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ABSTRACT
In multiple hypothesis testing, the volume of data, defined as the number of replications

per null times the total number of nulls, usually defines the amount of resource required.
On the other hand, power is an important measure of performance for multiple testing.
Due to practical constraints, the number of replications per null may not be large enough
in terms of the difference between false and true nulls. For the case where the population
fraction of false nulls is constant, we show that, as the difference between false and true nulls
becomes increasingly subtle while the number of replications per null cannot increase fast
enough, (1) in order to have enough chance that the data to be collected will yield some
trustworthy findings, as measured by a conditional version of the positive false discovery rate
(pFDR), the volume of data has to grow at a rate much faster than in the case where the
number of replications per null can be large enough, and (2) in order to control the pFDR
asymptotically, power has to decay to 0 in a rate highly sensitive to rejection criterion and
there is no asymptotically most powerful procedures among those that control the pFDR
asymptotically at the same level.

1 Introduction

Multiple hypothesis testing often faces situations where distributions under false nulls only
have a subtle difference from those under true nulls. To make the difference evident, it
is necessary to make repeated measurements from the distributions. As is well known, in
order to attain a fixed power, the number of replications for each null, henceforth denoted
by k, should be large enough. Roughly speaking, if the difference between the distributions
under false nulls and those under true nulls is δ, then k should be of the same order as
δ−2. However, in practice, oftentimes k cannot be large enough. There are many reasons for
this: the time window that allows measurements is finite, the experimental unit associated
with each null can only sustain a limited number of measurements, and so on. Under this
circumstance, there are two important and related issues.
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First, if the underlying objective of the tests is to identify even just a few false nulls
irrespective of power, so that one can get useful clues for further study, then in some cases
it may be reached by testing a large number of nulls. For example, suppose a population
has a small fraction of “atypical” units. Then, in order to capture at least one of them,
an approach is to obtain a large sample from the population, and, for each sampled unit,
determine whether to reject the null that it is typical. In this case, even though at population
level, the difference between atypical and typical units may be small, there is a chance that
some atypical units will “show up” with pronounced differences from typical ones, making
them easy to detect. In order to increase the chance, one would hope N , the number of
examined units, to be as large as possible. Oftentimes, however, the amount of resources
required for the tests is in proportion to N or V = kN , the “volume” of data. This imposes
a constraint on N and V and raises the following question: provided that k cannot be large
enough, what is the minimum value of N or V in order to have desirable test results?

The answer to the question depends on what performance criterion to use for the tests.
A useful criterion is pFDR ≤ α, where α ∈ (0, 1) is a pre-specified level and pFDR =
E[R0/R |R > 0] is known as the positive false discovery rate, with R the number of rejected
nulls and R0 that of rejected true nulls (Storey 2003). Comparing to the false discovery rate
E[R0/(R ∨ 1)] (Benjamini & Hochberg 1995), the pFDR is more useful when the objective
is to reject some nulls (Chi 2007a, Chi & Tan 2008). In view of this, it is desirable to apply
the idea of pFDR to data directly. Denote by X the data to be collected for the tests. Under
a Bayesian framework, we propose the following variant of the pFDR criterion,

P (inf E [R0/R |R > 0, X] ≤ α) ≥ p, (1.1)

where E[R0/R |R > 0,X] is defined to be 1 if R = 0, α, p ∈ (0, 1) are pre-specified constants,
and the infimum is taken over all applicable multiple testing procedures that are solely based
on the data; cf. (2.2). For any such procedure, once X is given, R is determined, whereas R0

remains random, with its distribution determined by the posterior likelihoods of the truths
of the nulls. This gives rise to the conditional expectation. As a result, the infimum in (1.1)
is a function of X. The criterion means that, with probability no less than p, the data to be
collected will yield one or more rejections, which, under a future study for verification, have
an expected fraction of false rejections no more than α. The minimum value of N or V will
be studied under this criterion.

The second issue is straightforward, that is, even when an arbitrarily large number of
nulls can be tested, power may still be an important concern. Provided k cannot be large
enough, how much power can be hoped for?

The issue of minimum N or V can be thought of as a dual to the issue that given N ,
how small the differences between false and true nulls can be before it becomes virtually
impossible to detect false nulls; see Donoho & Jin (2004) and references therein. The issue
of power is more extensively studied; see Efron (2007) and references therein. However, the
setup here is different. First, both issues are considered in relation to k and it is necessary
to take into account the fact that the distributions of test statistics not only depend on the
underlying data generating distributions, but also on k, the number of replications from the
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distributions for each null. Second, no sparsity is assumed for false nulls. Instead, false nulls
are assumed to be increasingly similar to true nulls, while k cannot increase fast enough to
compensate for this. As a result, the test statistics provide increasingly weak evidence to
separate false nulls from true nulls.

All our results are obtained for the case where distributions under false nulls and those
under true nulls are known and the population fraction of false nulls is known as well. In
practice, especially in exploratory studies, while there may be relatively good knowledge
about distributions under true nulls, oftentimes there is little knowledge about distributions
under false nulls or the population fraction of false nulls. Thus, the case we consider is an
ideal one and the results provide limits on what can be achieved in more realistic cases.

Section 2 covers preliminaries and identifies the quantity central to the analysis. Main
results are stated in Section 3. Section 3.1 considers the asymptotics of the minimum N
and V for general parametric models. Using Cramér-type large deviations, the results are
established for the case where the growth of k is just a little slower than δ−2. It shows that
in this case, the minimum N and V have to grow much faster than in the case where k
is of the same order as δ−2. Sections 3.2 and 3.3 obtain refined results for tests on mean
values of normal distributions with known variance and scaled gamma distributions. Section
3.4 considers the power of multiple tests as k can not increase as rapidly as δ−2 as δ → 0.
It shows that for procedures that asymptotically control the pFDR at a given level, the
power decreases to 0 and is highly sensitive to small changes in rejection criterion, and
consequently, there is no asymptotically most powerful procedure among such procedures.
Section 4 concludes the article with a summary and remarks. The proofs of the main results
are collected in the Appendix.

2 Preliminaries

Denote byH1, . . . , HN the nulls. Suppose that for eachHi, a sampleXi1, . . . , Xik is collected.
Let ηi = 1 {Hi is false}. The analysis will be under the following random effects model:

(ηi, Xi1, . . . , Xik), i ≥ 1, are i.i.d. such that
P(ηi = 1) = a and

given ηi = 0, Xi1, . . . , Xik are i.i.d. ∼ f0(x),
given ηi = 1, Xi1, . . . , Xik are i.i.d. ∼ fa(x),

(2.1)

where 0 < a < 1 is the population fraction of false nulls, and f0, fa are probability densi-
ties under true nulls and false nulls, respectively (Efron et al. 2001, Genovese & Wasserman
2002). In this article, we will only consider the case where a is fixed.

Following Chi & Tan (2008), a multiple testing procedure is a deterministic mapping

d(X) = (d1(X), . . . , dN(X)), (2.2)

such thatHi is rejected if and only if di(X) = 1. Under the random effects model, X = {Xkl}
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and it can be shown that the criterion (1.1) can be rewritten as

P(at least one Ei(k) occurs, i = 1, . . . , N) ≥ p, (2.3)

where Ei(k) :=

{

Xi1, . . . , Xik satisfy
k∏

j=1

fa(Xij)

f0(Xij)
≥ (1 − a)(1 − α)

aα

}

; (2.4)

see Section 4 for a sketch of proof.
For fixed k, the events Ei(k) are independent of each other and have the same probability,

which depends on both k and the difference between f0 and fa. Suppose the difference can
be parameterized by δ. For example, if f0 = N(θ0, 1) and fa = N(θ, 1), then δ can be taken
as θ − θ0. Denote the common probability of Ei(k) by

pk,δ(α) = P(Ei(k)), i = 1, . . . , N. (2.5)

Then (2.3) is equivalent to 1 − (1 − pk,δ(α))N ≥ p, or N ≥ ln(1 − p)/ ln(1 − pk,δ(α)).
The case we will focus on is where the false nulls are increasingly similar to true nulls

while k cannot increase fast enough to compensate for the decreasing δ; more specifically,
δ → 0 while k → ∞ at a slower rate than δ−2. Then, as maybe expected, pk,δ(α) → 0.
Provided that the growth of k makes sure pk,δ(α) > 0, the minimum number of nulls and
volume of data to satisfy (1.1) are

N∗ =
(1 + o(1))

pk,δ(α)
ln

1

1 − p
, V∗ = kN∗ =

(1 + o(1))k

pk,δ(α)
ln

1

1 − p
, (2.6)

respectively. Thus, the main task of the analysis is to find the asymptotic of pk,δ(α). Note
that under the random effects model,

pk,δ(α) = (1 − a)P0(Ei(k)) + aPa(Ei(k)), (2.7)

where P0 is the probability measure under f0 and Pa that under fa.
Finally, some comments on the random effects model. It may be desirable to relax

the assumption that the data distributions under false nulls are identical. To do this, one
approach is to assume that under false nulls, the data obeys another random effects model,
such that given ηi = 1, a parameter θi is first drawn from a distribution G, and then
Xi1, . . . , Xik are drawn from fθi

6= f0 (Genovese & Wasserman 2002). However, by letting
fa =

∫
fθ dG(θ), it is seen that this model can be treated in the same way as (2.1). Another

approach is to use Poisson approximation to evaluate the probability in (2.3), which does not
require the distributions under false nulls be identical, and can even allow weak dependency
between Xij (Arratia et al. 1990). However, a full development of the Poisson approach is
beyond the scope of the paper.

3 Statement of main results

Recall that a is assumed to be fixed. Henceforth, denote Qα = (1/a− 1)(1/α− 1).
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3.1 Data volume for general multiple tests

Suppose the observations Xij take values in a Euclidean space Ω and both f0 and fa belong
to a parametric family of densities {fθ, θ ∈ Θ} with respect to the Lebesgue measure dx on
Ω, where Θ is an open set in R

d. Suppose f0 = fθ0
and fa = fθ. Let ℓ(θ, x) = ln fθ(x).

Suppose that for each x ∈ Ω, ℓ(θ, x) is twice differentiable with

ℓ̇(θ, x) =

[
∂ℓ(θ, x)

∂θ1

, . . . ,
∂ℓ(θ, x)

∂θd

]T

, ℓ̈(θ, x) =

[
∂2ℓ(θ, x)

∂θk∂θl

]

.

We assume that {fθ} satisfies regular conditions so that

Eθ[ℓ̇(θ,X)] = 0, Varθ[ℓ̇(θ,X)] = −Eθ[ℓ̈(θ,X)] = I(θ),

where I(θ) is the Fisher information and Eθ and Varθ denote the expectation and variance
under fθ, respectively. For each θ, θ′ ∈ Θ, by Taylor expansion,

ℓ(θ′, x) − ℓ(θ, x) = ℓ̇(θ, x)T (θ′ − θ) +
(θ′ − θ)T ℓ̈(θ, x)(θ′ − θ)

2
+ o(|θ′ − θ|2)

= ℓ̇(θ, x)T (θ′ − θ) +
(θ′ − θ)TA(θ, θ′, x)(θ′ − θ)

2
,

where A(θ, θ′, x) is a d × d symmetric matrix. Under regular conditions, one would expect
that as θ′ → θ, Eθ[A(θ, θ′, X)] → Eθ[ℓ̈(θ,X)] = −I(θ). However, for the analysis, a few
stronger assumptions are needed.

Assumptions.

1. I(θ0) is positive definite.

2. There are C > 0 and r > 0, such that |I(θ) − I(θ0)| ≤ C|θ − θ0| if |θ − θ0| < r.

3. M3 := supθ∈ΘEθ|ℓ̇(θ,X)|3 <∞.

4. For any ǫ > 0, there are positive numbers r, λ0 and λ, such that for any θ and θ′ ∈ Θ
with |θ − θ′| < r, if X1, X2, . . . are i.i.d. ∼ fθ, then

P

(∥
∥
∥
∥
∥

1

k

k∑

i=1

A(θ, θ′, Xi) + I(θ)

∥
∥
∥
∥
∥
> ǫ

)

≤ λ0e
−λk (3.1)

for all k ≥ 1, where for any matrix M = (mij), ‖M‖ = max |mij|.
Assumption 1 is standard. Assumption 2 holds if I(θ) is differentiable at θ0, which along

with Assumption 3 is satisfied by many parametric models. Assumption 4 is not hard to
verify by using the fact that the normed quantity in (3.1) is bounded by D1 +D2, where

D1 = ‖h(θ, θ′) + I(θ)‖ , D2 =

∥
∥
∥
∥
∥

1

k

k∑

i=1

A(θ, θ′, Xi) − h(θ, θ′)

∥
∥
∥
∥
∥
,
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with h(θ, θ′) = Eθ[A(θ, θ′, X)]. In fact, since h(θ, θ) = −I(θ), provided that h(θ, θ′) is
uniformly continuous, D1 is uniformly small for |θ−θ′| ≪ 1. On the other hand, exponential
inequalities can be used for D2. For instance, if |A(θ, θ′, X)| ≤ M for some nonrandom
M > 0 for all θ, θ′ and X ∼ fθ, then Hoeffding’s inequality gives P(D2 ≥ ǫ) ≤ λ0e

−λk for
some λ0, λ > 0 (Pollard 1984). As a concrete example, for the densities of N(θ, 1), θ ∈ R,
A(θ, θ′, x) ≡ 1 and hence Assumption 4 is satisfied.

As θ − θ0 → 0, the nulls become increasingly similar. By the asymptotic theory of
statistics, to attain a fixed power while keeping the same significance level for the tests, k
should grow at the same order as (θ− θ0)

−2. On the other hand, the results below deal with
the case where k grows a little more slowly. First consider the univariate case d = 1.

Theorem 3.1 Let Qα > 1. Denote δ = θ − θ0 and k the number of replications per null.
Suppose

k =
1

δ2s(δ)
, such that s(δ) → ∞ and

s(δ)

ln(1/δ2)
→ 0 as δ → 0. (3.2)

Then, as θ → θ0,

pk,δ(α) = (1 + o(1))

√

(1 − a)a

2π(1 − α)α

√

kI(θ0)δ

lnQα

exp

{

− (lnQα)2

2kI(θ0)δ2

}

. (3.3)

Note that Qα > 1 if a+ α < 1. In practice, since a is usually much less than 1 and α is
small or only moderately large, the assumption Qα > 1 is not restrictive.

The multivariate case d > 1 can be derived as a corollary.

Corollary 3.1 Let Qα > 1. Denote δ = θ − θ0. Suppose k satisfies (3.2), with δ2 being
replaced by |δ|2. Let q(δ) = δT I(θ0)δ. Then, as θ → θ0,

pk,δ(α) = (1 + o(1))

√

(1 − a)a

2π(1 − α)α

√

kq(δ)

lnQα

exp

{

−(lnQα)2

2kq(δ)

}

. (3.4)

Under the condition of Theorem 3.1, it is not hard to see pk,δ(α) → 0. Therefore, the
minimum number of nulls N∗ and the minimum volume of data V∗ in order for (2.3) to be
satisfied have the asympotics in (2.6), yielding

V∗ = kN∗ = (1 + o(1)) ln
1

1 − p

√

2π(1 − α)α

(1 − a)a

√
k lnQα
√

I(θ0)δ
exp

{
(lnQα)2

2kI(θ0)δ2

}

.

On the other hand, if k has the same order as δ−2, then by the Central Limit Theorem,
in order to satisfy (2.3), N∗ only needs to be a large constant and V∗ is of the same order
as δ−2. To see in which case the minimum data volume is larger, it suffices to compare the

orders of
√

k
δ

exp
{

c
kδ2

}
and δ−2 as δ → 0, where c > 0 is a constant. By k = 1

δ2s(δ)
with

s(δ) → ∞, the ratio of the two is δ
√
k exp{ c

kδ2} = ecs(δ)/
√

s(δ) → ∞. Therefore, when k
cannot grow as fast as δ−2, a much larger volume of data is required.
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3.2 Multiple tests on means of normal distributions

Consider nulls Hi : θi = θ0 for N(θi, σ
2), where σ2 is known and under false Hi, θi = θ, with

θ − θ0 = δ > 0. Without loss of generality, let θ0 = 0 and σ = 1. Then f0 and fa are the
densities of N(0, 1) and N(δ, 1), respectively. By fa(x)/f0(x) = exp(δx− 1

2
δ2), the event in

(2.4) becomes

Ei(k) =

{
k∑

j=1

Xij ≥
lnQα

δ
+
kδ

2

}

.

Under true Hi,
∑

j Xij ∼
√
kZ, while under false Hi,

∑

j Xij ∼
√
kZ + kδ, where

Z ∼ N(0, 1). Therefore, by (2.7),

pk,δ(α) = (1 − a)Φ̄

(

lnQα√
kδ

+

√
kδ

2

)

+ aΦ̄

(

lnQα√
kδ

−
√
kδ

2

)

, (3.5)

where Φ̄(t) = 1 − Φ(t) = 1 − P (Z ≤ t).

Let Qα > 1. If δ ↓ 0 such that kδ2 → 0, then ln Qα√
kδ

±
√

kδ
2

→ ∞. Recall that, as t→ ∞,

Φ̄(t) = Φ(−t) = (1 + o(1))
e−t2/2

√
2π t

. (3.6)

It is then not hard to get the asymptotic in Theorem 3.1 with fewer restrictions on (δ, k).

Corollary 3.2 Let Qα > 1. Suppose kδ2 → 0 as δ → 0. Let fθ be the densities of N(θ, σ2),
with σ2 being known. Then, as θ → θ0,

pk,δ(α) ∼
√

(1 − a)a

2π(1 − α)α

√
kδ/σ

lnQα

exp

{

−(lnQα)2

2kδ2/σ2

}

, (3.7)

V∗ = kN∗ ∼ ln
1

1 − p

√

2π(1 − α)α

(1 − a)a

√
k lnQα

δ/σ
exp

{
(lnQα)2

2kδ2/σ2

}

. (3.8)

The rapid increase of minimum data volume is illustrated in Figure 3.2(A), which graphs
log10(Vt/V2) versus t ∈ [0, 1] for δ = 0.1, 0.2, and 0.4, where Vt is the right hand side of (3.8)
with k = δ−t. For the plot, a = 5%, α = 0.4 and p = 0.9. Even at the log scale, the increase
in the minimum data value is apparent.

3.3 Multiple tests on scales of Gamma distributions

Denote by Gamma(a, b) the Gamma distribution with shape parameter a and scale parameter
b. Multiple tests on the scales of Gamma distributions have been used as a case of study
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Figure 1: Minimum data volume and power for tests on mean values of N(δ, 1) when k = δ−t,
t ∈ [1, 2]; see details in Sections 3.2 and 3.4.

in the literature (Donoho & Jin 2004). Fix ν > 0. Let f0(x) be the density of Gamma(ν, 1)
and fa(x) that of Gamma(ν, 1 + δ), where δ > 0. Then

f0(x) =
xν−1e−x

Γ(ν)
, fa(x) = fδ(x) =

xν−1e−x/(1+δ)

Γ(ν)(1 + δ)ν
, x > 0.

By fa(x)/f0(x) = (1 + δ)−νeδx/(1+δ), the event in (2.4) becomes

Ei(k) =

{
k∑

j=1

Xij ≥ ck

}

, with ck :=
[kν ln(1 + δ) + lnQα](1 + δ)

δ
. (3.9)

Under true Hi,
∑

j Xij ∼ Gamma(kν, 1); under false Hi,
∑

j Xij ∼ Gamma(kν, 1 + δ).
By (2.7), to get the asymptotics of N∗ and V∗, the main step is to get the asymptotics of
the probability of {S ≥ ck} for S following Gamma(kν, 1) or Gamma(kν, 1 + δ). Since the
tail probabilities under Gamma distributions are available in detail, the asymptotics can be
attained for a much wider range of values of k than for the general case. The results are as
follows; see Section A.3 for a proof.

Theorem 3.2 Let f0 and fa be as above and Qα > 1. Suppose

(δ, k) → (0,∞) such that kδ → ∞, kδ2 → 0. (3.10)

Then, denoting ψ(t) = t− t2

2
− ln(1 + t) for t > −1,

pk,δ(α) = (1 + o(1))

√

(1 − a)a

2π(1 − α)α

√
kνδ√

lnQα

exp

{

−(lnQα)2

2kνδ2
− kνψ

(
lnQα

kνδ

)}

. (3.11)
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3.4 Asymptotics of power

For fixed δ and k, power can be analyzed using previous results (Signorovitch 2006, Storey
2007, Chi 2008). Under the setup here, since (δ, k) → (0,∞), the asymptotics of power are
of interest. To avoid subtleties that a finite number of nulls may cause, we consider power
under the situation where arbitrarily many nulls can be tested. For any procedure, let Na

and Ra = R − R0 denote the numbers of false nulls and rejected false nulls, respectively.
Then, provided the limit below exists,

power∞ = lim
N→∞

E[Ra/Na], (3.12)

characterizes the power of the procedure when N ≫ N∗. We compare the powers of different
procedures when they control the pFDR around or below the same level. For N ≫ N∗, the
pFDR of a procedure can be characterized by

pFDR∞ = lim
N→∞

E[R0/R |R > 0]. (3.13)

As the limits in (3.12) and (3.13) are defined for fixed δ and k, we use power∞(δ, k) and
pFDR∞(δ, k) to indicate the dependency and consider the asymptotics of the quantities as
(δ, k) → (0,∞). Fix α ∈ (0, 1). First consider the thresholding procedure with cut-off α,

d∗i (X) = 1 {P(ηi = 0 |X) ≤ α} , i = 1, 2, . . . ,

i.e., d∗ rejects Hi if and only P(ηi = 0 |X) ≤ α. Denote by power∗∞(δ, k) and pFDR∗
∞(δ, k)

the asymptotic power and pFDR of d∗, respectively.

Proposition 3.1 Suppose (δ, k) → (0,∞) such that

pk,δ(α) → 0 while staying positive, and (3.14)

pk,δ(α1) = o(pk,δ(α)) for any 0 < α1 < α, (3.15)

Then d∗ has the following property

for any fixed δ > 0 and k ≥ 1, the limits in (3.12) and (3.13) exist,

and Ra/Na
P→ power∞ as N → ∞.

(3.16)

Moreover,

power∗∞(δ, k) = (1 + o(1))
(1 − α)pk,δ(α)

a
, pFDR∗

∞(δ, k) = (1 + o(1))α. (3.17)

We use d∗ as a baseline to compare other procedures that satisfy the basic property (3.16)
while asymptotically controlling the pFDR.
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Proposition 3.2 Let (δ, k) → (0,∞) as in Proposition 3.1. Let d be a procedure satisfying
(3.16) with lim pFDR∞(δ, k) ≤ α. If power∞(δ, k) ≥ power∗∞(δ, k) for all (δ, k), then for
any α2 > α,

power∞(δ, k) ≤ (1 + o(1))
pk,δ(α2)

a
, pFDR∞(δ, k) = (1 + o(1))α. (3.18)

It is not hard to see that provided Qα > 1, the pk,δ(α) given in Theorems 3.1 and 3.2
satisfies (3.14) and (3.15) and therefore the above results apply. Since by Proposition 3.1,
pk,δ(α2) is of the same order as the power of a thresholding procedure with cut-off α2, Propo-
sition 3.2 basically says that for any procedure satisfying (3.16) with lim pFDR∞(δ, k) ≤ α,
its power is dominated up to a constant factor by a thresholding procedure with a cut-off
just a little bit above α. In view of this, one question is whether there is a most power-
ful procedure among those that satisfy (3.16) and lim pFDR∞(δ, k) ≤ α, and in particular,
whether d∗ is such one. As seen next, in general the answer is no. Given c > 0, let d be a
procedure such that for each (δ, k), its cut-off is α+ ckδ2, i.e.

di(X) = 1
{
P(ηi = 0 |X) ≤ α+ ckδ2

}
.

Proposition 3.3 Under the random effects model (2.1), let (δ, k) be as in Theorem 3.1.
Suppose Qα > 1. Given M > 1, let c = (1 − α)αI(θ0) lnM/ lnQα. Then d satisfies (3.16)
and lim pFDR∞(δ, k) ≤ α, while power∞(δ, k) = (M + o(1))power∗∞(δ, k).

More generally, there are no asymptotically most powerful procedures that satisfy (3.16)
and lim pFDR∞(δ, k) ≤ α.

As an illustration, consider multiple testing for the mean values of N(θ, 1) as in Section
3.2. Figure 3.2(B) shows the dependency of the asymptotic power of d∗ on (δ, k). Under the
same parameters as in panel (A), it graphs log10 Pt, t ∈ [1, 2], where Pt is (1 − α)/α times
the right hand side of (3.7) with k = δ−t. From Proposition 3.1, we know power∗∞(δ, k) =
(1 + o(1))Pt as δ → 0 and k = δ−t. The rapid decrease of power as δ → 0 is clear. We
next illustrate how the asymptotic power of a thresholding procedure can be arbitrarily
increased by a small change in cut-off. As seen from (3.5), for any δ and k, power∗∞(δ, k) =

Φ̄
(

ln Qα√
kδ

−
√

kδ
2

)

and the thresholding procedure with cut-off α + ckδ2 has power∞(δ, k) =

Φ̄
(

ln Q
α+ckδ2√
kδ

−
√

kδ
2

)

. As (δ, k) → (0,∞) with kδ2 → 0, the difference between the cut-offs α

and α + ckδ2 tends to 0. It is not hard to get that for both procedures, pFDR∞(δ, k) → α.
On the other hand, by (3.6), the ratio of their asymptotic powers is

(1 + o(1)) exp







(

lnQα+ckδ2√
kδ

−
√
kδ

2

)2

−
(

lnQα√
kδ

−
√
kδ

2

)2






=(1 + o(1)) exp

{
(lnQα+ckδ2)2 − (lnQα)2

kδ2

}

= (1 + o(1)) exp

{

−2c lnQα

1 − α

}

.

Therefore, by increasing c, the power of the second thresholding procedure is arbitrarily
many times higher than d∗.
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4 Summary and remarks

This article studies the issues of minimum data volume and power when k = o(δ−2), i.e., the
number of repeated measurements for each null is much smaller than the squared differences
between false and true nulls. It shows that in this case, in order to meet a pFDR based
performance criterion, the minimum data volume has to grow much faster than in the case
where k is of the same order as δ−2. It also shows how fast power will decay to 0 and the
sensitivity of the power to small changes in rejection rules.

The results are essentially due to the fact that when k is not large enough, evidence
against true nulls can only come from values of test statistics far away from the “normal”
ones. When k increases more slowly than δ−2 but faster than δ−1, such values can be treated
as moderate deviations (Dembo & Zeitouni 1998), which can yield the log-growth rate of the
minimum data volume but nevertheless may not be accurate enough to give the growth rate
itself. On the other hand, the article does not consider the case where k is only of the order
of δ−1. Analysis in this case seems to require the large deviations principle and can be quite
subtle (Chi 2007b, Dembo & Zeitouni 1998).
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Appendix: technical details

A.1 Proof for the equivalence of criteria (1.1) and (2.3)

We sketch a proof that under the random effects model (2.1), the criterion (1.1) can be
rewritten as (2.3), where the infimum in (1.1) is taken over procedures satisfying (2.2). For
more details, see Chi & Tan (2008).

For any procedure d(X) as in (2.2), R =
∑N

i=1 di(X) and R0 =
∑N

i=1 1 {ηi = 0} di(X).
Given X, if R > 0, then, as di(X) are now determined,

E [R0/R |X] =
1

R

N∑

i=1

di(X)P(ηi = 0 |X) ≥
N

min
i=1

P(ηi = 0 |X),

with equality if and only if d only rejects Hi with the smallest P(ηi = 0 |X). On the other
hand, if R = 0, then by definition, E[R0/R |R > 0,X] = 1. Note that by Bayes rule,

P(ηi = 0 |X) = P(ηi = 0 |Xij, j = 1, . . . , k) =

[

1 +
a

1 − a

k∏

j=1

fa(Xij)

f0(Xij)

]−1

. (A.1)

It is then seen that the criterion (1.1) can be rewritten as (2.3).
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A.2 Proofs for general multiple tests

Recall that by Bikjalis’ theorem (Nagaev 1979), there is an absolute constant β > 0, such
that for any Z1, Z2, . . . i.i.d. with EZ1 = 0, Var(Z1) = σ2 > 0 and E|Z1|3 <∞,

∣
∣
∣
∣
∣
Φ̄(t) − P

(

1

σ
√
k

k∑

i=1

Zi ≥ t

)∣
∣
∣
∣
∣
≤ βE|Z1|3
σ3
√
k(1 + |t|3)

, k = 1, 2, . . . . (A.2)

Proof of Theorem 3.1. For θ ∈ Θ ⊂ R, let δ = θ − θ0. Then

ℓ(θ, x) − ℓ(θ0, x) = ℓ̇(θ0, x)δ +
A(θ0, θ, x)δ

2

2
(A.3)

= ℓ̇(θ, x)δ − A(θ, θ0, x)δ
2

2
. (A.4)

According to (2.6), we need to compute pk,δ(α). By (2.7),

pk,δ(α) = (1 − a)Pθ0
(Ek) + aPθ(Ek), (A.5)

where Pθ is the k-fold product of the probability measure with density fθ and Ek is the event
{(X1, . . . , Xk) :

∑k
i=1[ℓ(θ,Xi)− ℓ(θ0, Xi)] ≥ lnQα}. Under fθ0

, ℓ̇(θ0, Xi) are i.i.d. with mean
0 and variance I(θ0). Given ǫ > 0, define events

Gk =

{∣
∣
∣
∣
∣

1

k

k∑

i=1

A(θ0, θ,Xi) + I(θ0)

∣
∣
∣
∣
∣
≤ ǫ

}

.

Denote Zi = ℓ̇(θ0, Xi). By (A.3), F− ∩Gk ⊂ Ek ∩Gk ⊂ F+ ∩Gk, where, for θ 6= θ0,

F± =

{

sign(δ)
√

kI(θ0)

k∑

i=1

Zi ≥ u±

}

with u± =
lnQα + 1

2
k(I(θ0) ∓ ǫ)δ2

√

kI(θ0) |δ|
.

Without loss of generality, we only consider the case θ > θ0. Then

Pθ0
(F−) − Pθ0

(Gc
k) ≤ Pθ0

(Ek) ≤ Pθ0
(F+) + Pθ0

(Gc
k). (A.6)

By (A.2) and Assumption 3,

∣
∣Φ̄(u±) − Pθ0

(F±)
∣
∣ ≤ βM3√

k I(θ0)3/2(1 + |u±|3)
.

We need the following results.

Lemma A.1 If k satisfies (3.2), then, as δ → 0,

Φ̄(u±) = (1 + o(1))
e−u2

±
/2

√
2πu±

, (A.7)

1√
k(1 + |u±|3)

= o(Φ̄(u±)), (A.8)

Pθ0
(Gc

k) = o(Φ̄(u±)). (A.9)
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Assume Lemma A.1 is true for now. By (A.6)–(A.9), there is rk → 0, such that

(1 − rk)
e−u2

−
/2

√
2πu−

≤ Pθ0
(Ek) ≤ (1 + rk)

e−u2
+

/2

√
2πu+

.

Since kδ2 → 0, u− ∼ u+ ∼ ln Qα√
kI(θ0) δ

. On the other hand,

u2
± =

(lnQα)2

kI(θ0)δ2
+

(I(θ0) ∓ ǫ) lnQα

I(θ0)
+

(I(θ0) ∓ ǫ)2kδ2

4I(θ0)
.

By Assumption 1, I(θ0) > 0. Since ǫ > 0 is arbitrary and kδ2 → 0, we then get

Pθ0
(Ek) = (1 + o(1))

√

kI(θ0) δ√
2π lnQα

exp

{

− (lnQα)2

2kI(θ0)δ2
− lnQα

2

}

. (A.10)

With similar argument, now applied to ℓ̇(θ,Xi) under fθ,

Pθ(Ek) = (1 + o(1))

√

kI(θ)δ√
2π lnQα

exp

{

− (lnQα)2

2kI(θ)δ2
+

lnQα

2

}

,

where +1
2
lnQα in the exponential is due to −1

2
A(θ, θ0, x)δ

2 in (A.4). By Assumption 2,
there are constants C > 0 and r > 0, such that for |δ| < r,

∣
∣
∣
∣

1

kI(θ)δ2
− 1

kI(θ0)δ2

∣
∣
∣
∣
≤ C

k|δ|I2(θ0)
.

Since kδ → ∞, it follows that

Pθ(Ek) = (1 + o(1))

√

kI(θ0)δ√
2π lnQα

exp

{

− (lnQα)2

2kI(θ0)δ2
+

lnQα

2

}

. (A.11)

Combining (A.5), (A.10), (A.11), and exp{ ln Qα

2
} =

√
(1−a)(1−α)

aα
, (3.3) then follows. �

Proof of Lemma A.1. Because u± → ∞ as δ → 0, (A.7) follows from (3.6). To show (A.8),
it suffices to show

√
ku2

±e
−u2

±
/2 → ∞ as δ → 0, or, equivalently, ln k − u2

± + 4 lnu± → ∞.
Because u± is of the same order as 1√

kδ
and kδ2 → 0, it is seen the above asymptotic follows

if 1
kδ2 = o(ln k), or (k ln k)δ2 → ∞. Now by s(δ) → ∞ and s(δ) = o(ln(1/δ)),

(k ln k)δ2 =
1

δ2s(δ)

(

2 ln
1

δ
− ln s(δ)

)

δ2 → ∞.

To show (A.9), let λ > 0 be as in (3.1). Then Pθ0
(Gc

k) is of the same order as e−λk. By
(A.7), it suffices to show u2

± = o(k). Since u2
± is of the same order as 1/(kδ2) and kδ → ∞,

the last claim is proved. �

14



Proof of Corollary 3.1. In place of (A.3) and (A.4), we have

ℓ(θ, x) − ℓ(θ0, x) = ℓ̇(θ0, x)
T δ +

δTA(θ0, θ, x)δ

2
= ℓ̇(θ, x)T δ − δTA(θ, θ0, x)δ

2
.

Let e = δ/|δ|. Under fθ0
, ℓ̇(θ0, Xi)

T e are i.i.d. with mean 0 and variance v(θ0) = eT I(θ0)e > 0;
under fθ, ℓ̇(θ,Xi)

T e are i.i.d. with mean 0 and variance v(θ) = eT I(θ)e. Applying the proof
of Theorem 3.1 to ℓ̇(θ0, Xi)

T e and ℓ̇(θ,Xi)
T e yields

pk,δ(α) ∼
√

(1 − a)a

2π(1 − α)α

√

kv(θ0) |δ|
lnQα

exp

{

− (lnQα)2

2kv(θ0) |δ|2
}

.

Since v(θ0)|δ|2 = δT I(θ0)δ, (3.4) then follows. �

A.3 Proofs for multiple tests on Gamma distributions

We next prove Theorem 3.2. Denote by Gk(x) the upper tail probability of Gamma(kν, 1),
i.e. Gk(x) = 1

Γ(kν)

∫∞
x
skν−1e−s ds, x > 0. As noted in Section 3.3, the main step is to find

the asymptotics of Gk(ck) and Gk(dk), where ck is defined in (3.9) and dk = ck

1+δ
.

To find the asymptotic of Gk(ck), first, by power expansion of ln(1 + δ), for δ ∈ (−1, 1),

ck = kν +
lnQα

δ
+ kνδ

∞∑

j=0

(−δ)j

(j + 1)(j + 2)
+ lnQα,

dk = kν +
lnQα

δ
+ kνδ

∞∑

j=0

(−1)j−1δj

j + 2
.

Because kδ → ∞ while kδ2 → 0, it is seen that in each of the sums, every term is of an
infinitesimal order of its previous one. Let

z = kν, s = z(1 + t), b = lnQα. (A.12)

With the variable substitutions,

Gk(ck) =
zze−z

Γ(z)

∫ ∞

b
zδ

+D(δ,z)

(1 + t)z−1e−zt dt

︸ ︷︷ ︸

I(z,δ)

, Gk(dk) =
zze−z

Γ(z)

∫ ∞

b
zδ

+L(δ,z)

(1 + t)z−1e−zt dt

︸ ︷︷ ︸

J(z,δ)

,

where

D(δ, z) = δr(δ) +
b

z
, with r(δ) =

∞∑

j=0

(−δ)j

(j + 1)(j + 2)
, (A.13)

L(δ, z) = δr̄(δ) +
b

z
, with r̄(δ) = −

∞∑

j=0

(−δ)j

j + 2
. (A.14)
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The main step is to show

I(z, δ) ∼ δ

b
exp

{

− b2

2zδ2
− b

2
− zψ

(
b

zδ

)}

, (A.15)

J(z, δ) ∼ δ

b
exp

{

− b2

2zδ2
+
b

2
− zψ

(
b

zδ

)}

. (A.16)

Assume the two formulas are true for now. By Stirling’s formula, zze−z

Γ(z)
= (1+ o(1))

√
z
2π

.

Then by (A.15) and (A.16),

Gk(ck) ∼
√

z

2π

δ

b
exp

{

− b2

2zδ2
− b

2
− zψ

(
b

zδ

)}

,

Gk(dk) ∼
√

z

2π

δ

b
exp

{

− b2

2zδ2
+
b

2
− zψ

(
b

zδ

)}

.

Since pk,δ(α) = (1 − a)Gk(ck) + aGk(dk) and (A.12),

pk,δ(α) ∼
√

(1 − a)a

2π(1 − α)α

√
kνδ√

lnQα

exp

{

−(lnQα)2

2kνδ2
− kνψ

(
lnQα

kνδ

)}

.

The proof is complete by (2.6).
The rest of the section is devoted to the proof of (A.15) and (A.16). Observe r(δ) → 1/2

and r̄(δ) → −1/2 as δ → 0. By (3.10),

zδ = νkδ → ∞, zδ2 = νkδ2 → 0. (A.17)

It is then not hard to check that D(δ, z) ∼ δ/2. Also, for any z > 0, (1 + t)z−1e−zt is strictly
decreasing in t > 0. Given 0 < ǫ≪ 1, using (A.17) again,

Iǫ(z, δ) :=

∫ ǫ

b
zδ

+D(δ,z)

(1 + t)z−1e−zt dt ≥
∫ 3b

zδ

2b
zδ

(1 + t)z−1e−zt dt

≥
(

1 +
3b

zδ

)z−1

e−3b/δ

(
b

zδ

)

(a)

≥ exp

{[

3b

zδ
− 1

2

(
3b

zδ

)2
]

(z − 1) − 3b

δ

}

b

zδ
≥ exp

{

− C

zδ2

}
b

zδ

for some C > 0, where (a) is due to ln(1+x) ≥ x−x2/2 for x > 0. Therefore, Iǫ(z, δ)
1/z → 1.

On the other hand,

(∫ ∞

ǫ

(1 + t)z−1e−zt dt

)1/z

→ sup
t≥ǫ

(1 + t)e−t < 1.
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As a result, for any ǫ > 0, I(z, δ) ∼ Iǫ(z, δ). Since ǫ is arbitrary, it follows that we can
replace (1 + t)z−1 in the integrand to (1 + t)z to get

I(z, δ) ∼
∫ ǫ

b
2δ

+D(δ,z)

(1 + t)ze−zt dt =

∫ ǫ

b
2δ

+D(δ,z)

e−zϕ(t) dt, (A.18)

where ϕ(t) = t− ln(1 + t). By ϕ′(t) = t
1+t

, ϕ(t) is a strictly increasing function from (0,∞)

onto (0,∞) with smooth inverse ϕ−1(u). On the other hand, ϕ(t) = t2

2
+O(t3), as t ↓ 0. As

a result, as u→ 0+, ϕ−1(u) = (1 + o(1))
√

2u and hence

(ϕ−1)′(u) =
1

ϕ′(ϕ−1(u))
= 1 +

1

ϕ−1(u)
=

1 + o(1)√
2u

as u→ 0.

By (A.18) and the arbitrariness of ǫ > 0 as well as the above properties of ϕ,

I(z, δ) ∼
∫ ϕ(ǫ)

ϕ( b
zδ

+D(δ,z))

e−zu

√
2u

du ∼
∫ ∞

ϕ( b
zδ

+D(δ,z))

e−zu

√
2u

du = I1.

By variable substitution u = v/z,

I1 =
1√
z

∫ ∞

zϕ( b
zδ

+D(δ,z))

1√
2v
e−v dv.

Since zδD(δ, z) → ∞ and D(δ, z) → 0, by ϕ(t) ∼ t2/2 as t→ 0,

zϕ

(
b

zδ
+D(δ, z)

)

∼ z

2

(
b

zδ

)2

=
b2

2zδ2
→ ∞. (A.19)

Recall that for any a,
∫∞

x
tae−t dt ∼ xae−x, as x→ ∞. Then by (A.19)

I1 ∼
1√
z

1
√

2zϕ

(
b

zδ
+D(δ, z)

)
exp

{

−zϕ
(
b

zδ
+D(δ, z)

)}

∼ δ

b
exp

{

−zϕ
(
b

zδ
+D(δ, z)

)}

.

Because ψ(t) = ϕ(t) − t2

2
,

zϕ

(
b

zδ
+D(δ, z)

)

=
z

2

(
b

zδ
+D(δ, z)

)2

+ zψ

(
b

zδ
+D(δ, z)

)

.

First, by (A.17),

z

2

(
b

zδ
+D(δ, z)

)2

=
b2

2zδ2
+
bD(δ, z)

δ
+
z(D(δ, z))2

2

=
b2

2zδ2
+
b

δ

(

δr(δ) +
b

z

)

+
z

2

(

δr(δ) +
b

z

)2

=
b2

2zδ2
+
b

2
+ o(1).
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Second, since ψ′(x) = ϕ′(x) − x = 1 − 1
1+x

− x = − x2

1+x
, by Taylor expansion and (A.13)

zψ

(
b

zδ
+D(δ, z)

)

− zψ

(
b

zδ

)

= zD(δ, z)ψ′
(
b

zδ
+ ξD(δ, z)

)

=
zδ

2

(
b

zδ

)2

= o(1).

As a result,

zϕ

(
b

zδ
+D(δ, z)

)

=
b2

2zδ2
+
b

2
+ zψ

(
b

zδ

)

+ o(1)

and hence by I(z, δ) ∼ I1, (A.15) then follows. By similar argument, it can be shown that

J(z, δ) ∼ 1√
z

1
√

2zϕ

(
b

zδ
+ L(δ, z)

)
exp

{

−zϕ
(
b

zδ
+ L(δ, z)

)}

∼ δ

b
exp

{

−zϕ
(
b

zδ
+ L(δ, z)

)}

,

which leads to (A.16).

A.4 Proofs for the asymptotics of power

A basic fact to use is that under the random effects model (2.1), P(ηi = 0 |X) are i.i.d. and
by (A.1), given δ > 0 and k, for any α ∈ (0, 1), the probability of {P(ηi = 0 |X) ≤ α} is

pk,δ(α) = (1 − a)P0(Ek(α)) + aPa(Ek(α)), (A.20)

where P0 and Pa are the probability distributions under true and false nulls, respectively,

and Ek(α) =
{
∏k

j=1
fa(Xj)

f0(Xj)
≥ Qα

}

with X1, . . . , Xk being i.i.d.

Proof of Proposition 3.1. For fixed N ,

R =
N∑

i=1

d∗i (X), R0 =
N∑

i=1

d∗i (X)(1 − ηi), Ra =
N∑

i=1

d∗i (X)ηi.

Given δ > 0 and k, since d∗i (X) = 1 {P(ηi = 0 |X) ≤ α}, by (A.20) and the Weak Law

of Large Numbers (WLLN), R/N
P→ pk,δ(α) > 0. Similarly, R0/N

P→ (1 − a)P0(Ek(α)),

Ra/N
P→ aPa(Ek(α)) and Na/N → a. Property (3.16) can then be proved. In particular,

power∞(δ, k) = Pa(Ek(α)), pFDR∗
∞(δ, k) =

(1 − a)P0(Ek(α))

pk,δ(α)
. (A.21)
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To show (3.17), given X with R > 0,

E [R0/R |X] =
1

R

N∑

i=1

E [1 {P(ηi = 0 |X) ≤ α} (1 − ηi) |X]

=
1

R

N∑

i=1

1 {P(ηi = 0 |X) ≤ α}P(ηi = 0 |X)

≤ 1

R

N∑

i=1

α1 {P(ηi = 0 |X) ≤ α} = α.

Since pk,δ(α) > 0, P(d∗i (X) > 0 for at least one i = 1, . . . , N) > 0. Therefore, the conditional
expectation of R0/R over X with R > 0 is well defined, giving E[R0/R |R > 0] ≤ α. Thus
pFDR∗

∞(δ, k) ≤ α for all (δ, k). On the other hand, given β < α,

E[R0/R |X] ≥ 1

R

N∑

i=1

E[1 {β ≤ P(ηi = 0 |X) ≤ α} (1 − ηi) |X]

≥ β

R

N∑

i=1

1 {β ≤ P(ηi = 0 |X) ≤ α} .

Under the random effects model and the WLLN,

N∑

i=1

1 {β ≤ P(ηi = 0 |X) ≤ α} = (1 + op(1))[pk,δ(α) − pk,δ(β)]N,

where op(1) stands for some sequence of random variables ξN
P→ 0 as N → ∞. Taking

expectation over X with R > 0 and then letting N → ∞,

pFDR∗
∞(δ, k) ≥ β[pk,δ(α) − pk,δ(β)]

pk,δ(α)
.

Let (δ, k) → (0,∞) while satisfying (3.14) and (3.15). Then lim pFDR∗
∞(δ, k) ≥ β. Since β

is arbitrary, pFDR∗
∞(δ, k) → α, showing the second half of (3.17). Finally, combining this

with (A.20) and (A.21), the first half of (3.17) follows. �

Proof of Proposition 3.2. Let d be a procedure more powerful than d∗ while satisfying (3.16)
and lim pFDR∞(δ, k) ≤ α. Let (δ, k) be fixed first. Given 0 < α1 < α < α2, let

R(1) = #{i : P(ηi = 0 |X) < α1, di(X) = 1},
R(2) = #{i : α1 ≤ P(ηi = 0 |X) ≤ α2, di(X) = 1},
R(3) = #{i : P(ηi = 0 |X) > α2, di(X) = 1}.
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Then R = R(1) +R(2) +R(3) and for any X with R > 0,

E [R0/R |X] =
1

R

N∑

i=1

di(X)P(ηi = 0 |X) ≥ α1R
(2) + α2R

(3)

R
. (A.22)

Since d satisfies (3.16), by the WLLN, Ra = (a + op(1))power∞(δ, k)N as N → ∞. By
the assumption and (3.17), power∞(δ, k) ≥ power∗∞(δ, k) = (1 − α + o(1))pk,δ(α)/a. Since
R ≥ Ra, R is at least of the same order as pk,δ(α)N . On the other hand, since

R(1) ≤ #{i : P(ηi = 0 |X) < α1} = (1 + op(1))pk,δ(α1)N,

by (3.15), R(1) = op(1)R and so R(2) +R(3) = (1 + op(1))R. Therefore,

α1R
(2) + α2R

(3)

R
= (1 + op(1))

α1R
(2) + α2R

(3)

R(2) +R(3)
= (1 + op(1))

[

α1 + (α2 − α1)
R(3)

R

]

.

Combine this with (A.22). Taking expectation over X and letting N → ∞ yield

pFDR∞(δ, k) ≥ α1 + (α2 − α1) lim
N→∞

E[R(3)/R |R > 0 ].

Let (δ, k) → (0,∞). As lim pFDR∞(δ, k) ≤ α by the assumption and α1 < α is
arbitrary, the second half of (3.18) follows. Furthermore, the above inequality implies
limN E[R(3)/R |R > 0] = o(1). Since for each fixed (δ, k), R(1) = op(1)R and Na =
(a + op(1))N , it then follows that, as (δ, k) → (0,∞), limN E[R/Na] = limN E[(R(2) +
R(3))/Na] = (1 + o(1)) limN E[R(2)/Na] . Since R(2) is no greater than the number of nulls
with P(ηi = 0 |X) ≤ α2, which is (1 + op(1))pk,δ(α2)N ,

power∞(δ, k) ≤ lim
N→∞

E

[
R

Na

]

= (1 + o(1)) lim
N→∞

E

[
R(2)

Na

]

≤ (1 + o(1))
pk,δ(α2)

a
.

Therefore, power∞(δ, k) satisfies (3.18). �

Proof of Proposition 3.3. Denote αk = α+ ckδ2. By the WLLN, d satisfies (3.16). For
each (δ, k), d is a thresholding procedure, so pFDR∞(δ, k) ≤ αk. Then by kδ2 → 0, d satisfies
lim pFDR∞(δ, k) ≤ α. Given (δ, k), following the same argument that leads to (A.11),

power∞(δ, k) = (1 + o(1))

√

kI(θ0)δ√
2π lnQαk

exp

{

− (lnQαk
)2

2kI(θ0)δ2
+

lnQαk

2

}

.

Since Qαk
→ Qα, to get power∞(δ, k) = (M + o(1))power∗∞(δ, k) as (δ, k) → (0,∞), it boils

down to showing

exp

{

− (lnQαk
)2

2kI(θ0)δ2

}

= (1 + o(1))M exp

{

− (lnQα)2

2kI(θ0)δ2

}

.
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By Taylor expansion,

lnQαk
− lnQα = ln

1 − αk

1 − α
− ln

αk

α
= − ckδ2

(1 − α)α
+O((kδ2)2).

As a result,
(lnQαk

)2

2kI(θ0)δ2
=

(lnQα)2

2kI(θ0)δ2
− c lnQα

(1 − α)αI(θ0)
+O(kδ2).

By the definition of c, the result follows.
Finally, we show that among procedures that satisfy (3.16) and lim pFDR∞(δ, k) ≤ α,

no one is asymptotically the most powerful. It suffices to show that for any such procedure
d that is more powerful than d∗, there is yet another one more powerful than d. First, by
diagonal argument and the first part of (3.18), there is a decreasing αk → α, such that
power∞(δ, k) ≤ 2pk,δ(αk)/α for large k. Now we use the same construction as above. Let
α′

k = αk + ckkδ
2, with ck = (1 − αk)αkI(θ0)M/ lnQαk

, where M > 0. The thresholding
procedure using α′

k as cut-offs satisfy the conditions of Proposition 3.2. It is seen that as
long as M is large enough, the power of this new procedure will be greater than 4pk,δ(αk)/α,
and hence at least twice as large as power∞(δ, k). �
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