity ofR(P; Q; D), and
R(P; Q; Dav) = 0, there is then

lim
n!1

[log Q(B(Xn
1 ; D))=n] = 0:

Inequality (3.1) remains to be shown forD 2 (Dmin; Dav). It is
enough to show that

lim sup
n!1

1

n
log Q(B(Xn

1 ; D)) ��R(P; Q; D); P–a.s. (3.2)

lim inf
n!1

1

n
log Q(B(Xn

1 ; D)) ��R(P; Q; D); P–a.s. (3.3)

We will prove (3.2) and (3.3) in subsequent subsections. Before doing
this, we fix notation. From now ond � 1 is fixed and assumed to
satisfy conditions( �) and( +) for Y . Definec(n; k) ande(n; k)
onNNN �NNN such that forn = s(k + d) + r; 0 � r < k + d

c(n; k) =
n

k + d
e(n; k) =

n

k + d
d+ r:

Note that asn ! 1, e(n; k)=n ! d=k. Therefore, for any� > 0, if
k is large enough, then for alln large enough,e(n; k)=n < �. We will
continue to use the notation in (2.8). IfI � NNN , andj � 0, then define
I + j = fi + j; i 2 Ig. Also, if a; b 2 NNN , anda � b, then denote
[a; b] = fa; a + 1; . . . ; bg.

A. Proof of the Upper Bound (3.2)

Given � 2 (0; Dav � D), fix k > d, such thatD(k)
min < D, and

d + log C < �k. For all t � 1, let

It = It(k) = fj: (t� 1)(k+ d) + 1 � j � tk + tdg: (3.4)

ThenI1 = [1; k], andIt = It�1 + k+ d. Givenn large enough, such
thats = c(n; k) � 2, for j = 0; . . . ; k � 1, I1 + j; . . . ; Is + j are
disjoint subsets in[1; n]. Then by

�([1; n]) �

s�1

t=1

�(It + j)

there isB(xn1 ; D) � Aj , where

Aj = yn1 2 A
n
Y :

s�1

t=1

�(xI +j ; yI +j) < nD :

Since the distance betweenIt + j andIt + j is at leastd, for t 6= t0,
by condition( +)

Q(B(xn1 ; D)) �Q(Aj)

�Cs�1Qs�1
k (z0; . . . ; zs�2): zt 2 A

k
Y ;

s�1

t=1

�(xI +j ; zt) < nD : (3.5)

Let

I = fIt + j; t = 1; . . . ; s� 1; j = 0; 1; . . . ; k � 1g:
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ThenI containsk(s� 1) intervals of lengthk. EnumerateI such that
its ith element is[ai; ai + k � 1], with ai increasing. It is easy to see
thatai 2 I1 [ . . . [ Is�1. Then (3.5) leads to

Q(B(xn1 ; D)) � [Q(A0) . . .Q(Ak�1)]
1=k

� Cs�1
k�1

j=0

Qs�1
k (z1; . . . ; zs�1): zt 2 A

k
Y ;

s�1

t=1

�(xI +j ; zt) < nD

1=k

� Cs�1 Q
k(s�1)
k (z1; . . . ; zjIj): zi 2 A

k
Y ;

1

k

jIj

i=1

�(xI ; zi) � nD

1=k

: (3.6)

LetJ = f[x; x+k�1]; x 2 [1; n]g. Clearly,I � J andjJ nIj =
e(n; k) + k. Then by (3.6), it is easy to see thatP -almost surely

Q(B(xn1 ; D)) �Cs�1 Qn
k (z1; . . . ; zn): zi 2 A

k
Y ;

1

nk

n

i=1

�(xi+k�1i ; zi) � D

+
(e(n; k) + k)Dmax

n

1=k

(3.7)

Define a processU = fUi; i � 1g such that

Ui = (Xi; . . . ; Xi+k�1) 2 AU = Ak
X :

SinceX is stationary and ergodic, so isU , andUi � Pk. Define an
i.i.d. processV = fVi; i � 1g, such thatVi 2 AV = Ak

Y and
Vi � Qk. Denote the probability distributions ofU andV by ~P and ~Q,
respectively. Finally, let~� = �k be the function onAU �AV whereby
the distortion measures forun1 2 A

n
U andvn1 2 A

n
V are defined.

By the choice ofk and (3.7), forn large enough

Q(B(Xn
1 ; D)) � Cs�1 ~Q(B(Un

1 ; D + �))
1=k

where the ballB(Un
1 ; D + �) is defined according to~�n. Then

1

n
log Q(B(Xn

1 ; D)) � � �
1

kn
log ~Q(B(Un

1 ; D + �)); P–a.s.

(3.8)

From the construction ofU andV ,

E~�(U1; V1) = Dav and E~P [ess infV ~�(U1; V1)] = D
(k)
min:

Because 1)D + � 2 (D
(k)
min; Dav), 2)U is stationary ergodic, and 3)

V is an i.i.d. process, [2, Corollary 1] or [3, Corollary 1] applies toU ,
V , and ~Q(B(Un

1 ; D + �)). Then, asn ! 1, ~P -almost surely, the
right-hand side of (3.8) tends to�� + k�1R1( ~P1; ~Q1; D + �). Thus
P -almost surely

lim sup
n!1

1

n
log Q(B(Xn

1 ; D)) � �� k�1R1( ~P1; ~Q1; D + �)

= sup
��0

f�(D + �)� ~�(�)g (3.9)

where~�(�) = log e�~�(u; v) d ~Q1(u) d ~P1(v). Because

~�(�) = log exp
�

k

k

i=1

�(xi; yi) dQk(y
k
1 ) dPk(x

k
1)

= k�k(�=k)

there is

R1( ~P1; ~Q1; D+ �) = sup
��0

f�(D+ �)� k�k(�=k)g= k��k(D+ �)

and hence

k�1R1( ~P1; ~Q1; D + �) = Rk(Pk; Qk; D + �): (3.10)

Let k ! 1 and then� ! 0. BecauseR(P; Q; D) is continuous in
D, by (3.9) and (3.10), and (3.2) is proved.

B. Proof of the Lower Bound (3.3): A Special Case

In this subsection we prove the asymptotic lower bound (3.3) for a
special case, where (3.13) is satisfied. Then in the next subsection, we
prove the lower bound for the general case, which can be reduced to the
special case by a random perturbation argument. The proof is based on
the following two lemmas.

Lemma 5: Fork � 1 and random samplex from X, denoteut =
xI , whereIt is given by (3.4). LetP̂n; k be the empirical measure
of Ak

X induced byu1; . . . ; un. Define the following empirical log-
moment generating function with respect toQk andP̂n; k:

�P̂ (�) =
1

kn

n

s=1

log
A

e��(u ; z) dQk(z)

=
1

k A

log
A

e��(u; z) dQk(z) dP̂n; k(u):

(3.11)

GivenD 2 (Dmin; Dav), let

�n; k = arg max
�2RRR

f�D � �P̂ (�)g: (3.12)

ThenP -almost surely, fork is large enough, there are

1) for all n large enough,�n; k exists, is nonpositive, andj�n; kj is
bounded away from1;

2) lim infn!1 j�n; kj > 0;
3) lim supn!1�00

P̂
(�n;k) < 1.

Lemma 6: GivenX andY as above

lim sup
k!1

lim sup
n!1

��P̂ (D) � R(P; Q; D):

The lemmas will be proved in Section III-D. Assuming they are true
for now, we prove (3.3) under the following additional condition:

lim inf
n!0

�00P̂ (�n;k) > 0: (3.13)

Given� 2 (0; D �Dmin), fix k � 1 with 1 +Dmax < �k. GivenN
with (1+Dmax)e(N; k) < �N , letn = c(N; k). Then onAN

X�A
N
Y

�(xN1 ; y
N
1 ) �

n

t=1

�(xI ; yI ) + e(N; k)Dmax

�

n

t=1

�(xI ; yI ) + �N (P �Q)–almost everywhere
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whereIt is given by (3.4). Therefore, bynk � N , there is

B(xN1 ; D) � yN1 2 AN
Y :

n

t=1

�(xI ; yI ) � (D � �)kn : (3.14)

Let V be the same i.i.d. process as in the proof of the upper bound and
~Q its distribution. Writeut = xI . Then by (3.14) and condition( 

�

)

Q(B(xN1 ; D)) � C�n ~Q(B(un1 ; (D� �)k)): (3.15)

Note that(u1; u2; . . .) is a random sample of processU=fUn; n�1g;
with Un = XI . In general,U is neither stationary nor ergodic. De-
spite this, the argument of [2] still applies to(u1; u2; . . .) andV . To
be specific, let�t = �(ut; Vt), Tn = n

t=1 �t, andT̂n = Tn=n. De-
note by�n the law of(�1; . . . ; �n). Then

~Q(B(un1 ; (D � �)k)) = Pr(T̂n � (D � �)k):

Noting thatT̂n depends onx, we will show thatP -almost surely, for
k large enough, there existsK = K(k; x) > 0, such that for� > 0
and

Jn = e
nk� (D��)

Pr(T̂n � (D� �)k)

there is

log Jn � �K�
p
n: (3.16)

Once (3.16) is proved, it follows that forn large enough

e
nk� (D��)

~Q(B(un1 ; (D � �)k)) � e �K�pn ;

and, therefore, by (3.15)

1

N
log Q(B(xN1 ; D))

� �c(N; k)C
N

� K�
p
n

N
� nk

N
��
P̂

(D� �):

LetN ! 1 thenk ! 1. By Lemma 6

lim inf
N!1

1

N
log Q(B(xN1 ; D)) � �R(P; Q; D � �):

Let � ! 0 and apply Theorem 1 to complete the proof of (3.3).
To prove (3.16), byD � � 2 (Dmin; Dav) and Lemma 5, ifk is

chosen large enough, thenP -almost surely,

�n; k = argmax
�2RRR

f�(D� �)� �P̂ (�)g

exists for alln large enough, and�n; k � 0. Define a probability mea-
sure on[0; 1)n

d�n(�
n
1 ) = exp �n; k

n

t=1

�t � nk�P̂ (�n;k) d�n(�
n
1 ) (3.17)

with �P̂ (�) being a log-moment generating function. It is easy to
check that under�n, for Tn = n

t=1 �t, E� [Tn] = nk�0
P̂

(�n;k)

and

Var� [Tn] = nk�00
P̂

(�n;k):

On the other hand, because�n; k is a maximal point of(D � �)� �
�P̂ (�), there isD � � = �0

P̂
(�n;k), and henceE� [Tn] =

(D � �)nk. Let

Gn = � Tn � (D � �)nk

nk�00
P̂

(�n;k)
:

Then by the above results, when�n1 � �n,Gn has mean0 and variance
1, and hence by (3.17)

Jn = e
nk� (D��)

� E� 1fT̂ �(D��)kge
�n� T̂ +nk� (� )

=E� 1fG �0ge
� nk� (� )G

�E� 1f0<G <�ge(
�� p

nG )

� e(��
p
n �) Pr� (0 < Gn < �)

for any� > 0, where

�n = �n; k k�00
P̂

(�n;k) > 0:

Due to the boundedness of�, the random variables�t are uniformly
bounded. Therefore, by the assumption (3.13), it is seen that the Lin-
derberg condition for the central limit theorem is satisfied byGn, and
hence

lim
n!1

Pr� (0 < Gn < �) = � > 0:

Lemma 5 also implies with probability1, for n large enough,�n is
bounded away from1. ChooseK > 0 so thatK � �n is bounded
away from0, then

lim inf
n!1

log[e(K
p
n�)Jn] � log � > �1

implying

lim inf
n!1

p
n K� +

1p
n

log Jn > �1

which holds only if

lim inf
n!1

1p
n

log Jn > �K�:

This complete the proof of (3.16).

C. Proof of the Lower Bound (3.3): The General Case

Now we prove (3.3) without assuming the condition (3.13). LetY
be an arbitrary stationary process satisfying conditions( �) and( +).
Given� 2 (0; minfD�Dmin; Dav�Dg=2), letZ = (Y; W ), with
processW = fWn; n � 1g an i.i.d. process independent ofY such
thatWn has uniform distribution on[0; �]. ThenZ is a process defined
onAZ = AY � [0; �]. Note thatZ also satisfies conditions( �) and
( +). Let Q̂ be the distribution ofZ.

Define �̂ onAX�AZ , such that forx2AX andz=(y; u)2AZ ;
�̂(x; z) = �(x; y) + u. Then define

B̂(xn1 ; D) = fzn1 2 An
Z : �̂n(x

n
1 ; z

n
1 ) � Dg:

With Y being replaced byZ, � by �̂, andQ by Q̂, (3.11) becomes

�P̂ (�) =
1

kn

n

t=1

log
A

e��̂(u ; z) dQ̂k(z)

=
1

kn

n

t=1

log
A

e��(u ; v) dQk(v)

+
1

kn

n

t=1

log
[0;1]

e��(w +���+w ) dw1 � � � dwk

=F (�) + log
1

0

e��u du

=F (�) +G(�):
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It is easy to see thatF 00(�) � 0 and G00(�) > 0. Therefore,
�00

P̂
(�) > 0, for all �. By Lemma 5 (1), givenD 2 (Dmin; Dav),

P -almost surely, fork large enough

�n; k = argsup
��0

f�D � �P̂ (�)g

exists for all n large enough and bounded from�1. Therefore,
G00(�n; k) is bounded below from0, and hence

lim inf
n!1

�00
P̂

(�n;k) > 0

i.e., for the triplefX; Z; �g, the condition (3.13) is satisfied.
By the last subsection, forD0 2 (Dmin; Dav)

lim inf
n!1

[log Q̂(B̂(xn1 ; D
0))=n] � �R(P; Q̂; D0)

P -almost surely. On the other hand, becauseZ = (Y; W ), withY and
W independent andWn 2 [0; �]

Q̂(B̂(xn1 ; D)) � Q(B(xn1 ; D)):

Then it is seen that

lim inf
n!1

1

n
log Q(B(Xn

1 ; D)) � �R(P; Q̂; D): (3.18)

For n � 1, letting

�̂n(�) = [1=n]
A

log
A

e��̂(x ; z ) dQ̂n(z
n
1 ) dPn(x

n
1 )

we get

Rn(Pn; Q̂n; D) = sup
��0

f�D � �̂n(�)g: (3.19)

By

�̂(xn1 ; z
n
1 ) = �(xn1 ; y

n
1 ) + �

n

i=1

wi

andQ̂ = Q� �, with � the uniform distribution on[0; �]NNN , it is easy
to see that

�D � �̂n(�) � �(D � �)� �n(�); for all � � 0:

SinceD� � > Dmin, then forn large enough, the supremum in (3.19)
as well as that of�(D��)��n(�) is achievable for� � 0, leading to
Rn(Pn; Q̂n; D) � Rn(Pn; Qn; D� �). Therefore, lettingn!1,
there isR(P; Q̂; D) � R(P; Q; D � �). Then by (3.18)

lim inf
n!1

1

n
log Q(B(Xn

1 ; D)) � �R(P; Q; D � �):

Let � ! 0 and apply the continuity ofR(P; Q; D) to complete the
proof of (3.3) for the general case.

D. Proofs of Lemmas 5 and 6

Proof of Lemma 5:
1) Fix � 2 (0; 1=2) small enough, and integersh; k large enough,

so that

�k � (1� �)h e(h; k)Dmax < �k c(k; h) log C < �k

(D � �)(1� �) > D
(h)
min: (3.20)

First we show thatP -almost surely, withk given as above, forn
large enough,�0

P̂
(0) < D. Define

En = (kn)�1
n

t=1

�(ut; z)dQk(z):

Then�0
P̂

(0) = En. LetSn = I1 [ . . . [ In. ThenSn � [1; bn],
with bn = nk + (n � 1)d. Noting

En = (kn)�1

i2S

�(xi; y) dQ1(y)

by the choice ofk, for n large enough

En �
1

bn

b

i=1

�(xi; z)dQ1(z)

� �
1

bn
i2[1; b ]nS

�(xi; z)dQ1(z)

� �
e(bn; k)Dmax

bn
> ��:

BecauseX is ergodic,P -almost surely

lim inf
n!1

En � lim
n!1

1

bn

b

i=1

�(xi; z)dQ1(z)� � = Dav � � > D

(3.21)

and hence�0
P̂

(0) > D. Because�D � �P̂ (�) is concave, it
is then seen that forn large enough, if�n; k exists, then it has to be
nonpositive.

Next we show the existence as well as the boundedness of�n; k. For
r � 1, let Jr = Ir(h) defined by (3.4). Then, for anyu 2 Ak

X and
z 2 Ak

Y , it is easy to check that forj = 0; . . . ; h� 1

�(u; z) �

c(k; h)

r=1

�(uJ +j ; zJ +j) + e(k; h)Dmax

�

c(k; h)

r=1

�(uJ +j ; zJ +j) + �k

where forJr+j not totally included by[1; k], the value of� is defined
as0. Then, for anyu 2 Ak

X and� � 0

log
A

e��(u; z) dQk(z)

�
1

h

h�1

j=0

log
A

e
� �(u ; z )+�k

� dQk(z)

(a)

�
1

h

h�1

j=0

log
A

C�c(k;h)e
� �(u ; z )+�k

�

c(k; h)

r=1

dQh(zJ +j)

= �c(k; h) log C + �k�

+
1

h

h�1

j=0

c(k; h)

r=1

log
A

e��(u ; z) dQh(z) (3.22)

where(a) is becauseQ satisfies condition( �). In particular, for each
u = xI , t = 1; . . . ; n, (3.22) holds. Then by the choice ofk

�P̂ (�)=
1

nk

n

t=1

log
A

e��(x ;z) dQk(z) ���+��

+
1

hkn

n

t=1

h�1

j=0

c(k; h)

r=1

log
A

e��(u ; z) dQh(z)

where

ut; J +j = (xI )J +j = xL
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withL = Jr+(t�1)(k+d)+j. LetL be the collection of all suchL’s.
It is not hard to see thatL consists of intervals with lengthh and left
endpoint inI1 [ . . . [ In. DefineS =

L2L L. ThenS � [1; bn].
Because� � 0, by the choice of�, h, andk, for n large enough

�D��P̂ (�)��(D��)

+��
1

hkn
i2S

log
A

e��(x ; z) dQh(z)

��(D��)

+��
1

hkn

b

i=1

log
A

e��(x ; z) dQh(z)

��(D��)+��
1

h(1��)

�
1

bn

b

i=1

log
A

e��(x ; z) dQh(z) :

(3.23)

Denote

f(�) = �(D � �) + � � (1� �)�1�h(�):

By (D � �)(1� �) > D
(h)
min, lim�!�1 f(�) = �1. Given�0 with

f(�0) < 0, let � = �0 in (3.23). BecauseX is ergodic,P -almost
surely, the right-hand side of (3.23) converges tof(�0), which implies
for n large enough,�0D � �P̂ (�0) < 0. Since

sup
��0

f�D � �P̂ (�)g � 0

this implies the supremum is achieved in[�0; 0], hence proving 1).
2) Fix �, h, and k as above. Assume with positive probability

lim infn!1 j�n; kj = 0. Then

D =�0
P̂

(�n;k)

=
1

kn

n

t=1

�(ut; z)e
� �(u ; z) dQk(z)

� e� �(u ; z) dQk(z)
�1

:

By �(ut; z) � kDmax

1

kn
e�j� jkD

n

t=1

�(ut; z)dQk(z) � D

�
1

kn
ej� jkD

n

t=1

�(ut; z) dQk(z):

Let n(l) be a subsequence such that�n(l); k ! 0. Because�(ut; z)
is bounded, by the dominated convergence theorem, the above bounds
impliesliml!1 En(l) = D, which is a contradiction to (3.21). There-
fore, j�n; kj is bounded below away from0.

3) To show that�00
P̂

(�n; k) are bounded from above, first it is easy
to see that

�P̂ (�n;k) �
1

kn

n

t=1

�2(ut; z)e
� �(u ; z) dQk(z)

� e� �(u ; z) dQk(z)
�1

:

By 1), givenk large enough, forn large enough,j�n; kj is bounded.
Fix M lim supn!1 j�n; kj. Then forn large enough

�00
P̂

(�n;k) �
1

kn

n

t=1

(kDmax)
2 dQk(z)

� e�MkD dQk(z)
�1

= kekMD D2
max;

which completes the proof of 3).

Proof of Lemma 6:From (3.23)

�D � �P̂ (�) � �(D � �) + � �
1

h(1� �)

�
1

bn

b

i=1

log
A

e�(�(x ; z)) dQh(z) :

Givenk, choose a subsequencen(i) such that

lim
i!1

��
P̂

(D) = lim
i!1

[�n(i); kD � �P̂ (�n(i); k)]

= lim sup
n!1

��
P̂

(D):

By Lemma 6,�n(i); k is bounded, and hence has a limit point, say,�0.
Then by the ergodicity ofX and the boundedness of�, it is not hard to
get from (3.23) that

lim sup
n!1

��
P̂

(D)

� �0(D � �) + �

�
1

h(1� �) A

log
A

e� (�(x; z)) dQh(z) dPh(x)

= �0(D � �) + ��
1

1� �
�h(Ph; Qh; �0)

� �+
1

1� �
Rh(Ph; Qh; (D� �)(1� �)):

Let k!1, thenh!1, and finally�!0 to complete the proof.

APPENDIX

THE FIRST-ORDER ASYMPTOTIC OFD(PnkQn) WITH AX = AY

DISCRETE ANDY SATISFYING CONDITION ( +)

Proof of Proposition 2: SupposeAX = AY = A, with A dis-
crete. Since

1

n
D(PnkQn) =

1

n
x

P (xn1 ) log
P (xn1 )

Q(x1n)

=�
H(Pn)

n
+

1

n
x

P (xn1 ) log
1

Q(xn1 )

=�
H(Pn)

n
+
Rn

n
andn�1H(Pn)! H(X), it is enough to show thatn�1Rn converges.

BecauseX satisfies the condition( +), there are constantsC;
d > 1, such that forA 2 �(Xn

1 ) andB 2 �(X1
n+d+1)

Q(A \B) < CQ(A)Q(B):

Given k, defineIt = It(k) by (3.4). Forn large enough, lets =
c(n; k). Then forxn1 2 An

Q(xn1 ) � Q(xI ; . . . ; xI ) � Cs

s

j=1

Q(xI ):

Therefore,
Rn

n
�

1

n
x

P (xn1 ) log
C�s

s

j=1

Q(xI )

=�
s log C

n
+
s

n
Rk

=�
s log C

n
+
s

n
Rk:

Let n ! 1. Then bys=n ! 1=k, there is

lim inf
n!1

[Rn=n] � �[log C=k] + [Rk=k]:

Let k ! 1 to get

lim inf
n!1

[Rn=n] � lim sup
k!1

[Rk=k]:

Therefore,n�1Rn converges.
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Algebraic-Geometry Codes with Asymptotic
Parameters Better than the Gilbert–Varshamov and the

Tsfasman–Vľaduţ–Zink Bounds

Chaoping Xing

Abstract—In this correspondence, we show that both the Gilbert–Var-
shamov and the Tsfasman–Vľaduţ–Zink bounds can be improved by
Goppa geometric codes around two points where these two bounds
intersect.

Index Terms—Algebraic-geometry codes, algebraic curves, Gilbert–Var-
shamov bound, rational points, Tsfasman–Vľaduţ–Zink bound.

I. INTRODUCTION

Around 1981, Goppa [1] discovered a beautiful construction of linear
codes based on curves over finite fields with many rational points.
Nowadays, these codes are called Goppa geometric codes or algebraic-
geometry codes. One of the exciting results from Goppa’s construction
is that the well-known Gilbert–Varshamov bound can be improved by
Goppa geometry codes over finite fields of some composite order [9],
[3]. For example, ifq � 49 is a square orq � (576� 27)3 is a cube,
then the Gilbert–Varshamov bound is improved in an open interval.

Before proceeding with the ideas and results of the correspondence,
we need to introduce some technical notation.

For a linear codeC overFFF q we denote byn(C); k(C); andd(C)
the length, the dimension, and the minimum distance ofC, respec-
tively. Let U lin

q be the set of ordered pairs(�; R) 2 RRR2 for which
there exists an infinite sequenceC1; C2; . . . of linear codes overFFF q

with n(Ci) ! 1 and

� = lim
i!1

d(Ci)

n(Ci)
R = lim

i!1

k(Ci)

n(Ci)
:

The following description ofU lin

q can be found in [8, Sec. 1.3.1].

Proposition 1.1: There exists a continuous function�linq (�); � 2
[0; 1], such that

U lin

q = f(�; R) 2 RRR2: 0 � R � �linq (�); 0 � � � 1g:

Moreover,�linq (0) = 1; �linq (�) = 0 for � 2 [(q � 1)=q; 1]; and
�linq (�) decreases on the interval[0; (q � 1)=q].

For0 < � < 1 define theq-ary entropy function

Hq(�) = � logq (q � 1)� � logq � � (1� �) logq (1� �)

wherelogq is the logarithm to the baseq, and put

RGV(q; �) = 1�Hq(�):

Then the Gilbert–Varshamov bound says that

�linq (�) � RGV(q; �); for all � 2 0;
q � 1

q
: (1)

In order to introduce the asymptotic bound from Goppa geometric
codes, we have to define some notation regarding the number of ra-
tional points of curves over finite fields.

When we speak of an algebraic curve overFFF q, we always mean a
smooth, projective, absolutely irreducible algebraic curve defined over
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