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Summary. Likelihood methods are often difficult to use with large, irregularly sited spatial data
sets, owing to the computational burden. Even for Gaussian models, exact calculations of the
likelihood for n observations require O.n3/ operations. Since any joint density can be written
as a product of conditional densities based on some ordering of the observations, one way to
lessen the computations is to condition on only some of the ‘past’ observations when comput-
ing the conditional densities. We show how this approach can be adapted to approximate the
restricted likelihood and we demonstrate how an estimating equations approach allows us to
judge the efficacy of the resulting approximation. Previous work has suggested conditioning on
those past observations that are closest to the observation whose conditional density we are
approximating. Through theoretical, numerical and practical examples, we show that there can
often be considerable benefit in conditioning on some distant observations as well.

Keywords: Chlorophyll fluorescence; Estimating equations; Restricted maximum likelihood;
Variogram estimation

1. Introduction

Estimating spatial covariance structures is fundamental to geostatistics. Spatial processes are
often observed at irregular locations, which can make estimating the covariance structures of
these processes rather difficult. In the geostatistical literature, inference about the second-order
structure of an isotropic random field is often based on the empirical variogram: the average
squared increment between all pairs of observations within some range of interpoint distances
plotted as a function of distance. Since variograms must be conditionally negative definite
(Chilès and Delfiner, 1999), practical variogram estimation generally requires the selection of
some parametric class of variograms and the estimation of these parameters, although nonpara-
metric methods using spectral approximations are available (Shapiro and Botha, 1991; Genton
and Gorsich, 2002). It is natural to consider likelihood-based and Bayesian methods when esti-
mating the parameters of a spatial covariance function. For Gaussian random fields, it is easy
to write down an exact expression for the likelihood function. Although likelihood methods
that are based on a Gaussian assumption have not been fully embraced by the geostatistical
community (Chilès and Delfiner (1999), page 110), they have been used more frequently in
recent years (Lark, 2000; Pardo-Igúzquiza, 1998; Pardo-Igúzquiza and Dowd, 1997, 1998; Park
and Baek, 2001). Furthermore, the calculation of likelihoods for Gaussian random fields is an
essential step in algorithms for making inferences on some kinds of non-Gaussian random fields
(Diggle et al., 1998). Unfortunately, even for Gaussian random fields, when the n observations
are irregularly sited, each calculation of the likelihood function requires O.n3/ operations and
hence is impractical for large data sets.

Address for correspondence: Michael L. Stein, Department of Statistics, University of Chicago, 5734 University
Avenue, Chicago, IL 60637, USA.
E-mail: stein@galton.uchicago.edu



276 M. L. Stein, Z. Chi and L. J. Welty

Vecchia (1988) suggested a simple approximation to the likelihood for spatial data based
on the fact that any joint density can be written as a product of conditional densities. Using
p to indicate a generic density (possibly conditional), suppose that Z = .Z1, . . . ,Zn/

′ has joint
density p.z;φ/, where φ is an unknown vector-valued parameter. Partition Z into subvectors
Z1, . . . , Zb of possibly different lengths and define Z′

.j/ = .Z′
1. . . Z′

j/. We always have

p.z;φ/=p.z1;φ/
b∏

j=2
p.zj|z.j−1/;φ/: .1/

Vecchia (1988) noted that it may not be critical to condition on all components of z.j−1/ when
calculating p.zj|z.j−1/;φ/ and thereby reduce the computational effort. In particular, if, for
j=1, . . . ,b−1, S.j/ is some subvector of Z.j/, then

p.z;φ/≈p.z1;φ/
b∏

j=2
p.zj|s.j−1/;φ/

is the general form for Vecchia’s approximation to the likelihood. We shall call Zj the jth
prediction vector and S.j−1/ the corresponding conditioning vector. Vecchia (1988) only con-
sidered prediction vectors of length 1, so Zj =Zj, but we shall find it useful to allow longer
prediction vectors. Pardo-Igúzquiza and Dowd (1997) described software that uses Vecchia’s
approach to approximating likelihoods for Gaussian random fields with certain covariance
structures. Eide et al. (2002), section 7, used an approximation of this form as one step of an
implementation of a Markov chain Monte Carlo algorithm in a Bayesian analysis of seismic
data.

Throughout this work we shall suppose that Z ∼N{Fβ,K.θ/}, where F is a known n×p

matrix of rank p, β ∈ Rp is a vector of unknown coefficients and θ ∈Θ is a vector of length q

of unknown parameters for the covariance matrix of Z, so that φ= .β,θ/. For estimating θ,
maximum likelihood acts as if β were known and, hence, tends to underestimate the variation of
the spatial process (Stein (1999), section 6.4). Restricted maximum likelihood (REML) avoids
this problem by estimating θ by using only contrasts, or linear combinations of the observations
whose means do not depend on β. Kitanidis (1983) was the first to suggest the use of REML to
estimate parameters of a spatial covariance function. Further remarks comparing REML and
maximum likelihood are made at the end of Section 2.

We show how the approach of Vecchia (1988) can be adapted to approximate the restricted
likelihood for Gaussian observations. To motivate our approximation, first note that, for Gauss-
ian Z, p.zj|z.j−1/;φ/ is the density of the error of the best linear predictor (BLP) of Zj in terms
of Z.j−1/ as a function of φ. Thus, Vecchia’s approximation involves replacing the density of the
error of the BLP of Zj in terms of Z.j−1/ with the density of the error of the BLP of Zj in terms
of S.j−1/. Just as the full likelihood can be written in terms of the densities of errors of BLPs,
the restricted likelihood can be written in terms of the densities of errors of best linear unbiased
predictors (BLUPs). The BLUP of, say,Z1 given some subvector S of Z not containingZ1 is just
the linear combination λ′S that minimizes the variance of Z1 −λ′S subject to the constraint
that the mean of Z1 − λ′S is 0 for all values of β. Proposition 1 in Section 2 shows that the
restricted likelihood can be computed by using an expression that is similar to equation (1).
Specifically, if we replace p.z1;φ/ by the joint density of a linearly independent set of contrasts
of Z1 and replace p.zj|z.j−1/;φ/ by the joint density of the error of the BLUP of Zj in terms of
Z.j−1/, we obtain the restricted likelihood, which only depends on φ through θ. We thus obtain
a natural analogue to Vecchia’s approximation to the likelihood by considering the density of
the error of the BLUP of Zj in terms of S.j−1/ rather than Z.j−1/.
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To implement this approximation, we need to order the observations in some manner and to
choose the prediction and conditioning vectors. We concur with Vecchia (1988) that the ordering
of the observations is not crucial and we use simple orderings such as the rank of the projections
of the observation locations along some axis. Vecchia (1988) recommended choosing S.j−1/ to
be made up of the m observations that are nearest to Zj. This choice has the considerable virtue
of simplicity. Furthermore, as Vecchia (1988) pointed out, a more statistically relevant crite-
rion for choosing S.j−1/ will generally depend on the unknown parameters, making it difficult
to find conditioning vectors that work well throughout the parameter space. Nevertheless, we
shall argue that the gain in efficiency in choosing conditioning vectors that contain some distant
observations can be sufficiently great in many circumstances to make such a choice worthwhile.

Jones and Zhang (1997) discussed applications of Vecchia’s approach to space–time pro-
cesses. Because of the incommensurability of space and time, they suggested defining nearest
neighbours by the strength of correlation based on some preliminary estimate of the space–
time correlation function. This choice would not remedy any of the problems that we find with
Vecchia’s approach in Sections 3 and 4 since the correlation functions that we consider are all
monotone functions of distance. However, it does point out the difficulty in choosing condi-
tioning sets when different co-ordinates are not commensurable. We face this problem in our
application in Section 6 in which the variations in the horizontal dimension are fundamentally
different from those in the vertical dimension.

Lark (2000) noted that there have not been any efforts to date to evaluate the effect ofVecchia’s
approximation to the likelihood on the resulting parameter estimates. We shall show in Section 2
that an estimating equations approach provides a natural way to evaluate the approximation.
Specifically, by setting the derivatives of the approximate restricted likelihood with respect to
the components of θ to 0, we obtain a set of unbiased estimating equations for θ. We can then
use the robust information criterion (Heyde (1997), page 12) to assess the statistical efficiency
of various choices for the prediction and conditioning vectors. However, for sufficiently large
data sets, even evaluating this information measure will become prohibitive and, in this case,
we propose in Section 2 to approximate it by a sampling approach.

Section 3 considers two simple examples in which it is possible to contrast the following three
criteria for choosing conditioning vectors of a given length when the prediction vector is a scalar:
choosing the nearest neighbours to the predictand (the quantity being predicted), choosing the
conditioning vector that minimizes the prediction error variance and choosing the conditioning
vector that is best for estimating the unknown parameters. The first criterion always gives the
same conditioning vectors independently of the true values of the parameters, but the second
and third generally do not. However, for the first example in Section 3, the prediction error cri-
terion chooses the same conditioning vector irrespectively of the true parameter values, and this
choice is not made up of the nearest neighbours. The second example shows that the prediction
error criterion can pick the same conditioning vectors irrespectively of the parameter values but
that this choice of conditioning vectors is poor for parameter estimation.

Section 4 compares the efficiency of different ways for choosing conditioning and prediction
vectors by using the information measure of the resulting estimating equations. All the examples
are based on 1000 irregularly sited observations in a square region. The conditioning vectors are
of length m=8, 16, 32 and have either all, three-quarters or half of their components chosen to
be the nearest neighbours to the prediction vectors and the remaining components more distant
observations. In many circumstances, choosing some components of the conditioning vectors
not to be nearest neighbours can lead to dramatic improvements in the efficiencies of the result-
ing estimators. For m=8, the reverse is sometimes true but, for m=32, choosing some distant
observations is nearly uniformly superior to choosing only nearest neighbours. For stationary
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covariance functions, the nearest neighbour designs tend to perform better when the spatial
correlations are weakest, but further generalizations are difficult to make. In practice, we may
want to obtain preliminary parameter estimates before making a final choice of conditioning
vectors.

Section 5 discusses computational issues in implementing our procedure. We argue that con-
ditioning sets that are twice the size of the prediction sets may be a good choice in some circum-
stances, suggesting that prediction sets with more than one observation will often be desirable.

Section 6 describes an application of our approximate restricted likelihood method to a data
set of over 13000 measurements of levels of chlorophyll in Lake Michigan. The data are taken in
an irregular saw-tooth-like pattern and the variations in the chlorophyll levels in the horizontal
and vertical dimensions are distinctly different, providing interesting challenges in the choice
of conditioning sets. We find that including some distant observations in the conditioning sets
leads to a dramatic improvement in the efficiency of some of the parameter estimates.

Section 7 discusses some computational and inferential issues arising from this work that
deserve further attention.

2. Methodology

This section describes how the restricted likelihood can be written in a form that is analogous
to equation (1) by using BLUPs, which then leads to an approximation of the restricted likeli-
hood that is similar to Vecchia’s (1988) for the full likelihood. We show that the derivatives with
respect to the unknown covariance parameters of this approximation yield unbiased estimating
equations for these parameters. Furthermore, the estimating equations framework provides a
natural way of assessing the efficacy of the approximation.

We shall assume throughout this work that the covariance matrix K.θ/ is positive definite
for all θ ∈Θ. Let Zi have length ni and take Fi to be the corresponding ni rows of F so that
E.Zi/=Fiβ. Assume that rank.F1/=p and define n.j/ =n1 + . . . + nj. For j >1, the BLUP
of Zj in terms of Z.j−1/ exists for all θ∈Θ.

As a function of θ, for j >1, let Bj.θ/ be the nj ×n matrix such that Wj.θ/=Bj.θ/Z is
the vector of errors of the BLUP of Zj based on Z.j−1/. Thus, the last n− n.j−1/ columns
of Bj.θ/ equal .Inj O/, where Inj is the identity matrix of order nj and O is a matrix of 0s.
For j=1, take B1.θ/ to be a fixed matrix (independent of θ) of size .n1 −p/×n with rank
n1 −p such that W1.θ/=B1.θ/Z is a set of contrasts of Z1. Set B.θ/′ = .B1.θ/

′. . .Bb.θ/
′/ and

W.θ/′ = .W1.θ/
′. . . Wb.θ/

′/. Then Wj.θ/∼N{0,Vj.θ/} where

Vj.θ/=Bj.θ/ K.θ/ Bj.θ/
′:

From now on, we shall suppress the dependence of Vj and Wj on θ when this will not lead to
confusion. It turns out that W1, . . . , Wb are independent, leading to the following result (see
Appendix A.1 for a proof).

Proposition 1. The restricted log-likelihood of θ in terms of Z is given by

rl.θ;Z/=−n−p

2
log.2π/− 1

2

b∑
j=1

[log{det.Vj/}+W′
jV

−1
j Wj]:

Now consider approximating the restricted likelihood by computing the BLUP of Zj in terms
of just some subvector of Z.j−1/, taking care to make sure that a linear unbiased predictor of Zj

based on this subvector exists. For j >1, the conditioning vector S.j−1/ is now the subvector of
Z.j−1/ on which the BLUP of Zj is based. Let S be the collection of subvectors S.1/, . . . , S.b−1/.
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Define W1.S/=W1 and, for j > 1, Wj.S/ is the error of the BLUP of Zj based on S.j−1/. Let
Vj.S/ be the covariance matrix of Wj.S/. Consider approximations to rl.θ;Z/ of the form

rl.θ;S/=−n−p

2
log.2π/− 1

2

b∑
j=1

.log[det{Vj.S/}]+Wj.S/
′ Vj.S/

−1 Wj.S//: .2/

This approximation includes two innovations beyond what Vecchia (1988) proposed. The first
is that it applies to the restricted likelihood and not the full likelihood, which depends on both
β and θ. The second is that Vecchia (1988) considered only the special case in which each
prediction vector has a single observation.

We can use equation (2) to define a set of unbiased estimating equations for θ. Writing @k for
@=@θk and defining gk.S/= @krl.θ;S/, we have

gk.S/=−1
2

b∑
j=1

[tr{Vj.S/
−1 @kVj.S/}+2 Wj.S/

′ Vj.S/
−1 @kWj.S/

−Wj.S/
′ Vj.S/

−1{@kVj.S/} Vj.S/
−1 Wj.S/] .3/

and G.S/= .g1.S/. . . gq.S//′. Appendix B gives explicit expressions for @kVj.S/ and @kWj.S/.
Then G.S/ is an estimating function for θ and G.S/= 0 an estimating equation. Now, for any
θ0 and θ1 in Θ, for j >1, Wj.θ0;S/− Wj.θ1;S/ is a contrast depending only on S.j−1/, so
@kWj.S/ is also a contrast of S.j−1/ and, hence, @kWj.S/ and Wj.S/ are independent under θ
since the error of a BLUP is independent of all contrasts of the observations. Furthermore,
W1.S/ does not depend on θ, so @kW1.S/= 0 and is trivially independent of W1.S/. It follows
fromequation (3) thatE{G.S/}=0 for allθ∈Θ and G.S/=0 is an unbiased estimating equation
for θ.

We can now use the well-developed theory of estimating equations to study the properties
of solutions to G.S/= 0, providing us with a natural way of investigating the effectiveness of
various choices for S. As in Heyde (1997), define Ġ.S/ to be the q×qmatrix with .k, l/th element
@gk.S/=@θl. The robust information measure about θ in the estimating function G.S/ is

E{G.S/}= .E{Ġ.S/}/′[E{G.S/ G.S/′}]−1E{Ġ.S/}

(Heyde (1997), page 12). A basic goal in estimating equations is to make E{G.S/} large in the
partial ordering of non-negative definite matrices. If there is no restriction on S, then we can
set S.j/ = Z.j/ for j=1, . . . ,b−1, in which case E{G.S/} is just the Fisher information matrix
for the contrasts, which is the maximizer of E{G.S/} under the partial ordering.

When n is too large to make calculating rl.θ;Z/ feasible, we may then seek to make E{G.S/}
large subject to, for example, some bounds on the lengths of the prediction and conditioning
vectors. As in Vecchia (1988), we seek simple rules that yield good results. Vecchia only consid-
ered Zjs of length 1 and m fairly small (at most 10 in his examples). For j > m, he let S.j−1/
be the m nearest neighbours to Zj among Z.j−1/. Vecchia (1988) showed that this choice yields
good approximations to the likelihood in some circumstances, but in his examples the spatial
correlations are only non-negligible at distances that are much smaller than the diameter of the
observation region. Examples in Section 4 show that there can sometimes be a considerable
advantage in selecting some of the observations in the conditioning vectors to be rather distant
from the observations in the prediction vectors.

Let us now consider evaluating E{G.S/}. We suppress the dependence of Vj and Wj on S as
well as on θ. Again using the independence of Wj with any contrast of S.j−1/ yields
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E{@lgk.S/}=−
b∑

j=1
[ 1
2 tr{V−1

j .@lVj/ V
−1
j .@kVj/}+ tr{V−1

j cov.@kWj, @lW′
j/}]: .4/

Furthermore,

E{gk.S/ gl.S/}=
b∑

i,j=1
[tr{V−1

i cov.Wi, W′
j/V

−1
j cov.@lWj, @kW′

i/}

+ tr{V−1
i cov.Wi, @lW′

j/V
−1
j cov.Wj, @kW′

i/}
− tr{V−1

i cov.Wi, W′
j/V

−1
j .@lVj/V

−1
j cov.Wj, @kW′

i/}
− tr{V−1

j cov.Wj, W′
i/V

−1
i .@kVi/V

−1
i cov.Wi, @lW′

j/}
+ 1

2 tr{V−1
i .@kVi/V

−1
i cov.Wi, W′

j/V
−1
j .@lVj/V

−1
j cov.Wj, W′

i/}], .5/

by repeated application of

cov.X′
1A1Y1, X′

2A2Y2/= tr{A1 cov.Y1, Y′
2/A

′
2 cov.X2, X′

1/}
+ tr{A1 cov.Y1, X′

2/A2 cov.Y2, X′
1/}

for .X′
1, Y′

1, X′
2, Y′

2/ multivariate normal with mean 0 and A1 and A2 fixed matrices of appro-
priate order. Equation (5) greatly simplifies when S.j/ =Z.j/ for j=1, : : : ,b−1 so that G.S/ is
the score function. In this case, when i<j, since Wi and @kWi are contrasts that are functions
of S.j/, then cov.Wi, W′

j/= cov.@kWi, W′
j/=O. Thus, E{gk.S/ gl.S/} reduces to −E{@lgk.S/}

and E{G.S/}=E{G.S/ G.S/′}, the Fisher information matrix of the contrasts.
The matrix E{G.S/} is valuable not just as a measure of information about the estimating

function G.S/ but also for inferential purposes. Let θ̂.S/ be a solution to G.S/= 0. In many
circumstances, for sufficiently large sample sizes, θ̂.S/ will be approximately normally distrib-
uted with mean θ and covariance matrix E{G.S/}−1 (Heyde (1997), chapter 4). The available
theorems do not apply to the present circumstances of irregularly sited spatial data, but it is at
least plausible that, if the diagonal elements of E{G.S/}−1 are all sufficiently small, θ̂.S/ should
be approximately N[θ,E{G.S/}−1] for observations from a Gaussian random field.

For n sufficiently large, the exact calculation of E{G.S/ G.S/′} via equation (3) will not be
feasible. One possible approximation would be to ignore the terms i �= j in equation (5), since
the whole idea in choosing S is to approximate the setting in which S.j/ =Z.j/ for all j, in which
case the i �= j terms are all 0. This corresponds to acting as if G.S/ is the true score function.
However, as we describe in Section 4.3, this can lead to highly overoptimistic approximations
to E{G.S/}.

A better approach is to sample randomly from among the i �= j terms and to use sampling
theory to obtain an unbiased estimator forE{G.S/ G.S/′}. We found the following simple strati-
fied sampling scheme to be often effective (see Section 4.3). For each i=1, . . . ,b, randomly select
without replacement some small number j1.i/, . . . , jr.i/ out of 1, . . . , i−1, i+1, . . . , b. Defining
ukl.i, j/ to be the summand in equation (5), for k, l=1, : : : ,q, estimate E{gk.S/ gl.S/} by

b∑
i=1

ukl.i, i/+ b−1
r

b∑
i=1

r∑
t=1

ukl{i, jt.i/}: .6/

The ideas on how to choose prediction and conditioning sets and the use of estimating equa-
tions to evaluate the efficiency of designs can be applied to maximum likelihood as well as
to REML. However, REML has several advantages over maximum likelihood. First, in the
time series setting, both theoretical (Kang et al., 2003) and simulation studies (Wilson, 1988;
McGilchrist, 1989; Tunnicliffe Wilson, 1989) have shown the superior statistical properties of
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REML, although it would require further work to verify that these results carry over to the
approximate likelihoods that are considered here. Nevertheless, if p is small and n is very large,
there is unlikely to be much difference between the maximum likelihood and REML estimates.
As with exact REML, the results in this section only require that we specify the variances of con-
trasts.Thus, in someofour examples inSection4and the application inSection6,we specify only
the variogram 1

2 var{Z.x/−Z.y/}. As long as the mean function includes an unknown constant
term, the variogram is sufficient for computing the approximate restricted likelihood. Specifi-
cally, wherever cov{Z.x/,Z.y/} is required in a formula, replacing it by − 1

2 var{Z.x/−Z.y/}
yields the result desired. In contrast, neither the full likelihood nor Vecchia’s approximation to it
is even defined when only the variogram is given. Finally, computing the (exact or approximate)
REML estimate may be slightly easier in practice because numerical maximization of the full
likelihood generally requires iterating between estimating θ and β (Mardia and Marshall, 1984);
in contrast, REML just maximizes over θ and then, if required, estimates β explicitly in terms
of the REML estimate of θ.

3. Nearest neighbours, prediction and estimation

When all the Zjs have length 1, the critical aspect of the methodology of the previous section
is the choice of the conditioning vectors S.1/, : : : , S.b−1/. We might plausibly imagine that, sub-
ject to a size constraint on S.j−1/, selecting the vector to make Vj.θ,S/ as small as possible
would be a good idea. However, as Vecchia (1988), page 301, noted, the minimizing vector will
generally depend on θ. It is for this reason that Vecchia recommended selecting the vector by
using those observations that are closest to the predictand in Euclidean or some other distance.
Furthermore, even if we could pick the conditioning vectors to minimize the prediction vari-
ance, such designs are not necessarily good choices for purposes of estimation. In this section
we describe two simple examples to demonstrate potential conflicts between nearest neighbour
designs, designs that are good for prediction and designs that are good for estimation.

Our first example shows that nearest neighbour designs can be uniformly suboptimal for
purposes of prediction. Suppose that Z is a fractional Brownian motion: a Gaussian process
on the real line with unknown constant mean and, for all x and y real, 1

2 var{Z.x/−Z.y/}=
θ2|x−y|θ1 for some θ2 >0 and θ1 ∈ .0, 2/. We have observations at −1, a and 0 with −1<a<0
and we wish to predict Z.1/, but we can only choose two of the observations with which to
predict Z.1/.

Proposition 2. For any possible value for θ= .θ1, θ2/, the vector of length 2 that yields the
BLUP with the minimum error variance is .Z.−1/,Z.0// (unless θ1 =1, in which case .Z.−1/,
Z.0// and .Z.a/,Z.0// both minimize the error variance).

Proof. When θ1 = 1, Z is Brownian motion and the result follows from the fact that the
BLUP of Z.1/ based on all three observations is just Z.0/, so consider θ1 �=1. Let us first show
that .Z.−1/,Z.0// is always better than .Z.a/,Z.0//. The BLUP of Z.1/ based on Z.0/ is just
Z.0/ and its mean-squared error is 2θ2. If we add an observation at −r with r > 0, then the rela-
tive reduction in the mean-squared error of the BLUP is 1− corr{Z.1/−Z.0/,Z.0/−Z.−r/}2,
where corr means correlation. Define

ρθ1.r/= corr{Z.1/−Z.0/,Z.0/−Z.−r/}= 1
2 .r

1=2 + r−1=2/θ1 − 1
2 .r

θ1=2 + r−θ1=2/:

Lemma 1. For all θ1 ∈ .0, 2/ except θ1 = 1, ρθ1.r/
2 achieves its unique maximum at r= 1, is

strictly increasing on .0, 1/ and strictly decreasing on .1,∞/.
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The proof is given in Appendix A.2. Since minimizing the mean-squared error of the BLUP
with respect to r >0 is equivalent to maximizing ρθ1.r/

2, it follows that observing Z at −1 and
0 yields a smaller mean-squared error for Z.1/ than observing at a and 0 for all possible θ with
θ1 �=1.

Finally, let us prove that .Z.−1/,Z.a// is also inferior to .Z.−1/,Z.0// when θ1 �= 1. For
any set of observation and predictand locations, if we multiply all the interpoint distances
by some positive constant u, the mean-squared error of the BLUP is multiplied by uθ1 . Setting
u=1=.1−a/<1 thus yields that .Z.−1/,Z.a// is inferior to .Z{−.1+a/=.1−a/},Z.0// for pre-
dictingZ.1/. Since −1<−.1+a/=.1−a/<0, lemma 1 implies that .Z{−.1+a/=.1−a/},Z.0//
is in turn inferior to .Z.−1/,Z.0// and proposition 2 follows.

Thus, for a fractional Brownian motion Z with unknown mean and covariance parame-
ter θ, if we want to predict Z.1/ by using Z.0/ and Z.−r/ for some r >0, then the best
choice for r is 1 irrespective of the value of θ. However, consider estimating θ on the
basis of Z.1/,Z.0/ and Z.−r/ with r >0 by using the restricted likelihood. Then r=1, which
gives three equally spaced observations, may not be a good choice since evenly spaced obser-
vation networks tend to work poorly for estimating covariance structures (Stein (1999),
section 6.6, Pettitt and McBratney (1993), Lark (2002) and Zhu (2002)). This in fact appears
to be so. Suppose that we assess the quality of the observation network by I11

r .θ1/, the value
of the first diagonal element of the inverse Fisher information matrix for the restricted like-
lihood, with smaller values indicating a better estimator. We focus on θ1 because it is the
more interesting parameter, but we would obtain the same result if we considered the deter-
minant of the inverse Fisher information matrix, which equals θ2

2 I
11
r .θ1/. Using Stein (1999),

equation (8) in chapter 6, and lengthy but straightforward calculations, it is possible to show
that

I11
r .θ1/=4{1−ρθ1.r/

2}2=[log2.r/+ r−θ1B{B−A log.r/}]

where A= .1 + r/θ1 − 1 − rθ1 and B= .1 + r/θ1 log.1 + r/− rθ1 log.r/. Numerical evaluation of
I11
r .θ1/ viewed as a function of r for various θ1-values strongly suggests that it is maximized by
r=1 for all θ1 ∈ .0, 2/, although we do not have a proof. What is easy to show is that for any
fixed θ1 ∈ .0, 2/, as r→0 or as r→∞,

log2.r/ I11
r .θ1/=I

11
1 .θ1/→ log2.2/.1−2θ1−2/−2,

so for any given θ1 choosing r very small or very large is much better than choosing r=1.
This example, in which we pick one subset of the observations and then estimate the param-

eters based on their exact restricted likelihood, is not an approximation of the form (2). Let
us next consider a simple example in which a design S that is uniformly optimal for prediction
is disastrous for estimation when using equation (2) to approximate the restricted likelihood.
Suppose that Z is a stationary Gaussian process on the real line with unknown constant mean
and cov{Z.x/,Z.y/}=C Kα.|x−y|/, where C and α are both unknown, C>0 and α∈ I, some
open interval. Suppose further that, for every α ∈ I, Kα is a positive and strictly decreasing
function on [0,∞/. We observe Z at xj = ∆j for j = 1, . . . ,n. We wish to approximate the
restricted likelihood for C and α by using prediction vectors and conditioning vectors of length
1, except for Z1, which has length 2. From the assumptions on Kα, it is obvious that, among
Z.∆/, . . . ,Z{∆.j− 1/}, the one that gives the minimum mean-squared error for the BLUP of
Z.∆j/ is Z{∆.j− 1/}, irrespective of the value of C and α. However, it is apparent that it is
not possible to estimate both C and α by using these conditioning and prediction sets. More
specifically, we obtain from equation (2) that
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rl.θ;S/=−n−1
2

log.2π/− n−1
2

log[2C{Kα.0/−Kα.∆/}]

− 1
2C{Kα.0/−Kα.∆/}

n∑
j=2

[Z{∆.j+1/}−Z.∆j/]2,

so, although it is possible to estimate the product C{Kα.0/−Kα.∆/}, it is not possible to esti-
mateC andKα.0/−Kα.∆/ separately. If we do not always use the most recent past observation
as the conditioning vector, but sometimes use the second most recent past observation, then it
will be possible to estimate both C and α.

4. Numerical results

4.1. Designs and models
There are innumerable models, observation networks, prediction vectors and conditioning vec-
tors that we could choose to investigate the general approach to approximating restricted like-
lihoods described in Section 2. Here, we shall only consider one observation network: 1000
sites selected randomly out of the 10000 points in the plane .i, j/, i, j = 1, . . . , 100, and then
each perturbed by adding a random point in [−0:25, 0:25]2 (the exact locations can be found at
http://galton.uchicago.edu/∼stein/approx-lik.html). This sample size was
chosen because, although it is fairly large, it is still possible to calculate the Fisher information
for the exact restricted likelihood. The observations are irregularly sited but have a fixed mini-
mum interobservation distance of 0.5, which avoids numerical difficulties as well as statistical
problems that can arise with observations that are very close to each other when considering
models with no measurement error.

We first consider Zj having only one observation for j >1 and Z1 having length p+1, so
that Z.j/ has length n.j/ =p+ j. We order the observations by the sum of their co-ordinates,
i.e. from the lower left-hand corner to the upper right-hand corner of the observation region.
We take conditioning vectors of constant size m (beyond the initial few). More specifically, for
j >m, S.j−p−1/ (the conditioning set for Zj−p =Zj) consists of the m′ <m nearest neighbours
of xj among {x1, : : : , xj−1} plus m−m′ additional points from {x1, : : : , xj−1} whose ranked
distances to xj equal m+�l.j−m− 1/=.m−m′/� for l=1, : : : ,m−m′. Taking l=m−m′, we
see that we always select the most distant ‘past’ observation. Finally, for j�m, S.j−p−1/ is the
entire past. We shall denote this design as D.m,m′/. The design D.m, 0/ uses just the m near-
est neighbours of xj in the conditioning vector for j >m. Choosing points that are not nearest
neighbours by ranks of distances without regard to directions leads to rather haphazard patterns
in the locations of the observations in the conditioning vectors. We make no claims that this
approach is nearly optimal in any sense. However, when we tried designs in which the distant
past points were chosen more systematically, we obtained inferior results.

We also consider a scheme using prediction vectors obtained by dividing the observation
region into approximately square cells containing nearly equal numbers of observations. For a
positive integer J with J2 � n, first divide the n observations into J strips based on the first
co-ordinate of the observations so that each strip has nearly n=J observations. Specifically, after
separately ordering the observations by the values of their first co-ordinate, for j = 1, : : : ,J ,
strip j contains observations from �n.j − 1/=J + 0:5� + 1 to �nj=J + 0:5�, where �x� is the
largest integer that is no greater than x. Next, divide each of the J strips into J rectangles
so that each rectangle has nearly n=J2 observations. Specifically, after reranking the observa-
tions within each strip by the values of their second co-ordinate (so that observations from
�n.j− 1/=J + 0:5�+ 1 to �nj=J + 0:5� still make up strip j), the ith rectangle in the jth strip
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contains observations from �n{.j − 1/J + i− 1}=J2 + 0:5� + 1 to �n{.j − 1/J + i}=J2 + 0:5�.
The observations in the ith rectangle of strip j then make up the prediction vector Z.J−1/j+i.
For a given Zj, define the distances between Zj and a past observation as the minimum of the
distances between that observation and those in Zj. For a positive integer m>m′, now pick
S.j−1/ essentially as in the first scheme: if n.j−1/ is less than m, then S.j−1/ =Z.j−1/; otherwise,
S.j−1/ is made up of the m′ nearest neighbours together with those past points whose ranked
distances to Zj equal m+�l.n.j−1/ −m/=.m−m′/� for l=1, : : : ,m−m′. Denote this design by
DJ.m,m′/. Here we consider designs with J = 8 so that the 1000 observations are partitioned
into b=64 subsets of size 15 or 16.

We shall consider twomodels for the covariance structures for theGaussian randomfields.The
first is an exponential model, cov{Z.x/,Z.y/}=θ2 exp.−θ1|x−y|=θ2/, and the second a power
law variogram model, 1

2 var{Z.x/−Z.y/}=θ2|x−y|θ1 . We mostly take the mean function to be
an unknown constant, but we do consider a mean function that is linear in the co-ordinates for
the power law model. We also consider a power law model observed with measurement error of
variance θ3: 1

2 var{Z.x/−Z.y/}= θ3 1{|x−y|>0} + θ2|x − y|θ1 . Except for the power law model,
we report only on results for the designs D.m,m′/.

4.2. Relative efficiencies
Let us first consider the results for the exponential model. The parameterization that is used
here, θ2 exp.−θ1|x−y|=θ2/, has the property that θ1 describes the local variations of the process
( 1
2 var{Z.x/−Z.y/}∼θ1|x −y| as |x −y|→0), whereas θ2 only substantially affects variations

on scales that are not small compared with θ2=θ1. Table 1 gives the ratios (as percentages) of

Table 1. Relative efficiencies of estimators by using approximate
restricted likelihoods compared with the exact REML estimators as
measured by the diagonal elements of the inverse information matri-
ces based on 1000 observations as described in Section 4.1†

θ1 m′=m Relative efficiencies (%) for the following components
and values of m:

Component 1 Component 2

m=8 m=16 m=32 m=8 m=16 m=32

0.02 1 87.3 94.8 97.5 24.8 33.6 44.7
0.75 91.1 97.4 99.2 71.0 83.1 90.5
0.5 85.7 95.2 98.6 74.7 82.9 90.9

0.1 1 83.1 91.6 95.3 35.3 48.9 61.9
0.75 89.0 96.6 99.0 58.6 78.4 89.8
0.5 88.0 95.8 98.9 72.9 85.8 93.7

0.5 1 79.7 89.1 94.2 63.1 78.9 88.4
0.75 77.6 89.3 94.4 58.2 78.2 88.8
0.5 81.9 92.2 96.2 69.1 81.6 91.0

2 1 84.2 91.6 95.6 88.6 94.1 97.0
0.75 81.8 89.8 94.6 83.9 92.1 96.0
0.5 79.8 88.8 94.1 80.5 90.4 95.2

†The designs that are used for approximate likelihoods are of the form
D.m,m′/ as defined in Section 4.2. Themodel for the covariance function
is θ2 exp.−θ1d=θ2/, where d is the interpoint distance; θ2 =1 in all cases.
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the diagonal elements of the inverse Fisher information matrix of the contrasts to the diago-
nal elements of E{G.S/}−1 for various designs and values for θ. These ratios are a measure of
relative efficiency of the approximate likelihood to the full likelihood and, because the Fisher
information matrix gives the maximum information, they must all be less than 1. We use θ2 =1
in all cases and consider θ1 = 0:02, 0:1, 0:5, 2, the smaller values of θ1 corresponding to more
strongly correlated random fields. For θ1, the efficiency of the various designs does not depend
strongly on either the true value of θ1 or m′=m, the fraction of the conditioning sets made up
of nearest neighbours. For m= 8, all efficiencies are at least 77% and for m= 32 they are all
at least 94%. In contrast, the efficiencies of the estimates of θ2 depend strongly on the true
value of θ1 and m′=m. In particular, the designs with m′ =m are vastly inferior to the designs
with m′ <m for θ1 =0:02 or θ1 =0:1, are competitive for θ1 = 0:5 and are slightly superior for
θ1 =2.

When θ1 is small, there is not much information about θ2 in the observations, despite their
number. Thus, when θ1 = 0:02, the second diagonal element of the inverse Fisher information
matrix is 0.552, so even the exact REML estimator of θ2 will be highly variable. This lack of
information follows from the fact that θ2 has little effect on fluctuations of the random field at
distances that are small compared with θ2=θ1, which equals 50 in this case. What little informa-
tion is available is contained in the dependences at longer distances, so it is not surprising that
approximating conditional densities by using only nearest neighbours works poorly. As Stein
(1999) described, if we are only interested in spatial interpolation of the random field, the value
of θ2 will have little effect when θ1 is small, so a severe loss of efficiency in estimating θ2 may be
tolerable. However, for estimating the unknown mean of the process and, more importantly,
assessing the variance of an estimate of this mean, the value of θ2 is critical.

The exponentialmodel is a subclass of the three-parameterMatérnmodel for covariance func-
tions (Stein, 1999). We have computed relative efficiencies of D.m,m′/ designs for this model
and obtained results that are qualitatively similar to those for the exponential model, with the
relative efficiencies being greater for all three parameters for m′=m= 0:75 or m′=m= 0:5 and
m=16 or m=32 in all the cases that we considered.

Results for the power law variogram model 1
2 var{Z.x/−Z.y/} = θ2|x − y|θ1 and two dif-

ferent mean functions are given in Table 2. We first consider the mean an unknown constant.
For the smaller values for θ1 of 0:6 and 1 and m=8, m′ =m designs are best, whereas, for
m=16 and especially m=32, designs with m′<m are competitive or even superior, especially
for m′=m=0:75. For the larger values of θ1 of 1.4 and 1.8, the results are dramatically dif-
ferent. First, all designs with m=8 have poor relative efficiency, especially for estimating θ1.
However, in all cases, the designs with m′ =m are clearly the worst and, overall, designs with
m′=m=0:75 are slightly better than designs with m′=m=0:5. For θ1 =1:8, there is a striking
similarity between the relative efficiencies for θ1 and θ2 that does not exist for the other θ1-values.
We do not have a good explanation for these similarities, which also occur in some of the other
tables.

Before trying to explain the results for the power law model, it is essential to examine how
they change if the mean function is taken to be an unknown linear polynomial in the co-
ordinates. As Table 2 shows, many of the results that were found in the constant mean case are
now reversed. In particular, the relative merits of designs with m′ =m to designs with m′<m

are now quite good for larger θ1 but quite poor for smaller θ1, especially regarding the relative
efficiency of the estimators of θ1. The changes in relative efficiency for the same design for the
two different mean functions show dramatic differences depending on m′=m. For m′ =m, the
relative efficiencies are always smaller for θ1 = 0:6 or θ1 = 1 when the mean function is linear,
most notably going from 84.1% to 38.4% for θ1 whenm′ =m=8 and θ1 =0:6. In contrast, when
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Table 2. Relative efficiencies of estimators by using approximate restricted likelihoods
for the exact REML estimators†

θ1 m′=m Relative efficiencies (%) for the following components
and values of m:

Component 1 Component 2

m=8 m=16 m=32 m=8 m=16 m=32

0.6 1 84.1/38.4 92.2/60.0 96.2/77.1 99.4/82.1 98.0/90.4 99.1/94.9
0.75 76.1/64.8 90.1/86.1 96.6/93.8 91.2/87.6 97.2/96.6 99.2/98.8
0.5 61.0/65.0 85.0/82.8 95.3/92.8 83.2/85.5 95.0/94.8 98.7/98.4

1 1 75.7/45.4 86.3/66.9 94.2/81.5 95.4/91.7 98.4/97.0 99.4/98.6
0.75 72.0/59.7 86.7/84.4 96.1/93.8 92.4/89.8 97.9/97.8 99.5/99.5
0.5 64.3/67.4 82.8/80.6 94.8/92.7 85.0/85.8 95.8/95.8 99.1/99.0

1.4 1 43.0/50.4 66.3/72.1 85.7/84.4 68.1/66.0 87.2/85.4 95.7/93.2
0.75 51.2/51.2 80.5/81.0 94.9/93.4 73.1/68.6 91.9/90.3 97.9/96.9
0.5 52.9/57.1 76.0/74.7 93.3/91.9 70.7/67.9 88.0/85.9 96.9/96.0

1.8 1 26.7/55.7 48.5/76.9 74.5/87.2 26.7/54.2 48.7/75.8 74.6/86.5
0.75 35.1/45.1 75.2/78.9 92.8/92.8 35.5/44.2 74.9/78.0 92.6/92.4
0.5 40.2/44.1 69.6/69.8 91.1/90.8 40.7/43.0 69.1/68.9 90.8/90.3

†See Table 1 for details. The covariance structure is defined by the variogram model
1
2 var{Z.x/−Z.y/}= θ2|x −y|θ1 ; θ2 =1 in all cases. The first number is for a constant
mean and the second for a first-order polynomial.

θ1 =1:8 and m′ =m=8, relative efficiencies for θ1 and θ2 both increase from about 25% to 55%
when going from a constant to a linear mean function.

To investigate the efficiency of designs with prediction vectors of length greater than 1, we
consideredD8.m,m′/withm=16 andm=32 for the power law covariance model and a constant
mean. We do not considerm=8 since we do not recommend using conditioning vectors that are
shorter than the prediction vectors. It is not apparent whether a D8.m,m′/ design should per-
form better or worse than a D.m,m′/ design. The sizes of the conditioning vectors are the same
in each case but, because theD8.m,m′/ design uses the correct joint conditional distribution for
the observations within each prediction vector, the D8.m,m′/ design may have an advantage.
In contrast, the conditioning vectors are chosen specially for each observation in D.m,m′/,
whereas they are required to be identical for all 15 or 16 observations in a prediction vector
for D8.m,m′/, which may favour the D.m,m′/ design. At least in the present circumstances,
D.m,m′/ and D8.m,m′/ perform remarkably similarly, so we do not give a separate table for
the results for D8.m,m′/. Indeed, for the four values of θ1 and six values of .m,m′/ (m=16 or
m= 32, m′=m= 1, 0:75, 0:5), the relative efficiency of the D8.m,m′/ design is never more than
0:01 less than that of D.m,m′/. For larger θ1, D8.m,m′/ is often moderately superior (relative
efficiency better by up to 0:1), especially for m=16 and m′ =16 or m′ =8.

To investigate the effect of measurement errors on the relative efficiencies of designs, we con-
sider the power law model with the power θ1 equal to 1 or 1.4, θ2 =1 and θ3, the measurement
error variance, equal to 0.2 or 1. When m= 8, the designs with m′ = 8 are usually superior,
sometimes substantially so. When m=32, the designs with m′ =32 are consistently inferior to
designs with m′ =16 or m′ =24.

These numerical results show some important overall trends. First, the larger the value of m,
the better the designs with m′<m tend to perform relative to the designs with m′ =m. Indeed,
for m= 32, among all the results presented here, the only case in which D.32, 32/ is superior
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to D.32, 24/ is for the exponential model with θ1 = 2. For this model, the correlations die out
very quickly, so it is not surprising that conditioning on just nearest neighbours works well.
However, even in this case, designs withm′<m are only modestly worse than those withm′ =m,
so the relative efficiency of D.32, 24/ is within 0.01 of that for D.32, 32/ for both θ1 and θ2.
In general, we find that models with stronger spatial correlations favour designs D.m,m′/ with
m′<m, although the different results for the power law model with the constant and linear mean
functions are difficult to explain.

4.3. Approximating the information
If the approximation to the restricted likelihood in equation (2) is accurate, we might hope to
replace the robust information measure E{G.S/} with the simpler and much easier to compute
E{Ġ.S/}, whose components are given by equation (4). However, in all the cases that we have
examined, this yields overoptimistic values for the information in the sense that the ratios of
the diagonal elements of E{Ġ.S/}−1 to the corresponding diagonal elements of E{G.S/}−1

are less than 1. These ratios tend to track grossly the patterns that are shown in Tables 1–3 so
that, whenever the estimates are badly inefficient, E{Ġ.S/} tends to be badly overoptimistic.
The degree of overoptimism can sometimes be quite extreme: this ratio is 0:097 for θ1 in the
power law model with constant mean under the design D.8, 8/ when θ1 =1:8. Thus, we do not
recommend using E{Ġ.S/} to approximate E{G.S/}.

If a full calculation of E{G.S/} is not feasible, we recommend using the sampling method
that is given by expression (6) to approximate E{G.S/ G.S/′} and hence E{G.S/}. We applied
this approach in several cases with the design D.8, 8/ and r=3 in expression (6) and found the
results to be generally adequate. For example, consider the power law model with θ1 =1:8 and a
constant mean, for which E{Ġ.S/}−1 underestimates both diagonal elements of E{G.S/}−1 by
about a factor of 10.We applied expression (6) 10 timeswith r=3 to approximateE{G.S/ G.S/′}

Table 3. Relative efficiencies of estimators by using approximate restricted likelihoods for the
exact REML estimators†

(θ1, θ3) m′=m Relative efficiencies (%) for the following components and values of m:

Component 1 Component 2 Component 3

m=8 m=16 m=32 m=8 m=16 m=32 m=8 m=16 m=32

(1, 0.2) 1 70.7 80.5 89.0 75.9 86.6 92.6 78.6 87.9 93.3
0.75 61.0 80.2 93.0 65.2 85.0 95.2 68.9 86.6 95.7
0.5 46.8 74.5 91.3 49.5 78.6 93.7 54.5 81.0 94.4

(1, 1) 1 65.6 78.5 87.5 68.6 83.9 91.2 73.8 86.7 92.8
0.75 54.9 77.0 91.8 58.2 81.1 94.1 64.6 84.3 95.2
0.5 43.1 70.2 89.7 46.3 73.7 91.8 54.1 78.3 93.4

(1.4, 0.2) 1 49.8 61.1 78.2 82.6 90.7 95.4 71.4 78.0 88.3
0.75 51.1 75.0 91.9 69.2 91.2 98.0 64.0 85.7 96.0
0.5 42.8 71.4 90.2 46.6 84.5 96.6 48.2 81.2 94.8

(1.4, 1) 1 52.8 61.0 76.3 74.5 85.7 91.8 75.1 81.0 88.6
0.75 47.7 73.1 90.9 55.4 85.3 96.5 59.8 84.8 95.9
0.5 36.3 68.1 89.0 35.9 76.1 94.4 44.2 78.7 94.4

†See Table 1 for details. The model for the variogram is 1
2 var{Z.x/−Z.y/}=θ3 1{x �=y}+θ2|x−y|θ1 ;

θ2 =1 in all cases.
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and hence E{G.S/}, and in all 10 cases the approximate values for the diagonals of E{G.S/}−1

were within 5% of the truth.
An attractive property of using sampling to approximate E{G.S/ G.S/′} is that it is easy to

check in practice whether the approximation is working well. Specifically, viewing the b blocks
as the sampling units, we can calculate an empirical covariance matrix for the estimates of
E{gk.S/ gl.S/} for k, l= 1, . . . ,q given by expression (6). Since E{Ġ.S/} is known exactly, the
estimate of E{G.S/}−1 is a known linear transformation of the estimate of E{G.S/ G.S/′}.
Thus, standard errors for the estimates of the elements of E{G.S/}−1 can be readily ob-
tained.

4.4. Prediction versus estimation
The examples in Section 3 show that picking the conditioning vector to predict well under the
true model is not necessarily a good idea when the goal is estimation. The discrepancy between
these goals can also occur for larger observation networks. Consider using the same network of
1000 observations as in Section 4.2 and the designs D.m,m′/, so that the prediction vectors are
of length 1. Since Vj is the variance of the BLUP error given the entire past, log{Vj.S/=Vj} is
non-negative and values nearer to 0 indicate predictions whose error variances are closer to the
best possible. We shall use the average of these log-ratios as our measure of the quality of the
predictions for a particular design and θ-value. Table 4 gives these average log-ratios under the
model 1

2 var{Z.x/−Z.y/}=|x − y|1:4 and a constant mean. Increasing m decreases the aver-
age log-ratio, which is expected since using longer conditioning vectors should yield prediction
variances that are closer to those obtained by conditioning on all past observations. More inter-
estingly, these averages are smaller for larger m′=m, so choosing all nearest neighbours in the
conditioning vectors yields the best predictions overall. In contrast, Table 2 shows thatm′=m=1
yields the least efficient designs for estimating the parameters of the covariance function when
θ1 =1:4.

We see that, at least qualitatively, these results support those in Section 3. Specifically, includ-
ing observations in the conditioning vector that give information about the random field over
different spatial scales can be a good idea for parameter estimation even when it is a bad idea
for prediction. Thus, in developing an intuition for selecting conditioning vectors to approxi-
mate likelihoods, it is not generally appropriate to think about what designs would give good
predictions.

Table 4. Average log-ratio of error
variances of approximate BLUPs to
error variances of exact BLUPs by
using designs D.m, m0/ for obser-
vations 2–1000 under the model
1
2 var{Z.x/�Z.y/}Djx �yj1:4

m′=m Log-ratios (×100) for the
following values of m:

m=8 m=16 m=32

1 4.99 1.29 0.40
0.75 7.29 1.69 0.41
0.5 13.49 3.53 0.77
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5. Computational considerations

This section considers the computational effort that is required to calculate the approximate
likelihood in equation (2). We argue that a reasonable choice for the relative sizes of the condi-
tioning sets and the prediction sets is that the prediction sets be approximately half the size of
the conditioning sets.

For simplicity, let us assume that all the conditioning sets are of the same size c and all the
prediction sets are of the same size d=n=b. In approximating the floating point operations that
are needed to implement the algorithm, we shall assume that c+d is large but small compared
with n. To simplify the considerations further, we shall assume that the mean of Z is known to
be 0 so that p=0. When p is in fact positive, the additional computations that are required are
negligible as long as p is much smaller than c+d.

Consider the computations that are necessary to find the contribution of the jth block to the
approximate likelihood. Define

var
(

S.j−1/
Zj

)
=K=

(
K11 K12
K21 K22

)
,

suppressing the dependence of the covariance on θ and j. We need to calculate the vector of
errors of the BLUPs Wj =Zj −K21K

−1
11 S.j−1/, its covariance matrixVj =K22 −K21K

−1
11 K12, the

quadratic form W′
jV

−1
j Wj and det.Vj/. To obtain these quantities, first calculate the Cholesky

decompostion GG′ of K11, which requires 1
3c

3 floating point operations (Golub and van Loan
(1996), page 144). Then compute H =G−1K12, which requires c2d floating point opera-
tions (Golub and van Loan (1996), page 89). Calculating Wj =Zj −H ′.G′/−1S.j−1/ contributes
negligibly to the overall effort. Now K21K

−1
11 K12 =H ′H requires cd2 floating point operations

by exploiting the symmetry of the resulting matrix; computing Vj is then a negligible effort.
Next, computing the Cholesky decomposition of Vj requires 1

3d
3 floating point operations and,

from this, obtaining W′
jV

−1
j Wj and det.Vj/ is a negligible effort. All together, the number of

floating point operations required is 1
3c

3 + c2d+ cd2 + 1
3d

3 = 1
3 .c+d/3 plus lower order terms.

The figure 1
3 .c+d/3 is the same as is required for the Cholesky decomposition of K. Indeed,

it is possible to show that W′
jV

−1
j Wj and det.Vj/ can be computed in 1

3 .c+d/3 floating point
operations by a procedure in which the optimal predictor of each component of Zj is obtained
in terms of S.j−1/ and the previous components of Zj by sequentially updating Cholesky decom-
positions.

Since there are b=n=d blocks, the total number of floating point operations that are needed to
compute the approximate likelihood in equation (2) is .n=3d/.c+d/3. The results in Section 4.2
suggest that c may be more critical to the accuracy of the approximation than d. Thus, for any
given c, it is plausible to choose d to minimize the amount of computation that is required. As a
function of d, .n=3d/.c+d/3 is minimized by d= 1

2c, in which case the total number of floating
point operations required is .9=4/nc2. This compares with the 1

3n
3 floating point operations that

are needed to calculate the full likelihood. For the example that was reported on in Section 4 in
which d≈16, c=32 and n=1000, we obtain d≈ 1

2c, .9=4/nc
2 ≈2:3×106 and 1

3n
3 ≈3:3×108,

so the approximate likelihood requires less than 1% of the floating point operations of the full
likelihood. For problems with larger n, the relative savings can be even more dramatic.

To compare the efficiency of choosing prediction sets of more than one observation to pre-
diction sets of size 1 as in Vecchia (1988), consider d = 16 and c= 32 versus d = 1 and c= 32.
The approximate floating point operation count for the first design is 2304n and for the second
is 11979n, so the design with d=1 requires about five times the computation irrespective of n,
at least when the computations are done separately for each block (see Section 7).
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6. Application to Lake Michigan chlorophyll fluorescence

6.1. Introduction
Phytoplankton, the unicellular algae that are found primarily in oceans and lakes, are important
elements of marine ecosystems and of the global carbon cycle. Water samples are often used
to measure levels of phytoplankton, but sample sizes are inevitably small in such studies and
hence provide limited information about the spatial variation in levels of phytoplankton. In
contrast, chlorophyll fluorescence is roughly linearly related to the level of phytoplankton, can
be measured in situ and may be recorded with high frequency (one observation per second, for
instance) over large spatial scales.

The fluorescence profile that is used in this example was obtained in the lower basin of Lake
Michigan in mid-March 2000 as part of the Episodic Events–Great Lakes Experiment. A fluo-
rometer was towed in a continuously undulating fashion from the surface to lake bottom and
back along a 25-km transect from offshore to near shore at the southern tip of the lake, pro-
viding over 13000 in situ measurements (Fig. 1). We order the observations by their collection
times and when we refer to ‘nearest neighbours’ we define nearest in terms of this ordering.

6.2. Variogram model
Exploratory analysis suggested no obvious covariates to include in the mean function and that
the logarithms of the fluorescence values are more nearly Gaussian than raw fluorescence val-
ues. Using h for the distance from the shore (in kilometres) and v for the depth (in metres),
we therefore take our process Z.h, v/ of log(fluorescence) measurements to be Gaussian with
an unknown constant mean and variogram indexed by a parameter θ. Welty and Stein (2003)
describe exploratory analyses leading to the variogram model

γ.h, v/=θ0 1{h2+v2>0} +θ1h
θ2 +θ3[1−Mν{.θ2

4h
2 +θ2

5v
2/1=2}]

where Mν.z/=21−νzν Kν.z/=Γ.ν/ is the Matérn correlation function (so that Mν.0/=1) and
Kν is a modified Bessel function of order ν (Abramowitz and Stegun, 1965). The term θ1h

θ2

is included to capture the horizontal variations, which are fundamentally different from the
vertical variations.

6.3. Conditioning and prediction set designs
The unusual pattern in measurement locations as well as the differences in the variations along
the vertical and horizontal directions provide interesting challenges in picking prediction and
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Fig. 1. Saw-tooth-like pattern of the chlorophyll fluorescence measurements: example conditioning set
selection (- - - - - - - ; , prediction; �, conditioning) (a) for nearest neighbours and medium-range points and
(b) for far away points ( , bottom of the lake)
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conditioning vectors. We divided the data into contiguous blocks of size d for prediction vectors
Zj. On the basis of the results in Section 5, we constructed conditioning vectors S.j−1/ to be
size 2d, twice the length of the prediction vectors.

For d = 10 and d = 20 we considered three schemes for picking conditioning sets. We let
conditioning sets consist entirely of nearest neighbours, a mix of nearest neighbours and far
away points, and a mix of nearest neighbours, far away points and medium range points. We
let DN.d/, DNF.d/ and DNMF.d/ represent these respective schemes. For example, the condi-
tioning set corresponding to prediction set Zj for DN.10/ consists of Zj−1 and Zj−2. That for
DNF.10/ consists of Zj−1 as well as one point each from 10 roughly equally spaced blocks
from Zj−1, . . . , Z1. That for DNMF.10/ consists of five points from Zj−1, five points from a
nearby block of similar depth (see Fig. 1) and one point each from 10 roughly equally spaced
blocks from the past. The data and more detailed descriptions of conditioning and prediction set
designs are available at http://galton.uchicago.edu/∼stein/approx-lik.html.

6.4. Parameter estimates
We maximized the approximate restricted log-likelihood analytically for a scale parameter
α= θ0 and then numerically maximized the remaining profiled log-likelihood over .θ1=α, θ2,
θ3=α, θ4, θ5/ by using a conjugate gradient algorithm (Press et al., 1992). Although there is no
guarantee that the approximate likelihood has only a single mode, we have plotted the surface
on grids over several pairs of parameters (with the remaining three parameters fixed) and found
no signs of multiple modes. To simplify our initial approach, we did not maximize over ν, the
smoothness parameter in the Matérn covariance function. After considering values 0.5, 1.0 and
1.5, we concluded that ν =1:0 appeared best on the basis of comparisons of the restricted log-
likelihood and the shape of the empirical vertical variogram near v= 0. As in expression (6),
stratified sampling was used to estimate E{G.S/ G.S/′}, and standard errors were obtained for
the elements of E{G.S/}−1.

We found that prediction and conditioning vector designs did affect parameter estimates.
Given the increased computation time for longer vectors, we recommend obtaining parameter
estimates from designs with smaller values of d and then using these estimates as starting val-
ues for maximization with larger prediction sets. We used this strategy first to obtain estimates
under DNF.10/, yielding θ̂NF.10/= .3:49×10−4, 3:00×10−3, 1:22, 1:47×10−3, 305, 3:28/, and
then using θ̂NF.10/ as a starting value found the estimate under DNMF.20/ of θ̂NMF.20/=
.3:50×10−4, 2:34×10−3, 1:06, 1:48×10−3, 306, 3:23/. The discrepancies in estimates for θ1 and
θ2 under the two designs are not unexpected given that these parameters describe behaviour in
the horizontal direction and that the prediction–conditioning sets in the larger design contain
significantly more pairs of points that are at nearly the same depth.

Designs that include some far away points in the conditioning vector and that have longer
prediction–conditioning vectors yield estimates for E{G.S/}−1 with noticeably smaller diago-
nal elements (Table 5), which suggests less variability in parameter estimates for these designs.
The largest decreases in the square roots of the diagonal elements appear when schemes that use
only nearest neighbours are modified to contain more distant points as well. There is a dramatic
decrease in diagonal elements corresponding to the parameters that describe the long-range
horizontalbehaviouroftheprocess,θ1 andθ2,whenweconsiderDNF.d/orDNMF.d/overDN.d/,
even though these designs have conditioning vectors of equal length. Schemes that include
medium-range points as well as far away points yield smaller diagonal elements for some param-
eters, though these gains may be offset by slightly larger values for other parameters.DNMF.10/
yields smaller diagonal elements than DNF.10/, but DNMF.20/ yields a smaller value for θ1, a
largervalue forθ2 andsimilarvalues for the remainingparameterswhencomparedwithDNF.20/.
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Table 5. Square roots of the diagonal elements of E{G.S/}�1

expressed as percentages of parameter values†

Square roots (%) for the following parameters:

θ0 θ1 θ2 θ3 θ4 θ5

DN(10) 8.54 322.91 120.56 4.17 12.63 13.97
DNF(10) 7.61 30.29 19.73 2.98 12.38 12.25
DNMF(10) 7.44 25.72 16.14 2.69 12.29 11.84
DN(20) 7.63 78.48 36.90 2.97 12.14 12.22
DNF(20) 7.39 26.18 12.30 2.68 11.96 11.73
DNMF(20) 7.39 23.22 13.09 2.69 11.96 11.73

†Foreachdesign,E{G.S/}−1 wascomputed forθ= θ̂NMF.20/,with
E{G.S/ G.S/′} estimated by stratified random sampling and r= 5
as in expression (6).

Sampling standard errors for the diagonal elements of E{G.S/}−1 can be significant for small
r. For example, for r=5 and design DNMF.20/, we calculated the standard errors for the diag-
onal elements of E{G.S/}−1 using basic sampling theory for stratified random samples. For the
parametersother thanθ1 andθ2, thesestandarderrorsareall less than5%of thediagonalelements
of E{G.S/}−1, but they are about 12% and 14% for θ1 and θ2 respectively. The differences in the
diagonal elements for E{G.S/}−1 from one design to another (when both designs use the same
sampling scheme) tend to be much less variable than the individual elements themselves, which
is apparent from the nearly identical values for diagonal elements of E{G.S/}−1 for parameters
other than θ1 and θ2 and designsDNF.20/ andDNMF.20/.

We thus recommend using small values of r for comparing designs (with the same off-
diagonal sampling j1.i/, . . . , jr.i/) based on differences in values for E{G.S/}−1. Once a good
design has been identified (there may be many), we recommend increasing r to obtain the desired
levelofcertainty intheestimatesofE{G.S/}−1.Themost importantaspectofdesignappears tobe
including far away points from the past; once some far away points have been included, improve-
ments may be made by increasing the sizes of the prediction–conditioning sets and possibly to a
smaller extent by adjusting point selection schemes to include medium-range points.

7. Discussion

We have just scratched the surface in terms of looking at the relationship between models, obser-
vation locations and good choices of prediction and conditioning sets. Certainlywewould like to
find less haphazard rules for picking the distant locations in the conditioning sets. Another crit-
ical issue is to understand better the effect of measurement errors on good designs. For example,
we would expect that closely spaced observations make it easier to estimate the measurement
error variance, which suggests that there may be an advantage in choosing the distant observa-
tions in the conditioning set in clumps, whereas such clumping would probably be inefficient
when the measurement error variance is negligible.

When the observations are on a regular lattice, it should be possible to obtain analytic expres-
sions for the asymptotic efficiencies of sufficiently simple designs. We recommend a fixed domain
asymptotic approach (Stein, 1999) where feasible, to reflect the situation of strongly dependent
neighbouring observations for which we expect using distant observations in conditioning sets
to be most helpful. However, we would not advocate the use of our approach when observing
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a stationary process on a lattice, but we would instead suggest the use of exact methods that
exploit the block Toeplitz structure of the resulting covariance matrices or spectral approxima-
tions such as the Whittle likelihood (Whittle, 1954). Furthermore, the results would generally
be quite messy for conditioning and prediction sets that are larger than a few observations and
results for very small conditioning and prediction sets may not provide much insight.

Whether a design is efficient will depend somewhat on how the computations are done. For
example, the calculations that are described here assume that the computations for different
blocks are done separately. When there is substantial overlap between the conditioning sets of
different blocks, this could be exploited to reduce the computations by, for example, calculat-
ing the Cholesky decomposition of the common observations in two or more conditioning sets
just once. If algorithms were developed that exploited these overlaps, then designs with greater
overlap between conditioning sets would presumably be favoured. Approximation (2) could be
easily implemented on parallel processors. One could just parcel out the prediction and condi-
tioning sets to the different processors, although there would be interesting issues in terms of
balancing arithmetic effort against the need to pass information across processors. The details
of the implementation could affect the relative computational efficiencies of various designs.

Finally, we mention an interesting inferential problem that is raised by the use of approximate
likelihoods in Bayesian analyses. Where the approximation is very good, we could act as if the
approximate likelihood were the actual likelihood without much harm. However, especially if
the likelihood calculation is just a part of a single step in aMarkov chainMonteCarlo algorithm,
we may not be able to afford a highly accurate approximation, in which case the status of the
resulting approximate posterior as a tool for inference would be dubious. It might be possible to
use the robust information measure to adjust the approximate likelihood in some manner, but
the details of such a method and demonstrating its effectiveness pose considerable challenges.

Acknowledgements

MLS was supported by National Science Foundation grant DMS 99-71127. The chlorophyll
fluorescence measurements were provided by Henry Vanderploeg, Great Lakes Environmental
Research Laboratory. The authors thank the referees and the Joint Editor for many helpful
suggestions on the exposition of the paper.

Appendix A

A.1. Proof of proposition 1
We can choose an .n−p/×n matrix C of rank n−p such that CF =O and C is of the following block
lower triangular form:

,

. . .
. . .

1

2

3

b

O

O

O

where C1 is .n1 −p/×n1 with rank n1 −p and, for j >1, Cj is nj ×n.j/ with its last nj columns equal to Inj .
Then CZ is a linearly independent basis for the space of contrasts of Z and, for j >1, CjZ.j/ is the error
of a linear unbiased predictor of Zj based on Z.j−1/. Define n′

.j/ =n.j/ −p.



294 M. L. Stein, Z. Chi and L. J. Welty

We claim that B.θ/ can be written in the form D.θ/C, where D.θ/ is an .n−p/× .n−p/ matrix whose
first n1 −p rows are .In1−p O/ and, for j >1, rows from n′

.j−1/ +1 to n′
.j/ are of the form .Dj.θ/O/, where

Dj.θ/ is nj ×n′
.j/ with last nj columns equal to Inj . That D1.θ/ can be set to .In1−p O/ is trivial since we

can take B1.θ/≡ .C1 O/. To prove that Bj.θ/ can be written in the form .Dj.θ/CO/ for j >1, we use the
fact that the BLUP of Zj can be expressed as a sum of any given linear unbiased predictor of Zj plus a
linear unbiased predictor of 0 (i.e. a contrast). Since CjZ.j/ is the error of a linear unbiased predictor of
Zj based on Z.j−1/ and the first n′

.j/ rows of CZ form a basis for the contrasts of Z.j−1/, for given θ, the
error of the BLUP of Zj based on Z.j−1/ can be written in the form

j−1∑
i=1

Λij.θ/CiZ.i/ +CjZ.j/,

where Λij.θ/ has dimension nj ×ni for i>1 and dimension nj × .n1 −p/ for i=1. Setting Dj.θ/=
.Λ1j.θ/. . .Λj−1,j.θ/ Inj / yields the results desired. Let us write rl.θ;Z/ for the log-likelihood of the
contrasts, CZ, which is independent of the choice of C (Christensen (1996), page 276). We have

rl.θ;Z/=−n−p

2
log.2π/− 1

2
log[det{C K.θ/C′}]− 1

2
.CZ/′{C K.θ/C′}−1CZ:

Using B.θ/=D.θ/C and det{D.θ/} ≡ 1, it is easy to show that the joint density of W.θ/, viewed as a
function of θ, also gives rl.θ;Z/ despite the fact that this transformation of Z depends on θ. Proposition 1
follows from the independence of W1.θ/, . . . , Wb.θ/, which is a consequence of the multivariate normality
and the fact that the error of a BLUP is uncorrelated with all contrasts of the observations on which it is
based.

A.2. Proof of lemma 1
First, because ρα.r/= ρα.1=r/, it suffices to show that ρα.r/

2 achieves its unique maximum on [1, ∞/ at
r=1, so only consider r�1 from now on. A straightforward analysis shows that ρα.r/→0 as r→∞ for all
α∈ .0, 1/. Furthermore, ρα.1/=2α−1 −1, which is negative for α∈ .0, 1/ and positive for α∈ .1, 2/. Thus,
it suffices to show that ρα is strictly increasing on [1, ∞/ for α∈ .0, 1/ and is strictly decreasing on [1, ∞/
for α∈ .1, 2/. Let 2s= r1=2 + r−1=2, so that r1=2 = s+ .s2 − 1/1=2 and s is a strictly increasing function of r
from [1, ∞/ onto [1, ∞/. Define

Fα.s/=2 ρα.r/=2αsα −{s+ .s2 −1/1=2}α −{s− .s2 −1/1=2}α:

Since Fα is continuous on [1, ∞/, our result follows if, on .1, ∞/, F ′
α.s/<0 for α<1 and F ′

α.s/>0 for
α> 1. Now

F ′
α.s/=2ααsα−1 −α{s+ .s2 −1/1=2}α−1{1+ s.s2 −1/−1=2}−α{s− .s2 −1/1=2}α−1{1− s.s2 −1/−1=2}

= 2ααsα

.s2 −1/1=2

[{
1
2

+ .s2 −1/1=2

2s

}α

−
{

1
2

− .s2 −1/1=2

2s

}α

−2
.s2 −1/1=2

2s

]
:

Defining ∆= .s2 −1/1=2=2s and Gα.∆/= . 1
2 +∆/α − . 1

2 −∆/α −2∆, we see that F ′
α.s/ and Gα.∆/ always

have the same sign. Now ∆ is a strictly increasing function of s from [1, ∞/ onto [0, 1
2 /, so it suffices to

show that Gα.∆/>0 on .0, 1
2 / for α<1 and Gα.∆/<0 on .0, 1

2 / for α>1. To prove this, first note that
Gα is continuous on [0, 1

2 ] and, on [0, 1
2 /,

G′′
α.∆/=α.α−1/{. 1

2 +∆/α−2 − . 1
2 −∆/α−2}:

Since . 1
2 + ∆/α−2 − . 1

2 − ∆/α−2 <0 for all ∆ ∈ .0, 1
2 /, α.α − 1/<0 for α ∈ .0, 1/ and α.α − 1/>0 for

α ∈ .1, 2/, we see that, on [0, 1
2 ], Gα is convex for α ∈ .0, 1/ and concave for α ∈ .1, 2/. The result then

follows by noting that Gα.0/=Gα.
1
2 /=0 for all α∈ .0, 2/.

Appendix B

We give more explicit expressions for @lWj and @lVj . Suppose that S.j−1/ has length m and(S.j−1/
Zj

)
∼N

{(
F1β
F2β

)
,
(
K11 K12
K21 K22

)}
:
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Define T to be the first m rows of
(
K11 F1
F ′

1 O

)−1 (
K12
F ′

2

)
,

so that T ′S.j−1/ is the BLUP of Zj in terms of S.j−1/ (Stein (1999), page 8). Using standard results on
differentiation of matrix-valued functions, it follows that @lT is given by the first m rows of

(
K11 F1
F ′

1 O

)−1 (
@lK12 − .@lK11/T

O

)
:

Then @lWj =−.@lT/
′S.j−1/ and, using cov.Wj , @lW′

j/=O, @lVj = .−T ′ Inj /@lK.−T ′ Inj /
′, where, here, K is

the covariance matrix of .S′
.j−1/ Z′

j/
′.
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