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For finite Ax and.Ay, Yang and Kieffer (1998) proved that¥f is
an independent and identically distributed (i.i.d.) processidharder

] ] o ) ) Markov process with positive transition probabilities, akids a sta-
The First-Order Asymptotic of Waiting Times with tionary ergodic process, then

Distortion Between Stationary Processes 1 ]
=~ log W, (D) — R(P, Q, D) (P x Q)-a.s. (1.3)
Zhiyi Chi " _ i _ . -
for some functionR( P, ), D), given as the solution of a variational
problem in terms of relative entropy. Similar results were obtained in
Abstract—et X and Y be two independent stationary processes on [9] as well. More recently, using large deviations techniques, Dembo
general metric spaces, with distributions P and Q, respectively. The and Kontoyiannis (1999) and Yang and Zhang (1999) independently
first-order asymptotic of the waiting time W.,(D) betweenX and Y',  ,6yed (1.3) for general spacds; and.Ay , whenY is i.i.d., while the
allowing distortion, is established in the presence of one-sidegh-mixing d tablished fi hiah d toticE oD
conditions for Y. With probability one, n~* log W,,(D) has the same Secon paper estal 'S_ g iner Ig_ er order asymp oticBarD).
limit as —n~* log Q(B(XT, D)), where Q(B(XT, D)) is the We will use large deviations techniques to generalize these authors’
Q-measure of the D-ball around (X4, ..., X,), with respect to a results on the first-order asymptotic lofz W, (D) to the case where
given distortion measure. Large deviations technigues are used to gety s not i.i.d., which often comes up in applications and significantly

the convergence of—n"' log Q(B(XT, D)). First, a sequence of . ; iy : . : I
functions R,, in terms of the marginal distributions of X7 and Y;* as complicates analysis. Specifically, we will considémwhich satisfies

well as D are constructed and demonstrated to converge to a function the following mixing condition: there are constarits > 1, d > 1,
R(P, Q, D). The functions R,, and R(P, Q, D) are different from  such that for anyl € ¢(Y\") andB € o (Y, 411)

rate distortion functions. Then —n~* log Q(B(X7, D)) is shown to

converge toR(P, Q, D) with probability one.

- o . . (¢¥-): QA)Q(B) < CQ(AN B)
Index Terms—targe deviation, +p-mixing, relative entropy, string )
matching, waiting times. (Y4): QAN B) < CRA)Q(B).

The above “one-sided?-mixing conditions(v'—) and (¢4) were

explored in detail in [10] and [11]. It is known that faf ergodic
This correspondence generalizes the results of Yang and Kieffgtd mixing, condition(x)_) plus condition(v';.) is equivalent to

(1998), Dembo and Kontoyiannis (1999), and Yang and Zhangmixing ([12]), which is satisfied bykth-order Markov processes

(1999) on the first-order asymptotics of waiting times between twen finite spaces with positive transition probabilities. Recall ¥ids

independent stationary processes to the case allowing distortion gafled-mixing if limy ... ¥'(k) = 0, where

more general mixing conditions.

|. INTRODUCTION

In recent years, there has been increasing interest in the asymptotic Q(ANB)

properties of waiting times between stationary processes, due to theik) = SHP{ T)(B) - 1‘ rA€a(Y)),
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Proposition 1: Let X andY” be two independent stationary pro-Therefore, in this special case,ff(X) < oo, thenR(P, @, 0) =
cesses oMl and.A5°, with distributionsP and@, respectively. Sup- H(X)+ D(X||Y), provided eitheR( P, @, 0) or D(X|Y") exists.
poseQ(B(X{, D)) > 0 eventuallyP-a.s. If X is ergodic andt” Under regular conditions
satisfies conditiorfy'— ), then

R. (P, Qn, D)

1 4 ]‘ bt 1
o log W, (D) = 0 log Q(B(X7', D))+ o(1), = l inf{D(VHPn X Qn)iv €Pn,v1 = Py, p,(,n) < D}.
) ) n
n — oo, (P x @)-as. (1.4)
Itis worth noting that the function®,, (P,., Q., D) are different from

the n-symbol rate distortion function®, (P, , D), defined as ([13],
We omit the proof for Proposition 1 because it follows the sama4])
line as the one in [8], which is for a strong approximation when the
matching is exact anif is ¢-mixing. A similar result was also proved p (p  p)— L {D(y||Pn X 12): 0 € Py v1 =P, pi < D} )
in [9]. Equation (1.4) has also been proved under summgaistexing n -
condition forY’, i.e.,>_ ¢(k) < oo, with ([1], [2]) Indeed, in [3], it was shown that

¢(k) = sup{|Q(B|4) — Q(B)

cA€a(YV), R.(P,, D) = inf{R,(Ppn, p, D): p € P(A})}.
B € o(Y, ht1), r > 1}
In addition, if X satisfieslimsup,, .., R.(P., D) < oo, then for

While v-mixing implies¢-mixing, in general there are no further im-the rate distortion functio®(P, D) = infn>1 R..(F., D), there is
plications between them. More details on the mixing conditions can B& P, D) = lim,—oc Ru (P, D) ([14, p. 93]).
found in [12]. Similar to the rate-distortion function, the convergence in (1.6) in

We now come to the first main issue in establishing the asymptotiggneral is a nontrivial problem, except for the case wheigan i.i.d.
of the waiting times, fod” not being i.i.d. By (1.4), in order to prove process. Denote

(1.3), it is enough to get
D.. = Ep(Xy, Y1), Dinax = ess sup p(Xy, Y1)

log Q(B(X{, D)) — —R(P, Q. D). e
D) = Ep |essinf p, (X7, Y7")|.  Duin = lim DU

ForY being i.i.d.,R(P, Q, D) is obtained as the solution to a varia- Y nee
tional problem in terms aP; and@, where forn > 1, P, and@,, are (1.7
the marginals ofX{" andY7", respectively. In contrast, far only sat- ) n om .
isfying the one-sided-mixing conditions, the definition and existence®PVioUsY, Epn (X1, ¥1") = Day. We will assume
zfg(ig d%‘inDe) need to be addressed. To begin with, giveén- 0 and Dos < 0. D < D, foralln > 1. L.8)

1 . Itis easy to show that the limitin (1.7) exists. Therefdpg,i, is finite
R,(P., Qn, D)= — inf{ D (|2 )|Qn(-)) dPy(x]): as well.

" A% Using log-moment generating functions ([2, Proposition 1]; [3, Prop-

erty 1]), it can be shown that fap € (Dr(r:lifﬂ D..)

v E P, v =P, p < D} (1.5)
R.(P., Qn. D)= A, (D) (1.9)

whereP,, = P(A% x A} ) is the set of probability measures @} x

X whereA}, (D) = sup, cg[AD—A. ()] is the Fenchel-Legendre trans-
AY-, vy the A% -marginal ofv

form of A, with

(77) _ " oo n n n 1 . "
Py = /ﬂn(”qa y1)dv(xy. y1) An(N) = 7/ log /
AT A

n

e ) dQn(yi’)} AP, (7).

”
3

andD (u||v) the relative entropy betwegnandv, defined as (1.10)
dp o . The supremum in the definition of;, (D) can be achieved over< 0,
log — |} dpu, if Z& exists : ‘
D(u|lv) = J <0g dy) H- dv ie.,
oo, otherwise. Ro(Pa, On, D)
We then define the functioR(P, @, D) as = sup[AD — A, (D)]
A<0
R(P, Q, D) = lim Ru(Pu; Qu, D). (1.6) = sup [AD - - / log / e 40, ()
A<0 n _A;z( 7‘1/
R(P, Q, D) is a generalization of the joint entropy. Indeeddif =
Ay and discrete, then with(z, y) = 1.(y), we get exact matching . dP,L(ar?‘)} . (11
and
Bo(Po. Qo 0) = 0= H(Po) + 0= D(Pa[|Qn). ForD > D, (1.9) still holds. First

Whenn > 1, R,.(P., Q., D) defined here are different from those in [1]. R.(P.. Qn, D) =0, D > D..
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as can be seen by taking Given largek > 1, define two auxiliary processes
(@}, yt) = dPa(a?) dQnu(yl) v ={v, 0> 1}
and
in (1.5). Second, sinca!, (0) = Ep, (27, y7) < D andA;()) > 0, v = {Vn(k). n> 1}
AD — A, () is nondecreasing ofxo, 0], and achieves its supremum T

atA = 0, thus,sup, o[AD — A, (A)] = 0.
We will show that the conditioty— ) guarantees the convergence o
Rn(Pny Qn, D)

such that/(*) is given by

Uk = (Xn, ooy Xuga—1) € Ak

Theorem 1: Let X andY be two independent stationary processes
with distributionsP and(, respectively. I1fX is ergodic and” satis- andV® is an i.i.d. process onlf , with Vl(k) ~ Q. By condition
fies condition(vy— ), thenR,,(P., Q., D) andR(P, Q, D) are con- (¢¥—) and the continuity ofR(P, @, D) in D, the proof for the

tinuous functions o Dmin, oo), and upper bound in terms of” and 2 can be reduced to those for a
sequence of upper bounds in terms of the distribution&éf and
Ru(Py, Q. D) 25 R(P, Q, D) V® Then we can apply the results in [2] and [3]@6’” andV(®,
k = 1,2, ..., and eventually prove the asymptotic upper bound for

u.e . -1 B(X[, D)).
where— stands for uniform convergence on any compact set. In ad-. 8 @B(X{, D))
Second, we show

dition, for D > D,., R(P, Q, D) = 0.

For the case of exact matching, argument similar to that for The- lim inf n~"log Q(B(X', D)) > —R(P., Q, D), P-as.
orem 1 leads to to the following. '
The idea is again to reduce the proof to the case where the second
process is i.i.d. The large deviations technique used for the proof is
the standard exponential change of measures based on the log-moment
The proof for Proposition 2 is rather simple. Because this correspagenerating functions ([14, pp. 31-34]). To prove the lower bound for
dence is mainly concerned with matching allowing distortion, the proafmost all random samplesfrom X, we define a series of empirical

Proposition 2: P <« @ andY satisfies condition(vy ), then
n"'D(P,]|Qn) — D(X[|Y).

will be relegated to the Appendix. log-moment generating functions in termsaofndY’. Becaus&’ is
The second main issue in establishing the first-order asymptoticrgt i.i.d., it is essential that the log-moment generating functions be
the waiting times is to show devised appropriately to have several asymptotic properties necessary
for the proof of the lower bound. Also becauses noti.i.d., a random
lim log Q(B(«}, D)) = —R(P, Q, D) perturbation argument is employed in the proof.
n—oo ) ’ In Section Il, the convergence &, (P,, Q.. D) to R(P, Q, D)

for al ¢t all rand e frod . T « o bet is proved. In Section Ill, théd’>-almost sure convergence

or almost all random sample frotki. To make a connection between T n B

the desired convergence and the Large Deviation Principle (LDP), con- ] n log Q(BXT, D).) — —R(P, Q, D)

sider the special case wherex = {6} is a singleton. Consequently, iS established. In the proofs we will use Hammersley’s lemma on ap-
AS(O is asingleton_ Lef = {Zn, n 2 ]_} be a process qn, OC) such pI’OXimate SubaddItIVIty, which can be found in [11] For COnVenience,
thatZ, = p(f. Y, ). Then the desired convergence is implied by theart of the result is quoted as follows.

LDP of {1}, with pu,, the law of (Z1 + ... + Z.)/n. Furthermore, | arma 1: Assume{.., n > 1} is a sequence such that

by (1.11) and (1.6)R(P, @, D) is the rate function for the LDP of ; <i ; A w1

{1t }, provided it satisfies the condition of Gartner—Ellis theorem ([14, trtn S A o Bimdns s 02 o
pp. 43-54)). It is known that iZ satisfies conditiorit'_ ), then{y,,} ~ With {A,. n > 1} is a nondecreasing nonnegative sequence satisfying
indeed satisfies LDP ([10]). i Ay

Theorem 2: Let X andY be two independent stationary processes, n=1 n(n+1)
with distributions” and(, respectively. IfX is ergodic and” satisfies ThenL = lim, . .c[h,/n] exists andl < occ.
both conditiong+'—) and(v'4 ), then forD € (Din, o), there is

< oo.

1 Il. CONVERGENCE OFR,,(P,, Q),,, D) AND ASYMPTOTICS OF
- IOg Q(B(‘Ylna D)) - _R(Pw Q» D)/ P-as. (112) B(P> Q: D)

n
Proof of Theroem 1:The proof is based on the following lemmas.

The above results immediately lead to the first-order asymptotic of| emma 2: Supposel” satisfies condition(v' ). Fix ' > 0 and
the waiting times¥, (D). d > 1suchthatQ(A)Q(B) < CQANB),n > 1, A € a(¥]"),

Corollary 1: Let X andY’ be two independent stationary processe& € o(Yu%ay1). Thenforanym, n > 1withm +n > d,andA < 0
on Ay and Ay, respectively. IfY is ergodic and” satisfies both con-  (m + 1) Am4n(A) 2 mAR(A) + nAn(A) —log C' + dDmax,
ditions (¢»—) and(¢4.), thenW, (D) have the first-order asymptotic (2.1)

1.3). Furthermore, givek > 1, forn > 1, denoting

The proof of Theorem 2 consists of two parts. First, we show the
asymptotic upper bound

n

n=s(k+d)+r, s= \‘—k-i-

Jg 0<r<k+d (22
we have

limsupn™"' log Q(B(X[", D)) < —R(P, Q, D),  P-as. A > F a0 - Sieg o
n n

17— 00

(8d 4+ 7)Dmax A

n

(2.3)
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Lemma 3:If A, are continuous convex functions aR and R,(P., Q., D) is convergent, and the imR(P, @, D) > 0 is fi-
An(N) = A(X), with |[A())] < oo, forall X € R, thenA,, 25 A. nite.
Because alR,,(P,, .., D) are convex inD, so isR(P, @, D).

Y eaticfiod( )
Lemma 4: If " satisfies(v' ), then Then, ask(P, @, D) is finite, it is continuous. Therefore, by Lemma

A = lim A, (3) (24)  3,R.(P.. Q.. D) “% R(P, Q, D).
. . . u.c, Finally, for D > D,,, by the discussion following (1.11),
zﬁljts and is convex and continuous. Furthermarg,\) — A(X)) Ro(Pas On, D) = 0.1 > 1, implying R(P, O, D) = 0. 0
AN We now prove the lemmas given at the beginning of this section.
lim  —= = Duin. (2.5)  First we introduce some notation. Given a finite et N, for a =
{an,n>1}, denotery; = {a;, i € J}. Denote
Assuming the above three lemmas for now, since :
d p(T) = plas, yo) =D plx), y)). (2.8)

RH(PTUQH:D):)‘*(D) JEJ

is convex in D, by Lemma 3 we only need to prove thatFurthermore, denote b¥; and(@ ; the marginal distributions ok ;
R.(P,, Q., D) converge pointwise t&(P, @, D) on (Dmuin, o0), andY,, respectively

andR(P, Q, D) < cc.

We will prove that givenD, R, (P,, Q., D) is an approximately Proof of Lemma 2: Givenm, n > 1 with m + nd, let
subadditive sequence. To this end, give@ (0, (D — Dmin)/4), as )
n is large enoughD") < Dpin 4+ € < D — 3¢, which implies that I={l....om} J={m+d+1,....m+n}

A — —
asA — —o0 ) Then( Py X Qm-+r)-almost everywhere oy ™™ x AP, there

AD — Au(A) ~ A (D - ngm) - —0. is
ThenAD — A, () can achieve its supremustf, (D) on(—oc, 0]. Let m+n
S, ={A<0: AD—A,(N)=A}(D)}. We show that for som#& > 1, Z p(xiy i) < p(I) + p(J) + dDiax.
U,,>~ S» is bounded. From (2.2), it is seen that i=1
Jim [s/n] =1/(k +d). Since) < 0, then

Fix & and N large enough, such tha "), < D+, and for all (m41)Aman(N)

min

n=s(k+d)+r>N,with0 < r <k+d, there is{(sd+7) Dmax < en.

) " ‘m,+77, ; ; B m n m n
SinceAr(A) < skn TAx(\) <0, (2.3) leads to :/log {/c“ = PO 0, (gt )} APy (27"7)
)\D _ An(/\) g )\D _ ik 1\];()\) + i log C« _ (5d+ 7‘)Dmax )\ 2/10{:‘, {/6[>‘P(I)+>\P(J)+/\dDmax] dQ7n+71(yT1+n)}
n n n
<AD — Ar(\) + % log C' — €. (2.6) APy (27

. . : ) " Ap(D)+Xp( T m4n
If A < 0 has large enough absolute value, then the right-hand side of= /IOg {/(’ PN 40 161 (yr. ;1/])} APy (277

(2.6) is bounded from above by +dD,a

. @ f "
AD-) (Df};}nﬁ)—xegAD—A(DmiHJFQe)—/\e:A(D—Dmm—3e) <0. > / log { / MDD = 40 1 (y1) dcg_,(y])} APy (27)
Together with (2.6), this implies that thereXs < 0, such that for all FdDumax
n2N :/log {/6’\”(” sz(yJ)} dPy(ay)

XoD — An(Xo) < 0. 2.7) - -
+/10g {/e““) dQI(y,,,)} dP;(xy)
SinceA;, (D) > 0, this shows that for alk > N, S, C [\, 0], and log Ot gD )
hencelJ, - » S~ is bounded. - 08 &'+ dDmax
By (2.1), we get O A (A (n—d)An—a(A) —log C+d Dy A (2.9)

(m+n)(AD — Aprn (X)) where(a) is due to condition(y/— ), and(b) the stationarity of both

<mAD = A (A) +n(AD = Au(N) +1og C + dDmax|Al. X andY . On the other hand, because< 0 andp_(:c, y) > 0,it i_s
not hard to see thatA,, (A) < (rn —d)A,—4(\), which, together with

Becausd J, ..  S» is bounded, and (2.9), implies (2.1).
B As to (2.3), by (2.9) and induction, it is easy to prove thag it
Ry (Pr, Qr, D) = lggg[w - Ar(N)] s(k+d)+r,witho <r < k+d
for all & > 1, letting 7o be an upper bound of D,...|\| over nAn(A) 2 skAg(A) — s log C'+ s dDmax A + 7A:(X).

. S», the above inequality implies that fet, n > N . . .
Uz n quaiity Imp = BecauserA, (A) > rDunax, then by the above inequality, (2.3) is

(”n + 71)Rvn+77,(P7n+nn Qm,-‘rna D) proved O
<mBu(Py Qum, D)+ nR,(P,, Q., D)+ 1o+ |log C|. Proof of Lemma 3:Given M > 0, leta = A(M + 1) — A(M),
b=A(—M) - A(—M — 1). SinceA, (X) — A(\) pointwise
Therefore,n R, (Py, Q., D), as a sequence in, is approximately
subadditive. By Hammersley’s lemma on approximate subadditivity,A,,(M + 1) — A, (M) — a, A, (=M)—A,(-M —-1) —b.
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Letc=max{|a|, |b|}+1. Thenforlarge:, |An (M+1)—A,(M)|<c,
and|A, (-M)—A,(—=M—-1)|<c. SinceA,, are convex, then for any
y, z€[-M, M], |An(y) —An(2)| <cly—z|. This shows that,, are
equicontinuous of—M, M], which implies uniform convergence to
Aon[—-M, M].

it is easy to see if (3.1) holds fdp’, then there is

limsup |log Q(B(X{', D))/n| < R(P, Q, D').
Letting D' — D,y, by the continuity of R(P, Q, D), and
Proof of Lemma 4:First, for anym, n > 1, it is easy to see that R(P, Q, D..) = 0, there is then

LS m-+4n ~m-+n
(m4+n) cs;[}lnf Prntn (2] , Y] )
1
>m esyswinnf pm (27, Y™ + 0 esi;”ilnf pn (2t Y.
1 1

Take expectation on both sides to get

+ nD")

min*®

> mD™)

min

(m + n)D(er")

min

Then—nD"™)

min

satisfies approximate subadditivity, and heftg,, =
lim,— D7) exists. Clearlyp < Din < oc.
We show that\,, converge pointwise oR. Given\ € R, letn —
o0 in (2.3). By (2.2)]im,,—so[s/n] = 1/(k + d). Then there is

log € dDmaxA
E+d E+d

_|_

liminf A, (A) >

17— 00

k
Let k — o to get

liminf An (X)) > limsup Ax ().

n—oo k—oo
Therefore A(X) = lim,—o A () exists. Since\,, is convex onR
and|A,, (A)| < |A[Dmax, A(N) is convex andA(N)| < |A|Dmax as
well. Then by Lemma 34 is continuous and.,, =5 A.

To prove (2.5), lef,. (A) = A (N)/Aandf()\) = A(X)/A. ltiseasy
to see that botlf,, andf are nondecreasing. Lé&t= limy_._ o, f(}).
Itis clear thatl > —oc. Givene > 0, fix Ay < 0 such thatf(A\¢) <
L + e. Forn large enough and < Ao

fno‘) < fn(AD) < f(>‘0) +e< L+ 2e
LetA | —oo. By fu(A) | DU there isD'™)
Lemma 4, impliesDnin < L.
To proveL < D.in, divide (2.3) by, with A < 0, to get
s log C

fn(/\) S i fk(/\) —+ _ (Sd + T>Dmax
" n|A| n
slog €' (sd+1)Dimax

< fi
< S+ n|A| + n

< L + 2¢, which, by

Noting that\ < 0, fx(A) = Ax(A)/A > 0, letn — oo to get
log C'
(k+ d)|\|
Letting\ — —oc, thenk — o, there isL < D,.in, Which completes

the proof. O

dDmax
k+d’

FOA) < fu(N) +

IIl. THE FIRST-ORDER ASYMPTOTIC OFlog Q(B(XT{, D))

lim [log Q(B(X7, D))/n]=0.

Inequality (3.1) remains to be shown f&r € (Dyuin, Dayv). Itis

enough to show that

lim sup 1 log Q(B(X{", D)) <—R(P, Q, D),
n

n—o0

P-as. (3.2)

lim inf 1 log Q(B(X{", D)) >—-R(P, Q, D),

n—oco M

P-as. (3.3)

We will prove (3.2) and (3.3) in subsequent subsections. Before doing

this, we fix notation. From now od > 1 is fixed and assumed to
satisfy conditiongv'—) and(y 1) for Y. Definec(n, k) ande(n, k)
onN x N suchthatfom = s(k+d)+r,0<r <k+d

n

k+d

e(n, k) = { e(n, k) = { J d+r.

n
k+ (IJ
Note that as. — o, e(n, k)/n — d/k. Therefore, for any > 0, if
k is large enough, then for all large enoughg(n, k)/n < e. We will
continue to use the notation in (2.8)JIfc N, andj > 0, then define
I+j={i+j,i €I} Also,ifa,b € N,anda < b, then denote
[a,b] = {a, a+ 1, ..., b}.

A. Proof of the Upper Bound (3.2)

Givene € (0, D.. — D), fix k > d, such thatD'*) < D, and
d+log C < ek. Forallt > 1, let

L=Lk)={:(t=D)k+d)+1<j<th+td}. (3.4

ThenI, = [1, k], andl; = I, + k + d. Givenn large enough, such
thats = ¢(n, k) > 2,forj=0,..., k=1, +j,..., I, +j are
disjoint subsets inl, »]. Then by

s—1

(L)) > D oL + )

t=1

there isB(x}, D) C A;, where

s—1
4; = {y? € AV D plarrs yrr) < "D} :
t=1

Since the distance betweén+ j andl,, + j is at leastl, fort # t',
by condition(«'+)

In this section the goal is to prove Theorem 2. That is, given tWOQ(B(:c{". D)) <Q(4;)

independent stationary processeandY’, if X is ergodic and” sat-
isfies both condition$y_ ) and(v'4.), then forD € (D.in, o), there
is

lim * log Q(B(X}', D))= —R(P, Q. D),  P-as.

n—oc N
We first show that if (3.1) holds fob € (Din, Dav), then it also
holds forD > D... Indeed, given any)’ € (Dmin, Dav), by

3.1

Q(B(X{, D)) < Q(B(X{, D))

<origp {( ) e A
s—1
Zl)(:vuﬂa 2t) < "D} - 35)
t=1

Let

T={L,+j t=1,...,5s—1, j=0,1,..., k—1}.
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ThenZ containsk(s — 1) intervals of length. Enumeratd such that whereA()\) = [log {fe”’(“' v) dQl(’lL)} dP, (v). Because
itsith element iga;, a; + k — 1], with a; increasing. It is easy to see

thata; € I, U ... UI,_,. Then (3.5) leads to ~ . . PR
A = / log { / exp <% > olai, yi‘)) ko(yﬂ} aP(at)
Q(B(2x1, D)) < [Q(4o Q(f/lkfl)]]/k =1

| =EAR(A/K)
<™ <Jl—[0 o {(zl’ o ) 5 €AY, there is
Spuhm ) < nD} ) e Ri(P,Q1.D4e) = ig{x(p +6) = kAL(A\/E)} = kAL(D +€)
= and hence
<t <Q2(‘* 1){(21,...,ZI|):ziEAI§}., kilRl(Pl,@1,D+E):Rk(Pk.Qk;D+E)- (3.10)
IZ] Lk Letk — oo and there — 0. BecauseR(P, @), D) is continuous in
= Zp ) < nD}> (3.6) D, by (3.9)and (3.10), and (3.2) is proved.

B. Proof of the Lower Bound (3.3): A Special Case
Let7 = {[x, x4+ k—1], x € [1, n]}.Clearly,Z C J and|J\Z| =
e(n, k) + k. Then by (3.6), it is easy to see thatalmost surely

In this subsection we prove the asymptotic lower bound (3.3) for a
special case, where (3.13) is satisfied. Then in the next subsection, we

prove the lower bound for the general case, which can be reduced to the

Q(B(2}, D)) <! <QZ {(zl, e,z €AY special case by a random perturbation argument. The proof is based on
the following two lemmas.
1 ke
e Zp(:bfrk ' z)<D Lemma5: Fork > 1 and randomAsample from X, denoteu; =
i=1 x1,, Wherel, is given by (3.4). LetP, . be the empirical measure
(e(n, k) + k) Dmax 1k 3.7 of A% induced byu, ..., u,. Define the following empirical log-
n 3.7) moment generating function with respecie and P, ;:
Define a proces& = {U;, i > 1} such that X ' JRVICIE) ~
Ap, MZl gq [T dQuz)
U, =X, ..., Xigr—1) € Ay = .AL\

= % / log {/ Pl 2) d(,)k(z)} df’n, k(u).
SinceX is stationary and ergodic, so&$, andU; ~ P. Define an A% AL
i.i.d. processV = {Vi,i > 1}, such thatV; € Ay = A% and (3.11)
V; ~ Q1. Denote the probability distributions 6fandV" by P and@),
respectively. Finally, lef = p;. be the function oty x Ay whereby
the distortion measures foff € A7, andvy € A7 are defined. .
By the choice oft and (3.7), fom large enough An, k= "“"’jé%"‘x{/\D —Ap,  (ME 3.12)

GivenD € (Diin, Dav), let

Then P-almost surely, fok is large enough, there are

1) for alln large enoughd,, .. exists, is nonpositive, and.,  «| is

. . i . N bounded away fromc;
where the balB(UT', D + ¢) is defined according t@... Then 2) liminfy oo [An. 1| > O:

" st [ ~ n 1/k
QB(XY, D) < " (QBWT, D+ )

3) limsup,,_ A}',ﬂ (An, k) < 00.

1 ) 1 ~ . &
— log B(X", D) <e— — log B(U, D s P-a.s. .
n 08 QB(AT, D) < e kn 0B QBT +e)), Lemma 6: Given X andY as above

(3.8)
lim sup lim sup \ (D) < R(P, Q, D).
From the construction df andV", k—eo  m—eo
The lemmas will be proved in Section IlI-D. Assuming they are true
Ej(U,, Vi) = Dy and Epless infv, 5(U1, V)] = D& . for now, we prove (3.3) under the following additional condition:
Because 1D + ¢ € (D'*) | D..), 2) U is stationary ergodic, and 3) liminf A% (A k) > 0. (3.13)

V is an i.i.d. process, [2, Corollary 1] or [3, Corollary 1] appliedip
7, andQ(B(U, D + ¢)). Then, as» — oo, P-almost surely, the Givene € (0, D — Duin), fiXx & > 1 with 1 4 Diax < k. Given N
nght hand side of (3.8) tends tee + &~ 1R1(Pl, Q1. D +¢). Thus  With (14 Duax)e(N, k) < €N, letn = ¢(N, k). Then ondY x AY
P-almost surely N
" - p(‘E%N* y{\’) S Zp(l’h? 'yffk) + G(N,‘ k)DmnX
hmqup = log Q(B(X]', D)) < e—=k "Ri(P1, Q1, D +¢) t=1

= i‘l}S{/\(D +e)— AN} (3.9) <> pler, yr,) + €N (P x Q)-almost everywhere

t=1
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wherel; is given by (3.4). Therefore, byk < N, there is

B(zy', D) D {J\ € AV: Y plary, yr,) < (D - )A} (3.14)
t=1

LetV be the same i.i.d. process as in the proof of the upper bound and

Q its distribution. Writeu; = x1,. Then by (3.14) and conditiofy_ )

Q(B(x1', D)) > CT"Q(B(uf, (D — e)k)). (3.15)

Note that w1, us, . . .) isarandom sample of procg8s={U,,n>1},
with U,, = X7, . In generallU is neither stationary nor ergodic. De-
spite this, the argument of [2] still applies to1, u-, ...) andV. To
be specific, let; = p(u, V), T = 1, ¢, andT, = T,,/n. De-
note by, the law of((i, ..., (). Then

Q(B(ui, (D = e)k)) = Pr(T,, < (D — e)k).

Noting that},, depends o, we will show thatP-almost surely, for
k large enough, there exists = K (k, x) > 0, such that fo > 0
and

nkA’
P

(D—e)
e n, k

Jn Pr(T, < (D — e)k)

there is

log J,, > —K6+/n. (3.16)

Once (3.16) is proved, it follows that far large enough
D—e) .

'Q(B(uL, (D= k) > e (~K6 /) |
and, therefore, by (3.15)

> log Q(B(+Y, D))

N
S (N, k)C Ké/n

N N

Let N — oo thenk — ~. By Lemma 6

nk

A%
N

Pk

(D —e).

11\1;1111f% log Q(B(zy', D)) > —R(P, Q, D —¢).

Lete — 0 and apply Theorem 1 to complete the proof of (3.3).
To prove (3.16), byD — € € (Dmin, Dav) and Lemma 5, it is
chosen large enough, thétralmost surely,
An,k = argmax{A(D —¢) — Ap (A}
’ SeR n, k -
exists for alln large enough, and,, < 0. Define a probability mea-
sure on[0, o)™

dv, ((") = exp {/\n,k ZQ — "/I‘“'APm k()"“ k)} dpn () (3.17)
=1

with Ay () being a log-moment generating function. It is easy t
check that undew,,, for T,, = 31, &, Eu [T] = nk:A'Pm L(Ank)
and

Var,, [T,] = 'n,kAlflgm . (An &)

On the other hand, becauae, ;. is a maximal point of D — e)\ —
Ap, (A), thereisD — e A/f%,k(/\””‘")‘ and hencet, [T,,] =
(D — e)nk. Let

T, — (D —e)nk

Gn=— — .
nkAf?n’ . (An k)
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Then by the above results, whéh ~ v, , G;, has meaR and variance
1, and hence by (3.17)

nkA% (D—e¢)
k

P,

J. =e

—ndgy wTndnkA s (A k)
B {Htsm—e)k}e’ -

nkA’
Fn, b

|:’\n,k (>‘n,k)Gn:|
:EVn I{ano}e

>E,. {1{0<Gn<6}€(7ﬁn \/ﬁGn)}

>e(=FVT) pr (0 < G < )

for anyé > 0, where

/3” = >‘n7k /kA}/'n,k(An’k) > 0.

Due to the boundedness @fthe random variables are uniformly
bounded. Therefore, by the assumption (3.13), it is seen that the Lin-
derberg condition for the central limit theorem is satisfied®y, and
hence

lim Pr, (0<Gn <6)=p>0.
Lemma 5 also implies with probability, for n large enoughg,, is
bounded away fromc. Choosel’ > 0 so thatk” — 3,, is bounded
away from0, then

lim inf log[e ™ V" 1,1 > log p > —0
implying
lim inf /7 {Ix’é +- L log J,L} > -0
R Vi
which holds only if
117?11021 {% log Jn} > —Kb.

This complete the proof of (3.16).

C. Proof of the Lower Bound (3.3): The General Case

Now we prove (3.3) without assuming the condition (3.13). Yet
be an arbitrary stationary process satisfying conditigns) and(v'+ ).
Givene € (0, min{D — Duin, Dav — D}/2),letZ = (Y, W), with
process¥V = {W,, n > 1} ani.i.d. process independentBfsuch
that¥,, has uniform distribution of0), €]. ThenZ is a process defined
onAz = Ay x [0, €]. Note thatZ also satisfies conditions)_ ) and
(¢4). LetQ be the distribution ofZ.

Defines on Ax x A, such that forr € Ax andz=(y, u) € A,
oz, z) = p(x, y) + w. Then define

B(;v?, D) = {27 € A%: pn(2l, 21") < D}.

With Y being replaced by, p by j, and@ byQ, (3.11) becomes
(0

) 1 n 3 Su . . ‘
Aﬁ’n,k(/\) :EZ log{/ . Pl )ko(z)}
t=1 ‘AZ

e

Zlo
—1 v

1 Z log {/ 6/\c(w1+m+wk) dwl - dwk}
vim [0,1]%
-1
=F(\) +log </ e du)
0

=F(\) 4+ G(\).

-

el de)}
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It is easy to see thaf”'(A\) > 0 andG'()\) > 0. Therefore,
A% (/\) > 0, for all \. By Lemma 5 (1), giverD &€ (D,mm D..),
P- afmost surely, foik large enough

An k= argsup{AD — Ap (M)}

Y20 ', k
exists for alln large enough and bounded fromoc. Therefore,
G" (M, x) is bounded below fromi, and hence

,k(An’k‘) > 0

liminf A7,
i.e., for the triple{ X, Z, p}, the condition (3.13) is satisfied.
By the last subsection, fab’ € (Dmmin, Dav)

liminfllog Q(B(z}, D'))/n] > —R(P, Q, D)

n—oo

P-almost surely. On the other hand, becadse (Y, W), withY and
W independent antl,, € [0, ]

Q(B(x, D)) < Q(B(aY, D)).
Then it is seen that

lim 111f = log Q(B(X,

n—o0

D)) > —R(P, Q, D). (3.18)

Forn > 1, Iettlng

Au(N) =[1/n] / 1og{ / ML) dc}n(z?)} P, (})
AT AT

we get
R.(P.,.Q..D) = ii%’{w —A.(M) (3.19)
By
pat. =) = plak. o)+ e 3w,
=1
andQ = Q x v, with v the uniform distribution off0, €]V, it is easy

to see that

D—A, (M) <AD-—¢)—A,()), forallx<o.

SinceD — ¢ > Dnin, then forn large enough, the supremum in (3.19)

aswell as that ok(D —€) — A, (A) is achievable fon < 0, leading to
Ro (P, Qn, Q) < Rn(Pr, Qn, D — ¢€). Therefore, lettingr — o,
there isR(P, Q. D) < R(P, Q, D —¢). Then by (3.18)

hmlnf — log Q(B(X{', D)) > —R(P,Q, D

n—oc 1

—€).

Lete — 0 and apply the continuity oR(P, @, D) to complete the

proof of (3.3) for the general case. O

D. Proofs of Lemmas 5 and 6
Proof of Lemma 5:

1) Fixe € (0, 1/2) small enough, and integeks % large enough,

so that

ek > (1—e)h e(h, k) Dmax < €k

(D-¢€)(1—e) > DM

min”*

c(k, 1) log C < ek
(3.20)

First we show that”-almost surely, withk given as above, for
large enough)\’;, k(O) < D. Define

— (™ Y [ ptun ) aQu(e)
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Then &’ (()) =FE,. LetS, =1, U
with b,, = nk + (n — 1)d. Noting
> / o
1€ES,

by the choice of:, for n large enough

bﬂz/ (ris 2) Q1 (2)

=1
—lf Z / @i, 2)dQ1(z)
" e[l bp]\S
e(bn, k) Dmax
BecauseX is ergodic,P-almost surely

. U I,.ThenS, C [1, b,],

E, = (k'nf1 x;, y)dQi(y)

v

> —

liminf E,, > hm—Z/ p(xiy 2)dQ1(2) —€ = Doy — € > D

n—oo n—oo

(3.21)

and hence\’ k(O) > D. Because\D — P k()\) is concave, it
is then seen that for large enough, i\, » exists, then it has to be
nonpositive.
Next we show the existence as well as the boundedness pf For

r > 1, letJ, = I,(h) defined by (3.4). Then, for any € 4% and
z € A% itis easy to checkthatfgr=10, ..., h —1
c(k, h)

> (st zoes) +
r=1
c(k, h)
< N p(Wrtgs Za) + €k

r=1

plu, z) < e(k, ) Dmax

where for.J,. + j not totally included by1, %], the value of is defined
as0. Then, for anyu € A% andx < 0

et ko(l)}

h—1 .
> 1500 { [ B s )]
h = AL

- d(,)k(z)}

" C—u(k. h)6 [/\ (Zi(:kl ]L>P(uJT+j, :JT+j)+ck)]

c(k, h)
- d@nzrtd)

r=1
= —c(k, h)log C + ek
h—1c(k,h)

1 > log / M) 10y (2) (3.22)
AL

j 0 r=1
where(a) is becausé€) satisfies conditiori— ). In particular, for each
v=uxr,t=1,...,n,(3.22) holds. Then by the choice bf

A P, A kZI()o {/ . e P(E1,%) ko(Z)}Z—E-I-E)\
n h—1c(k, h)

BTN PR {/A ) dm@}

t=1 j=0 r=1

where

e, 1oy = (T1) 1,45 = 2L
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with L = J,4+(¢t—1)(k+d)+y. LetL be the collection of all such’s. Proof of Lemma 6: From (3.23)
It is not hard to see that consists of intervals with length and left 1
endpointinl; U ... U I,. DefineS = |J, ., L. ThenS C [L. b,.]. AD = Ap, (A SMD =€) Fe— h(1—¢)
Because\ < 0, by the choice of, i, andk, for . large enough b . _
1 Mp(=iTh=1 2
AD=Ap (< A(D—e) : bfZlog i dQn(z) .
5 " i=1 {/
. % Zlog {/ A ) dc‘)h(z)} Givenk, choose a subsequeneg& ) such that
vkn ey Al lhllolc /\ k(D) = liIIl [/\n(') D — P o, k(A"(’) ],)]
<SAD—e) , —hmsupAP k(D).
L %Zlog {/ e T ) th(z)} By Lemma 6,\.,(;). 1. is bounded, and hence has a limit point, say,
Sl AL Then by the ergodicity ok and the boundedness gfit is not hard to
<AND—e)te— get from (3.23) that
h(l1-e) lim sup \ » (D)
by, . X _ n—oo ’
. izlog / M g0, b < AU(D — ) te
bn =1 _A]{/ 1 . .
(3.23) - log / M 4Qy(2) b dPy(x)
h(l - E) Al Al
Denote x 1 Y
FO) =MD —e)+e—(1—e) "An(N). =M(D =€)+ = 7= An(Ph. Qn, Ao)

By (D —)(1—¢) > D) limy .. f(\) = —oc. Given, with 1
f(Xo) < 0, letA = X in (3.23). BecauseX is ergodic, P-almost Set g BB, Qu, (D —)(1—e)).
surely, the right-hand side of (3.23) convergeg ta, ), which implies  Let k — ~o, thenh — oc, and finallye — 0 to complete the proof. O

for » large enoughdoD — Ay (Ao) < 0. Since

sup{AD —Ap (M)} >0 APPENDIX

A<0
this implies the supremum is achlevec{)m, 0], hence proving 1). THE FIRST-ORDER ASYMPTOTIC OF D ([ [|@n) WITH Ax = Ay
DISCRETE ANDY" SATISFYING CONDITION (%))

2) Fix ¢, h, and & as above. Assume with positive probability

liminf,—co |An, x| = 0. Then Proof of Proposition 2: Supposedx = Ay = A, with A dis-
D :1\'},717k(>\n ) crete. Since ) Pab)
= %Z/m 2)eh ko 4, () 5 PRI = ZP( 8 Q)
t=1
. </'an,w(u,t,:) ko(Z))_1_ = H(P + = ZP( ) log ﬁ
By p(u¢, 2) < kDmax — _H(P) _|_
%ﬁfm"‘"ki)"m i/ﬂ(uu z2)dQr(z) < D andn™'H(P,) — H(X),it iz enougt?to showthat™' R,, converges.

BecauseX satisfies the conditiori¢'y ), there are constants,
d > 1,suchthatford € o(X7') andB € o (X5 411)

1 ) n . )
< L otren S [ it
< e ; plue, 2)dQr(z) Q(ANB) < CQ(A)Q(B).

Let n(l) be a subsequence such that;) r — 0. Becaus(ue, z)  Givenk, definel; = I,(k) by (3.4). Forn large enough, les =
is bounded, by the dominated convergence theorem, the above bownés ). Then forz} € A"

implieslim;— . E,,() = D, which is a contradiction to (3.21). There- s
fore, |\, x| is bounded below away frofi. Q1) < Qawry, ..., x1,) <C° H Qar,).
3) To show thar\'f (/\n ) are bounded from above, firstitis easy j=1
to see that Therefore,
\P k /\n k Z/ (Uf / A, wp(ug, ) ko( ) R, > — ZP xy log
. _1 HQ(‘EIJ)
. A, kp(ue, 2) J=t
</p ko(z)) ’ __310g0+fR
By 1), givenk large enough, for. large enoughj\.., x| is bounded. B n n it
Fix M limsup,, |)\n,k| Then forn large enough __slgC + 2 R
n n
/\'ﬁ{’n,k@" ) < — /(kpm“) dQ(2) Letn — oo. Then bys/n — 1/k, there is
_ . lim inf[Ry, /n] > —[log C/k] + [Bi/k].
. </ e~ Mk Dmax ko(z)) Letk — oc to get

kM Doax 12 liminf[R, /n] > lim sup[Ry /k].
=ke D n— 00 k— oo

max?»

which completes the proof of 3). 0 Thereforep™ 'R, converges. O
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