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Abstract. Let X = {Xt}t∈Zd ∼ P and Y = {Yt}t∈Zd ∼ Q be two independent stationary random
fields with finite state spaces. Suppose Y is a Gibbs field with summable potential. Given a random
realization x of X, the conditional large deviation principle (LDP) associated with (xt, Yt)t∈Zd are
established at 3 levels, for empirical means, marginals, and field. In general, the rate function is a
random variable. However, when X is ergodic, the rate function is deterministic and a variational
characterization of the conditional LDP in terms of the specific relative entropy with respect to
P×Q is established. We then prove a factorization formula which characterizes the LDP associated
with P ×Q in terms of the LDP associated with P and the “quasi-quenched” LDP associated with
P ×Q relative to P . Finally, we show that if Q is a stationary Gibbs field with summable potential,
then for any stationary P , the “quasi-quenched” LDP associated with P × Q relative to P exists
and is equal to the expected value of the quenched LDP. As a consequence of the results, if the
LDP holds for P , then the LDP holds for P ×Q as well.
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1 Introduction

In this article, we consider the conditional LDP for Gibbs random fields and related issues.

1.1 Conditional LDP

Let X = {Xt}t∈Zd ∼ P and Y = {Yt}t∈Zd ∼ Q be two independent stationary random fields,
with respective finite state spaces SX and SY . Given a random realization x of X, there are three
versions of LDP for (x, Y ) = (xt, Yt)t∈Zd , one for the empirical means, one for the empirical marginal
fields, and one for the empirical field (“the process level LDP”), all of which henceforth are referred
to as the conditional LDP of (X, Y ), given X = x. The conditional LDP is also often termed
“quenched LDP” because it is established for a fixed, though random, value of X. Several cases
of conditional LDP were established by Comets [6], when both X and Y are i.i.d. In recent years,
the topic has been actively studied in the context of lossy data compression using random code
books (cf. [9, 17, 4, 10] and references therein). Results in this regard are referred to as generalized
Asymptotic Equipartition Property (AEP). Except for [10], where the generalized AEP for random
fields is considered, the focus of the studies has been on the conditional LDP for empirical means
for processes on Z or R satisfying various mixing conditions.

We shall consider the conditional LDP for (X, Y ) given X = x when X is a stationary random
field and Y is a Gibbs random field defined on Zd. For the topic of the (unconditional) LDP for
Gibbs random fields, we refer the reader to [13]. First, fix some general notations. Let S be an
arbitrary finite set, D ⊂ Zd, and n, ν ∈ N. Then

SZd
= the compact space of functions ω : Zd→S equipped with product topology;

θt = the shift operator on SZd
, θtx 7→ x̃, x̃s = xs+t, ∀x ∈ SZd

, ∀t ∈ Zd;
M(SD) = the compact space of probability measures on SD topologized by weak convergence;
Ms(SZ

d
) = the closed subspace of M(SZd

) consisting of P such that P = P ◦ θ−1
t , ∀t ∈ Zd;

zD = the restriction of z on D, ∀z ∈ SZd
;

Cn = the block {(t1, . . . , td) ∈ Zd : 0 ≤ ti < n};
B(SD,Rν) = {f : f is a bounded function SD→Rν};
‖f‖ = supx∈SD |f(x)|, ∀f ∈ B(SD,Rν);
Br = {u ∈ Rν : |u| < r}, r > 0.

For the particular problems considered here, we also introduce the following notations

Σ = SX × SY , ΩX = SZd

X , ΩY = SZd

Y ,
BX (resp. BY ) = the product topology of ΩX (resp. ΩY );
G(U) = the class of all Gibbs measures with respect to (wrt) a stationary summable interaction

potential U on SZd

Y ;
I = the σ-algebra of shift invariant sets of ΩX .

Suppose X ∼ P ∈ Ms(ΩX) and Y ∼ Q ∈ G(U) ∩Ms(ΩY ) are independent. Since (ΩX ,BX)
is a Borel space, there is a regular conditional distribution for X given I, denoted P ( · |I)(x),
x ∈ ΩX , which is stationary and ergodic (section 4.3, [1]). Our result on the conditional LDP for
the empirical means associated with (X, Y ), given X = x, is as follows.

1



Theorem 1 (Conditional LDP for empirical means) For P -almost all x ∈ ΩX , for any n0, ν ∈ N,
and f ∈ B(ΣD,Rν), with D = Cn0 , the empirical means

1
nd

∑

t∈Cn

f((θtx, θtY )D), n ∈ N (1.1)

satisfy the LDP with a good rate function I( · ; x) = Λ∗x( · ) parameterized by x, where

Λ∗x(u) = sup
λ∈Rν

{〈λ, u〉 − Λx(λ)} (1.2)

Λx(λ) = lim
n→∞Λn,x(λ), Λn,x(λ) = ΛCn,x(λ) (1.3)

and for any finite V ⊂ Zd,

ΛV,x(λ) =
1
|V |EP

[
log EQ exp

{∑

t∈V

〈λ, f((θt · , θtY )D)〉
} ∣∣∣ I

]
(x). (1.4)

Remark : When P is ergodic, the above conditional LDP has a deterministic good rate function. 2

Given a probability space Ω, for any ω ∈ Ω, denote by δω the probability measure on Ω, such
that δω(B) = 1B(ω), B ⊂ Ω measurable. Given X = x, the empirical marginal measures are
random elements of M(ΣD) given by

P̂x,Cn,D =
1
nd

∑

t∈Cn

δ(θtx, θtY )D
(1.5)

and the empirical fields are random elements of M(ΣZd
) given by

P̂x,Cn =
1
nd

∑

t∈Cn

δ(θtx, θtY ). (1.6)

On the conditional LDP for the empirical marginals and fields, we have

Theorem 2 (Conditional LDP for empirical marginals and fields) For P -almost all x ∈ ΩX , the
following hold.

(a) For any finite D ⊂ Zd, the empirical measures (1.5) satisfy the LDP in M(ΣD) wrt the
weak topology, with a convex good rate function parameterized by x,

ID(π; x) = sup
f∈B(ΣD,R)

{Eπf − Λx(f)} (1.7)

where

Λx(f) = lim
n→∞

1
nd

EP

[
log EQ exp

{ ∑

t∈Cn

f((θt · , θtY )D)

}∣∣∣ I
]

(x). (1.8)

(b) The empirical fields (1.6) satisfy the LDP in M(ΣZd
) wrt the weak topology, and with a

convex good rate function parameterized by x,

I(π; x) = sup{ICn(πCn ; x) : n ≥ 1}. (1.9)

Furthermore,
I(π;x) = ∞ if π 6∈ Ms(ΣZ

d
).

Remark: When P and Q are i.i.d., (1.7) is implied by Theorem IV.1 of [6]. 2
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Theorem 1 is established by adapting the asymptotic value method [2] and an idea of [13] to
divide a block into smaller blocks, with modifications to handle the randomness introduced by X.
By the separability of the space

Bc =
⋃∞

ν=1

⋃
D⊂Zd: |D|<∞B(ΣD,Rν),

it is seen that almost surely, given X = x, the LDP for the empirical means holds simultaneously
for all f ∈ Bc. Then different levels of conditional LDP in Theorem 2 are obtained by lifting the
LDP for the empirical means using Dawson-Gärtner projective limit theorem [8].

1.2 Variational characterization of conditional LDP

From the previous subsection, it is seen that when X is stationary, the conditional LDP in general
is random. For example, the process level LDP for (X, Y ) conditioning on X has a (B × I)-
measurable rate function I(π; x), with B the Borel σ-algebra induced by the weak topology of
M(ΣZd

) (Proposition 1). When the stationary random field X is ergodic, the rate function is
deterministic and, under certain circumstances, can be characterized as a constrained maximum
function.

In data compression, a variational characterization of the rate function is established as follows
[9, 17, 4, 10]. Suppose X and Y both are stationary and ergodic and Y satisfies some strong mixing
condition. Then given f ∈ B(Σ,R), for any u < Ef(X,Y ), almost surely, conditioning on X = x,

lim
n→∞−

1
nd

log Pr

{
1
nd

∑

t∈Cn

f(xt, Yt) ≤ u

}
= R(P, Q, u) = lim

n→∞
1
nd

inf
Vn∈Mn(u)

H(Vn‖Πn). (1.10)

where Πn = (P ×Q)Cn is the marginal of P ×Q on ΣCn ,

H(µ‖ν) =
∑

z∈ΣCn

µ(z) log
µ(z)
ν(z)

, (1.11)

is the relative entropy of µ wrt ν, µ, ν ∈M(ΣCn), and

Mn(u) =

{
Vn ∈M(ΣCn) : SCn

X -marginal of Vn = PCn , and
1
nd

EVn

∑

i∈Cn

f(xi, Yi) ≤ u

}
.

It would be interesting to see if the rate functions of the conditional LDP have similar variational
characterizations, in particular, ones in terms of the specific relative entropy wrt P × Q, at least
for the case where X is ergodic. Recall that given µ, ν ∈M(ΣZd

), and V ⊂ Zd, letting HV (µ‖ν) =
HV (µV ‖νV ), the specific relative entropy of ν wrt µ is given by

h(µ‖ν) = lim
n→∞

1
nd

HCn(µ‖ν) (1.12)

provided the limit exists.
In [6], for X ∼ P and Y ∼ Q both i.i.d., it was shown that the empirical means (1.1) satisfy the

LDP wrt the deterministic convex rate function J(u) = inf h(π‖P ×Q), where the infimum is taken
over all stationary random fields π on ΣZd

with ΩX -marginal equal to P and Eπf(X1, Y1) = u.
This constrained variational characterization was established first for the empirical fields, then for
the empirical means by the contraction principle (Theorem III.1, [6]).
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We shall establish variational characterizations for the conditional LDP when both P and Q
are Gibbs. Comparing to the i.i.d. case in [6], it is now more difficult to directly establish the LDP
for the empirical fields. Instead, we shall first deal with the LDP for the empirical means as in
equation (1.10). Then we shall obtain a variational characterization for the LDP for the empirical
fields by projective limit. The results by this approach are summarized as follows.

Theorem 3 (Variational characterization of the LDP of empirical means) Suppose that, for some
summable interaction potential UP , P ∈ G(UP ) ∩Ms(ΩX) and is ergodic. In addition, suppose
Q ∈ G(U) ∩Ms(ΩY ). Define functions Λ(λ), Λn(λ), Λ∗(λ) by (1.2)–(1.4), with x being omitted
from the subscript, as all these functions are deterministic. Define

Λ∗n(u) = sup
λ∈R

{λu− Λn(λ)}.

For π ∈M(ΣZd
), denote by πX the marginal distribution of ΩX . Define

u
(∞)
min = inf{u : sup

n≥1
Λ∗n(u) < ∞} u(∞)

max = sup{u : sup
n≥1

Λ∗n(u) < ∞} (1.13)

Then for any u,

Λ∗(u) = J(u) = lim
ε→ 0

inf{h(π‖P ×Q) : π ∈Ms(ΣZ
d
), πX = P, |Eπf − u| < ε}. (1.14)

Moreover, for u 6= u
(∞)
min , u

(∞)
max,

Λ∗(u) = J̃(u) = inf{h(π‖P ×Q) : π ∈Ms(ΣZ
d
), πX = P, Eπf = u}. 2 (1.15)

Remark : Since P ×Q is a stationary Gibbs random field on ΣZd
, h( · ‖P ×Q) exists and is lower

semi-continuous on Ms(ΣZ
d
) (cf. Eqs (2.15-16), [13]).

Corollary 1 (Variational characterization of empirical marginal fields) The rate function ID(π),
π ∈M(ΣZd

) in (1.7) has the following variational characterization

ID(π) = lim
ε→ 0

sup
f∈B(ΣD,R)
‖f‖=1

inf{h(γ‖P ×Q) : γ ∈Ms(ΣZ
d
), γX = P, |Eγf −Eπf | < ε}. (1.16)

1.3 The “quasi-quenched” LDP and a factorization formula

The results in the previous subsection expresses different levels of the conditional LDP associated
with X and Y in terms of the product of the two random fields. Conversely, it may be asked
whether the LDP for the product of two random fields can be expressed in terms of the conditional
LDP. The main result we obtain in this regard is that if one of the two random fields satisfies the
process level LDP, and the other one satisfies the so called “quasi-quenched” process level LDP
defined in a moment (Definition 1), then their product satisfies the process level LDP.

First, given x ∈ ΩX , y ∈ ΩY , define the empirical fields P̂x,Cn ∈M(ΩX) and P̂x,y,Cn ∈M(ΣZd
)

by

P̂x,Cn( · ) =
1
nd

∑

t∈Cn

δθtx( · ), P̂x,y,Cn( · ) =
1
nd

∑

t∈Cn

δθtx,θty( · ). (1.17)
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Definition 1 (“Quasi-quenched LDP”) Suppose µ ∈ M(ΩX) and ν ∈ M(ΩY ). If there is a rate
function I on M(ΣZd

), such that for any {x(n), n ∈ N} ⊂ ΩX satisfying P̂x(n),Cn
→µ in weak

topology, the following two bounds hold,

lim inf
n→∞

1
nd

log ν{P̂x(n),Y,Cn
∈ G} ≥ − inf

π∈G
I(π), ∀G ⊂M(ΣZd

) open

lim sup
n→∞

1
nd

log ν{P̂x(n),Y,Cn
∈ F} ≤ − inf

π∈F
I(π), ∀F ⊂M(ΣZd

) closed

then (µ, ν) are said to satisfy the quasi-quenched process level LDP relative to µ. The rate function
I will be denoted by Iν|µ.

Remark: Because M(ΣZd
) is compact, I is necessarily a good rate function. 2

The term “quasi-quenched LDP” is used to make distinction with the conditional LDP as well
as the annealed LDP. The conditional LDP is for the empirical fields P̂x,Y,Cn , n ≥ 1, with x ∈ ΩX

a single random realization of X, and the annealed LDP is for the empirical fields P̂X,Y,Cn , i.e.,
the process level LDP for P × Q [7]. In contrast, the quasi-quenched LDP involves a sequence of
elements x(n) ∈ ΩX . In general, if X is not ergodic, then x(n) are not necessarily identical or random
realizations of X. For instance, consider Zd = Z. If for each n ∈ N, the first n elements of x(n) are
made up of bn/2c consecutive 0’s followed by dn/2e consecutive 1’s, then the empirical measures
given by x(n) converges to π = 1

2(δ0 + δ1), with c = (c, c, . . .), which is stationary but not ergodic.
Since no random realizations of X are involved in the quasi-quenched LDP, the corresponding rate
function is deterministic, which is different from the conditional LDP.

Theorem 4 (Factorization of the LDP for product fields) Suppose P ∈ M(ΩX) satisfies the
process level LDP with a good rate function IP , i.e.

lim inf
n→∞

1
nd

log P{P̂X,Cn ∈ G} ≥ − inf
ν∈G

IP (ν), G ∈M(ΩX) open

lim sup
n→∞

1
nd

log P{P̂X,Cn ∈ F} ≤ − inf
ν∈F

IP (ν), F ∈M(ΩX) closed

Suppose Q ∈M(ΩY ) such that for any µ ∈M(ΩX) with IP (µ) < ∞, (µ,Q) satisfies the quasi-
quenched process level LDP relative to µ with a good rate function IQ|µ. Then P ×Q satisfies the
process level LDP with a good rate function

IP×Q(π) = inf
µ∈M(ΩX)

{IQ|µ(π) + IP (µ)}, (1.18)

for π ∈M(ΣZd
). 2

The idea of the proof for Theorem 4 is to condition on the empirical field induced by the random
realization of X. Roughly speaking, letting N( · ) stand for an infinitesimal neighborhood in weak
topology of a measure, one may derive

−IP×Q(π) ≈ lim
n→∞

1
nd

log Pr{P̂X,Y,Cn ∈ N(π)}

≈ lim
n→∞

1
nd

log
∫

Pr{P̂X,Y,Cn ∈ U | P̂X,Cn ∈ N(µ)}Pr{P̂X,Cn ∈ N(µ)}

≈ lim
n→∞ “Largest”

1
nd

[
log Pr{P̂X,Y,Cn ∈ N(π) | P̂X,Cn ∈ N(µ)}+ log Pr{P̂X,Cn ∈ N(µ)}

]

≈ − infµ∈M(ΩX){IQ|µ(π) + IP (µ)}.
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Since factorization naturally arises from conditioning, similar formulas have appeared in a few places
in different contexts [3, 7]. In [3], factorization derives from a sequence of probability transition
kernels satisfying the LDP continuity condition which is different from the quasi-quenched LDP
condition in Definition 1. The form of the factorization (1.18) is similar to Eqs. (7) and (9) in [7]
(also see Eq. (9) in [14]).

1.4 The quasi-quenched LDP for Gibbs fields

Comparing to the conditional LDP for the empirical fields, the quasi-quenched LDP imposes more
restrictive conditions on Q. However, if Q is a stationary Gibbs random field with summable
potential, then for any P ∈ Ms(ΩX), (P, Q) satisfies the quasi-quenched LDP relative to P .
Furthermore, the associated rate function is deterministic, whose dual function is the expected
value of the dual function associated with the conditional LDP. Indeed, we have

Theorem 5 Suppose X ∼ P ∈Ms(ΩX) and Y ∼ Q ∈ G(U) ∩Ms(ΩY ). Define

ΛV (λ) = EP ΛV,X(λ), Λn(λ) = EP Λn,X(λ), Λ(λ) = lim
n→∞Λn(λ), (1.19)

where ΛV,X(λ), Λn,X(λ) are defined in (1.3) and (1.4). Because Λn,X(λ) is bounded, equation (1.3)
and dominated convergence imply that the limit in (1.19) exists. Define

Λ∗(u) = sup
λ∈Rν

{〈λ, u〉 − Λ(λ)}. (1.20)

Suppose {x(n)}n≥1 is a sequence of elements in ΩX such that

P̂x(n),Cn
→P, n→∞ (1.21)

in the weak topology. Then the empirical means of

1
nd

∑

t∈Cn

f((θtx
(n), θtY )D),

satisfy the LDP with a good rate function Λ∗(u). 2

Consequently, by similar argument to that for Theorem 2 as well as by Theorem 4, there is

Corollary 2 Suppose Q ∈ G(U) ∩ Ms(ΩY ). For any P ∈ Ms(ΩX), (P, Q) satisfies the quasi-
quenched process level LDP relative to P , with a good rate function

IQ|P (π) = sup{ICn,P (πCn) : n ≥ 1}, π ∈M(ΣZd
), (1.22)

where for any π ∈M(ΣD), D ∈ Zd finite,

ID,P (π) = sup
f∈B(ΣD,R)

{Eπf − ΛP (f)} (1.23)

with

ΛP (f) = lim
n→∞ΛP,n(f), ΛP,n(f) =

1
nd

EP

[
log EQ exp

{ ∑

t∈Cn

f((θtX, θtY )D)

}]
. (1.24)

By Corollary 2, we get

Corollary 3 Suppose Q ∈ G(U) ∩Ms(ΩY ). For any P ∈ Ms(ΩX) satisfying the process level
LDP with a rate function IP having the property that IP (µ) = ∞ for µ 6∈ Ms(ΩX), P ×Q satisfies
the process level LDP with the rate function (1.18). 2
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The upper bound of the quasi-quenched LDP is proved by essentially the same argument for the
upper bound of the conditional LDP. However, the argument for the conditional LDP to show that
the lower and upper bounds arise from the same rate function does not work for the quasi-quenched
LDP. A different approach is required to the lower bound of the quasi-quenched LDP. We shall
adapt a method in [4], which relies more specifically on the properties of Gibbs random fields.

The rest of the article proceeds as follows. In section 2, we fix notations and collect preliminary
results on Gibbs random fields. Theorem 1 and Theorem 2 are proved in section 3. Theorem 3 and
Corollary 1 are shown in section 4. Theorem 4 is proved in section 5. Finally, Theorem 5 is proved
in section 6.

2 Preliminaries

Given t = (t1, . . . , td), s = (s1, . . . , sd) ∈ Zd, V ⊂ Zd, p ∈ N, define

Distance between t and s: |t− s| = maxi=1,...d{|ti − si|}
Distance between t and V : d(t, V ) = minτ∈V {|t− τ |}
Translation of V by t: t + V = {t + s : s ∈ V }
For any s ∈ Zd, refer to s + Cn as an n-block
Outer boundary area of V : ∂pV = {t ∈ V c : d(t, V ) ≤ p}
Inner boundary area of V : dpV = {t ∈ V : d(t, V c) ≤ p}
For p = 1, dpV is referred to as the boundary of V and denoted by ∂V

p-neighborhood of t: Np(t) = {s ∈ Zd : ‖s− t‖ ≤ p}
For convenience, define shift operators in the following more general way. Given t ∈ Zd, and

V ⊂ Zd, the shift operator θt wrt V is a map SV → S−t+V , such that for any x ∈ SV , y = θtx ∈
S−t+V , with ys = xs+t, s ∈ −t + V . When there is no confusion, V will not be specified.

For V ⊂ Zd, denote by FV the σ-field on Ω generated by the projections x 7→ x(t), t ∈ V . For
µ ∈M(Ω) and V ⊂ Zd with |V | < ∞, let µV be the marginal distribution of µ on SV , and µV ( · |y)
the marginal distribution of µV ( · |FV c)(y) on SV , with the latter being the regular conditional
distribution on FZd given FV c at y ∈ Ω.

An interaction potential is a collection of maps UV : SV → R, |V | < ∞. It is stationary if

UV (xV ) = Ut+V ((θ−1
t x)t+V ), x ∈ Ω, t ∈ Zd (2.1)

U is called summable, if

‖U‖ =
∑

0∈V

‖UV ‖ < ∞, (2.2)

Define

γp =
∑

0∈A, A6⊂Np(0)

‖UA‖. (2.3)

Then γp→ 0 as p→∞. A measure Q ∈M(Ω) is called a Gibbs measure wrt U if QV ( · |y), y ∈ Ω,
can be chosen as

QV (xV |y) = (ZV (y))−1 exp {−EV (xV |y)} , with EV (xV |y) =
∑

A∩V 6=∅
UA(ξA), x ∈ Ω (2.4)
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where ZV (y) is a normalization constant and ξ = ξ(x, y, A) ∈ Ω is given by

ξ(t) = 1V (t)x(t) + 1V c(t)y(t), t ∈ Zd. (2.5)

It is known that U is stationary and summable, then G(U) ∩Ms(Ω) 6= ∅ (Theorem 4.3, [15]). The
following standard lemma will be used in the proof of the results.

Lemma 1 For finite V ⊂ Zd and p ∈ N, define

Kp,V = 4γp|V |+ 2d+1pd|∂V |‖U‖. (2.6)

Then for finite W ⊂ Zd disjoint with V , and y ∈ Ω,

e−Kp,V QV (xV ) ≤ QV (xV |yW ) ≤ eKp,V QV (xV ). (2.7)

Proof . Given x ∈ Ω, for y, y′ ∈ Ω, define ξ and ξ′ by (2.5) correspondingly. Since UA(ξA) = UA(ξ′A)
for A ⊂ V ,

|EV (xV |y)−EV (xV |y′)| =
∣∣∣∣∣∣

∑

A∩∂V 6=∅

(
UA(ξA)− UA(ξ′A)

)
∣∣∣∣∣∣

≤ 2
∑

A∩∂V 6=∅
‖UA‖ ≤

∑

x∈V

∑

0∈A
A 6⊂Np(0)

‖Ux+A‖+
∑

x∈dpV ∪∂pV

∑

0∈A

‖Ux+A‖

(a)

≤ 2γp|V |+ (2p)d|∂V |‖U‖ =
1
2
Kp,V ,

where (a) is by stationarity of U . Therefore,

e−
1
2
Kp,V e−EV (xV |y′) ≤ e−EV (xV |y) ≤ e

1
2
Kp,V e−EV (xV |y′).

Take sum over all xV to get

e−
1
2
Kp,V ZV (y′) ≤ ZV (y) ≤ e

1
2
Kp,V ZV (y′),

=⇒ e−Kp,V QV (xV |y′) ≤ QV (xV |y) ≤ eKp,V QV (xV |y′).

Integrate over y′ wrt dQ to get

e−Kp,V QV (xV |y) ≤ QV (xV ) ≤ eKp,V QV (xV |y). (2.8)

By conditioning,

QV ∪W (xV , yW ) =
∫

QV ∪W (xV , yW |η) Q(dη) =
∫

QV (xV |ξ)QW (yW |η) Q(dη)

with ξ(t) = 1W c(t)η(t) + 1W (t)Y (t), t ∈ Zd. By the first inequality of (2.8),

QV ∪W (xV , yW ) ≥
∫

e−Kp,V QV (xV )QW (yW |η) Q(dη) = e−Kp,V QV (xV )QW (yW )

leading to the first inequality of (2.7). The second inequality is similarly proved. 2
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3 Conditional LDP for a Gibbs measure

Theorem 1 follows from several lemmas. The first one is a conditional-integral version of Bryc’s
asymptotic value result (Theorem 7.1, [2]). However, it only gives a lower bound of the conditional
LDP.

Recall that D = Cn0 . Henceforth, for V,W ⊂ Zd, with |V | < ∞ and
⋃

t∈V (t + D) ⊂ W , denote

f̄V (x, y) =
1
|V |

∑

t∈V

f((θtx, θty)D), f̄n(x, y) = f̄Cn(x, y), (x, y) ∈ ΣW , (3.1)

Lemma 2 P -almost surely, for all g : Rν →R continuous concave,

L(g; X) = lim
n→∞

1
nd

EP

[
log EQ exp

{
ndg(f̄n(X, Y ))

} ∣∣∣ I
]

exists, and

lim inf
n→∞

1
nd

log EQ exp
{

ndg(f̄n(X, Y ))
}

= L(g;X). (3.2)

The next result implies an upper bound for the conditional LDP, by using a conditional-integral
version of the log-moment generating functions.

Lemma 3 P -almost surely, for all λ ∈ Rν , the limit in (1.3) exists, and

lim sup
n→∞

1
nd

log EQ exp
{

nd〈λ, f̄n(X, Y )〉
}

= ΛX(λ). (3.3)

Lemma 4 For x ∈ ΩX such that (3.2) and (3.3) hold, let

I(u; x) = sup{g(u)− L(g;x) : g ∈ C(Rν) concave}.

For the other x ∈ ΩX , define I(u;x) arbitrarily. Then P -almost surely, the realization of X is one
such that (3.2) and (3.3) hold, and I( · ; X) = Λ∗( · ;X), where Λ∗( · ; X) is defined by equations
(1.2) to (1.4). 2

Assuming the lemmas for the moment, the proof for Theorem 1 precedes as follows.

Proof of Theorem 1: First of all, since f is bounded, the probability distributions of f̄n(x, Y ) consist
an exponentially tight family. Suppose x is a random realization of X such that both (3.2) and
(3.3) hold. Then for G ⊂ Rν open, it is not hard to show

lim inf
n→∞

1
nd

log Pr
{
f̄n(x, Y ) ∈ G

} ≥ − inf
u∈G

I(u;x), (3.4)

following argument similar to the one for Lemma 4.4.6 [11]. More specifically, given u ∈ G, define
h : Rν →R to be a continuous concave function such that h(u) = 1 and h(u) ≤ 0 for u 6∈ G. For
m > 0, define hm = m(h− 1). Then

EQ exp
{

ndhm(f̄n(x, Y ))
}
≤ e−mnd

+ Pr
{
f̄n(x, Y ) ∈ G

}

On the other hand, hm is continuous and concave with hm(u) = 0. Then by (3.2), it is seen

max{lim inf
n→∞ n−d log Pr

{
f̄n(x, Y ) ∈ G

}
,−m} ≥ L(hm;x) ≥ −I(u;x).
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Figure 1. Spatial relationship of the blocks for cal-
culation of the empirical means. The largest block is
Cn+n0 , the one with thick boundaries is Cn, and the
one with dotted boundaries is Ck+n0 . s is a point in
Ck+n0 . Each shaded block is s+t(k+n0)+Ck for some
t ∈ Zd and belongs to Js. Each small block that imme-
diately contains s+t(k+n0)+Ck is s+t(k+n0)+Ck+n0 ,
which belongs to Is. The union of Js over s ∈ Ck+n0

consists of all t + Ck ⊂ Cn, t ∈ Zd. For the partic-
ular s, Ws is the union of the shaded blocks, and As

the union of the blocks that immediately contain the
shaded ones.

Letting m→∞ then finishes the proof for (3.4).
On the other hand, by Theorem 4.5.3 by [11], for any compact set F ⊂ Rν ,

lim inf
n→∞

1
nd

log Pr
{
f̄n(x, Y ) ∈ F

} ≤ − inf
u∈F

Λ∗(u; x). (3.5)

By the exponential tightness of the laws of f̄n(x, Y ), Lemma 3 leads to an upper bound of the LDP.
Finally, the LDP is implied by Lemma 4. 2

Proof of Lemma 2: Denote Γ = {u ∈ Rν : |u| ≤ ‖f‖}, and Γ◦ its inner part. For V ⊂ Zd, |V | < ∞,
and n ∈ N, define

ΛV,x =
1
|V | log EQ

[
e|V |g(f̄V (x,Y ))

]
, Λn,x = ΛCn,x. (3.6)

Note that g(f̄n(x, Y )) only depends on g|Γ. First, we show that if g ∈ C(Γ) concave, then Λn,X

converges P -a.s. Given ε > 0, fix integers 1 ¿ p ¿ k ¿ n. For each s ∈ Ck+n0 , let Is be the
collection of all the disjoint (k + n0)-blocks s + (k + n0)t + Ck+n0 contained in Cn+n0 , t ∈ Zd, and
Js the collection of all the disjoint k-blocks s+(k +n0)t+Ck contained in Cn. Note the one-to-one
correspondence between Js and Is,

V = t + Ck ∈ Js ⇐⇒ Ve = t + Ck+n0 ∈ Is (3.7)
Ve =

⋃
t∈V (t + D). (3.8)

Let As =
⋃

V ∈Is
V , Ws =

⋃
V ∈Js

V (cf. Fig. 1). The union of Js over s ∈ Ck+n0 contains all
t + Ck ⊂ Cn, t ∈ Zd, i.e.

⋃
s∈Ck+n0

Js = {s + Ck : s ∈ Tn,k}, Tn,k = {s ∈ Zd : s + Ck ⊂ Cn}. (3.9)

Then, letting κ = kd(k + n0)−d, by |dk+n0Cn+n0 | ≤ (k + n0)d|∂Cn+n0 |,
Ws ⊂ Cn, Cn+n0 \ dk+n0Cn+n0 ⊂ As ⊂ Cn+n0 (3.10)

=⇒ |Ws| =
∑

V ∈Js

|V | = κ
∑

V ∈Is

|V | = κ|As| ≥ κ(|Cn+n0 | − (k + n0)d|∂Cn+n0 |)

=⇒ |Cn \Ws| < εnd

=⇒ |f̄n(x, y)− f̄Ws(x, y)| ≤ 2ε‖f‖, (x, y) ∈ ΣZd
. (3.11)
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Because g is concave,

Kg = sup{|g(u)|, (1 + ‖f‖)
∣∣∣∣
g(u)− g(v)

u− v

∣∣∣∣ , u, v ∈ Γ◦, u 6= v} < ∞. (3.12)

Thus, by (3.11), |Ws| = |Js|kd, and the concavity of g,

g(f̄n(x, y)) ≥ −2Kgε + g(f̄Ws(x, y)) ≥ 1
|Js|

∑

V ∈Js

g(f̄V (x, y))

=⇒ Λn,X ≥ −2Kgε +
1
nd

log EQ exp

{
nd

|Js|
∑

V ∈Js

g(f̄V (X,Y ))

}
.

Given V ∈ Js, it is easy to see that the value of f̄V (X,Y ) only depends on Xs, Ys, s ∈⋃
t∈V (t + D) = Ve ⊂ As. Also, by (2.7), (3.7), and successive conditioning, it is easy to verify

QAs(yAs) ≥ e−|Js|Kp,Ck

∏

V ∈Is

QV (yV ).

Then,

EQ exp

{
nd

|Js|
∑

V ∈Js

g(f̄V (X, Y ))

}
=

∑
yAs

exp

{
nd

|Js|
∑

V ∈Js

g(f̄V (XAs , yAs))

}
QAs(yAs)

≥
∑

y
Ve
∈SVe

Y :V ∈Js

exp

{
nd

|Js|
∑

V ∈Js

g(f̄V (XVe
, yVe

))

}
e−|Js|Kp,Ck

∏

V ∈Js

QVe
(yVe

)

= e−|Js|Kp,Ck

∏

V ∈Js

( ∑

y
Ve
∈SVe

Y

exp
nd

|Js| g(f̄V (XVe
, yVe

))QVe
(yVe

)
)

= e−|Js|Kp,Ck

∏

V ∈Js

EQ exp
{

nd

|Js| g(f̄V (X,Y ))
}

.

Therefore, by the definition of Kp,Ck
, for 1 ¿ p ¿ k ¿ n,

Λn,X ≥ −2Kgε− |Js|Kp,Ck

nd
+

1
nd

∑

V ∈Js

log EQ exp
{
−

( nd

|Js| − kd
)

Kg + kd g(f̄V (X,Y ))
}

≥ −2Kgε− ε−
(

1− kd|Js|
nd

)
Kg +

1
nd

∑

V ∈Js

log EQ

[
ekd g(f̄V (X,Y ))

]

≥ −(3Kg + 1)ε +
1
nd

∑

V ∈Js

log EQ

[
ekd g(f̄V (X,Y ))

]
.

The above inequality holds for each s ∈ Ck+n0 . By (3.9) and the fact that Js∩Jt = ∅, s, t ∈ Tn,k,
s 6= t, averaging over s ∈ Ck+n0 leads to

Λn,X ≥ −(3Kg + 1)ε +
1
nd

1
(k + n0)d

∑

s∈Tn,k

log EQ

[
ekd g(f̄s+Ck

(X,Y ))
]

(a)
= −(3Kg + 1)ε +

1
nd

1
(k + n0)d

∑

s∈Tn,k

log EQ

[
ekd g(f̄k(θsX,Y ))

]
,

11



where (a) is follows from the stationarity of Q. Thus, by (3.6),

Λn,X ≥ −(3Kg + 1)ε +
kd

(k + n0)d

1
nd

∑

s∈Tn,k

Λk,θsX . (3.13)

Take expectation wrt P ( · |I) on both sides of (3.13). Because P ( · |I) is stationary,

EP [Λn,X |I] ≥ −(3Kg + 1)ε +
kd

(k + n0)d

|Tn,k|
nd

EP [Λk,X |I] . (3.14)

Fix k and take lim infn→∞ on both sides. Then |Tn,k|n−d→ 1 and

lim inf
n→∞ EP [Λn,X |I] ≥ −(3Kg + 1)ε +

kd

(k + n0)d
EP [Λk,X |I].

Let k→∞ on both sides. Then kd(k + n0)−d→ 1 and

lim inf
n→∞ EP [Λn,X |I] ≥ −(3Kg + 1)ε + lim sup

k→∞
EP [Λk,X |I].

Because ε is arbitrary, EP [Λn,X |I] converges, with the limit denoted by L(g; X).
Take lim infn→∞ on both sides of (3.13). Because X is stationary and I is the σ-algebra of

shift invariant subsets of ΩX , by the ergodic theorem (Theorem 6.21, [1]), P -almost surely,

lim inf
n→∞ Λn,X ≥ −(3Kg + 1)ε +

kd

(k + n0)d
EP [Λk,X |I]. (3.15)

Let k→∞ on the right hand side. Since ε is arbitrary, lim infn→∞ Λn,X ≥ L(g; X). Since Λn,X is
bounded, Fatou’s lemma gives EP [lim infn→∞ Λn,X |I] ≤ L(g;X). By (3.6),

lim inf
n→∞

1
nd

log EQ

[
endg(f̄n(X,Y ))

]
= L(g;X), P -a.s. (3.16)

Thus the P -almost sure convergence is verified for each g ∈ C(Γ) concave. The set of concave
functions in C(Γ) is separable. Moreover, given x ∈ ΩX ,

1
nd

log EQ

[
endg(f̄n(X,Y ))

]
,

1
nd

EP

[
log EQ

[
endg(f̄n( · ,Y ))

] ∣∣∣ I
]
(x), n ≥ 1

as a family of functions on C(Γ) are equi-continuous. It is then not hard to show that P -almost
surely, (3.16) holds for all g ∈ C(Γ) concave. 2

Proof of Lemma 3: Define g( · ) such that it is equal to 〈λ, · 〉 on {u ∈ Rν : |u| ≤ ‖f‖}. Then it can
be shown that P -almost surely, for all λ ∈ Rν ,

lim sup
n→∞

1
nd

log EQ

[
e|V |〈λ,f̄V (X,Y )〉

]
= lim

n→∞
1
nd

EP

[
log EQ

[
e|V |〈λ,f̄V (X,Y )〉

] ∣∣∣ I
]

= ΛX(λ).

Proof for this follows similar argument to Lemma 2, except using the second inequality of (2.7)
instead of the first one, and the convexity of 〈λ, · 〉 instead of its concavity. 2
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To prove Lemma 4, we need one more auxiliary result.

Lemma 5 For any sequence {nk} ⊂ N, there is a sub-sequence {mk}, such that for P -almost all
x ∈ ΩX , f̄mk

(x, Y ) satisfy the LDP with a good rate function I(u;x).

Proof . Again, let Γ = {u ∈ Rν : |u| ≤ ‖f‖}. First, given g ∈ C(Γ) concave, let Fn(g; X) = Λn,X

given by (3.6). Let Gn(X) = EP [Fn(g; X)|I] and Dn = Fn −Gn. Then limk→∞EP [Dnk
] = 0 and

by Lemma 2, lim infk→∞Dnk
= 0. Since Dnk

P−→ 0 (cf. Lemma 2, [5]), there is a sub-sequence
mk, such that Dmk

→ 0, P -a.s., giving Fmk
(g;X)→L(g;X), P -a.s. Furthermore, {g ∈ C(Γ) : g

concave} is separable, and given x ∈ ΩX , {Fn(g; x), n ≥ 1} ∪ {L(g; x)} as a family of functions
in g is equi-continuous. Based on the above two facts, by the diagonal argument, it is seen that
from nk one can find a sub-sequence mk, such that P -almost surely, for all g ∈ C(Γ) concave,
Fmk

(g;x)→L(g;x) (cf. Theorem 3, [5]). Then by Bryc’s inverse Varadhan lemma, for P -almost all
x ∈ ΩX , f̄mk

(x, Y ) satisfy the LDP with a good rate function I(u;x). 2

Proof of Lemma 4: By Lemma 5, I(u;x) is a good rate function of an LDP. Therefore, in order to
demonstrate I(u; x) = Λ∗(u;x), it is enough to show I is convex (Theorem 4.5.10, [11]).

Let e = (1, 0, . . . , 0) ∈ Zd. Denote

C ′
n = (n + n0)e + Cn, Vn = Cn ∪ C ′

n.

Then repeating the same argument that leads to (3.4) and (3.5), it can be shown that P -almost
surely, equations (3.4) and (3.5) hold simultaneously for Cn, C ′

n, and Vn, and for all g ∈ C(Γ)
concave. Therefore, by Lemma 5, there is a sub-sequence {nk} ⊂ N, such that for P -almost all
x ∈ ΩX , f̄Cnk

(x, Y ), f̄C′nk
(x, Y ), and f̄Vnk

(x, Y ) satisfy the LDP with a good rate function I(u; x).
Given x ∈ ΩX and V ⊂ Zd finite, denote by LV the probability measure on Rν induced by

f̄V (x, Y ). Given r > 0, fix a concave function g such that g(0) = 0, g(u) < −1, u 6∈ Br. Given
u1, u2 ∈ Rν , let ū = (u1 + u2)/2. Denote Gi = ui + Br, i = 1, 2, and G = ū + Br. For any m > 0,

J =
∫

em|Vnk
|g(u−ū)LVnk

(du) ≤ e−m|Vnk
| + LVnk

(G). (3.17)

On the other hand, letting gi(u) = mg(u− ui), i = 1, 2, by the concavity of g,

J = EQ

[
e
m|Vnk

|g(f̄Vnk
(x,Y ))−ū)

]
≥ EQ

[
e
|Cnk

|g1(f̄Vnk
(x,Y ))

e
|C′nk

|g2(f̄C′nk
(x,Y ))

]

The two exponentials in the integral on the right hand side only depend on the values of Y on
Cnk+n0 and (nk + n0)e + Cnk+n0 , respectively. Therefore, given p > 0, (3.17) and (2.7) lead to

1
|Vnk

| log{e−m|Vnk
| + LVnk

(G)} ≥ 1
|Vnk

|Kp,Cnk+n0
+

1
2|Cnk

| log
∫

e|Cnk
|g1(u)LCnk

(du)

+
1

2|C ′
nk
| log

∫
e|C

′
nk
|g2(u)LC′nk

(du).

Let k →∞ and then p→∞ to get

max{lim inf
k→∞

1
|Vnk

| log LVnk
(G),−m} ≥ 1

2
(L(g1; x) + L(g2; x))

Since L(gi; x) = −(gi(ui)− L(gi; x)) ≥ −I(ui), i = 1, 2, letting m→∞ leads to

lim inf
k→∞

1
|Vnk

| log LVnk
(ū + Br) ≥ −1

2
(I(u1) + I(u2)).

Let r → 0 to get −I(ū) ≥ −1
2(I(u1) + I(u2)), proving the convexity of I. 2

13



Proof of Theorem 2:
(a) Fix ν ∈ N. For x ∈ ΩX , f ∈ B(ΣD,Rν), g ∈ C(Rν) concave, and finite V ⊂ Zd, write

Λn,x(f, g) =
1
nd

log EQ exp
{

ndg(f̄n(x, Y ))
}

, Mn,x(f, g) = EP [Λn, · (f, g)|I](x).

As a matter of fact, Λn,x(f, g) is identical to Λn,x in (3.6). The more complex notation is used to
emphasize the dependence on both f and g.

From Lemma 2 and Lemma 3, for each f ∈ B(ΣD,Rν), g ∈ C(Rν), there is L(f, g, X) such that

lim
n→∞Mn,X(f, g) = lim inf

n→∞ Λn,X(f, g) = L(f, g,X), P -a.s. (3.18)

In addition, if g(u) = 〈λ, u〉 for some λ ∈ Rν , then there is also

lim sup
n→∞

Λn,X(f, g) = L(f, g, X). (3.19)

Given ν, K ∈ N, let

FK = {f ∈ B(ΣD,Rν) : ‖f‖ ≤ K}, AK = {g ∈ C(B̄K), g concave}.

Given (f, g) ∈ FK × AK , (3.18) holds P -a.s. On the other hand, given x ∈ ΩX , Mn,x(f, g),
Λn,x(f, g), n ≥ 1 consist a family of functions on FK×AK . Under the sup norm, the family is equi-
continuous and FK × AK is separable. Therefore, with probability 1, (3.18) holds simultaneously
for all (f, g) ∈ FK × AK . Consequently, by B(ΣD,Rν) =

⋃
K FK , with probability 1, (3.18) holds

simultaneously for all ν ∈ N, g ∈ C(Rν), and f ∈ B(ΣD,Rν). Similarly, with probability 1, (3.19)
holds for all f ∈ B(ΣD,Rν) and λ ∈ Rν . Now by the same argument for Theorem 1, for P -almost
all x ∈ ΩX , for f ∈ B(ΣD,Rν), the empirical means f̄n(x, Y ) satisfy the LDP with a convex good
rate function. Then the LDP for P̂x,Cn,D follows.

(b) For P -almost all x̂ ∈ ΩX , for each n ≥ 1, we can establish LDP for the empirical measure
P̂Cn,x̂,Y . Thus the LDP in (b) follows from Dawson-Gärtner’s theorem on the LDP for a project
limit (Theorem 3.3, [8]). Then I(π; x̂) = ∞ for π 6∈ Ms(ΣZ

d
), following argument similar to (Eq.

5.4.15, [12]). Indeed, for some finite A ⊂ Zd, f ∈ B(ΣA,R), and l ∈ Zd,
∫

f((θtx, θty)A) dπ(x, y) ≥
∫

f((x, y)A) dπ(x, y) + 1.

Choose D = Cn0 ⊃ A ∪ (l + A) and define h(x, y) = f((θlx, θly)A) − f((x, y)A). Then for any
M > 0,

∫
Mf dπ ≥ M . On the other hand, for any Cn ⊂ D,

|h̄n(x, y)| = |f̄n(θlx, θly)− f̄n(x, y)| ≤ n−d‖f‖ |Cn ∆ (l + Cn)|,

where Cn ∆ (l + Cn) stands for Cn ∪ (l + Cn)− Cn ∩ (l + Cn). Thus
∣∣∣∣

1
nd

EP

[
log EQ

[
eMndh̄n(X,y)

] ∣∣∣ I
]
(x̂)

∣∣∣∣ ≤
2‖f‖ · |Cn ∆ (l + Cn)|

nd
→ 0

leading to L(Mh; x̂) = 0. Therefore, by I(π; x̂) ≥ ∫
Mhdπ − L(Mh; x̂) ≥ M , I(π; x̂) = ∞. 2

Proposition 1 Both Λx(λ) and Λ∗x(u are (B(Rν) × I)-measurable, where B(Rν) is the Borel σ-
algebra of Rν . Furthermore, letting B be the Borel σ-algebra generated by the weak topology of
M(ΣZd

), I(π; x) is (B × I)-measurable.
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Proof . From (1.3) and (1.4), for P -almost all x ∈ ΩX , Λx(λ) is continuous, while given λ, Λx(λ)
as a function in x is I-measurable. For n ≥ 1, let Jn be the collection of all binary cells

Ik,n = {(λ1, . . . , λν) ∈ Rν : ki2−n ≤ λi < (ki + 1)2−n, i = 1, . . . , ν}, k = (k1, . . . , kν) ∈ Zν .

Then define Fn(λ;x) =
∑

k∈Zν Λx(k2−n)1Ik,n
(λ). For each k, Λx(k2−n) is I-measurable, and

1Ik,n
(λ) is B(Rν) is measurable. Therefore, Fn is (B(Rν) × I)-measurable. Because for each x,

Λx(λ) is continuous, Fn→Λ point wise, as n→∞, leading to Λx(λ) being (B(Rν)×I)-measurable.
By the continuity of Λx(λ), given x, it is easy to see that for each 0 ≤ a < ∞,

{(u, x) : Λ∗x(u) ≤ a} =
⋂

λ∈Q{(u, x) : 〈λ, u〉 − Λx(λ) ≤ a} ∈ B(Rν)× I,

where Q is the set of rational points in Rν .
Given n ≥ 1 and f ∈ B(ΣCn ,R), Eπf − Λx(f) as a function in (π, x) is (B × I)-measurable.

Since for each (π, x), Eπf − Λx(f) is continuous in f , and B(ΣCn ,R) is separable, from (1.9), it is
seen ICn(π; x) is (B × I)-measurable, and hence so is I(π;x) by (1.9). 2

4 A variational characterization of the deterministic rate func-
tions

Proof of Theorem 3: Fix ε > 0 and π ∈ Ms(ΣZ
d
), such that πX = P and |Eπf − u| < ε. Given

n ≥ 1, x ∈ S
Cn+n0
X , and λ ∈ R, since λndf̄n(x, y) is bounded, by Lemma 3.2.13 in [12],

HCn+n0
(πCn+n0

( · |x) ‖QCn+n0
)

≥ λnd

∫
f̄n(x, y) dπCn+n0

(y|x)− log
∫

exp
{

λndf̄n(x, y)
}

dQCn+n0
(y)

Integrate both sides over x, then divide them by nd . Since π is stationary and πX = P , then

1
nd

HCn+n0
(πCn+n0

‖(P ×Q)Cn+n0
) ≥ λ Eπf − ΛCn(λ)

Since λ is arbitrary and |Eπf − u| < ε,

1
nd

HCn+n0
(πCn+n0

‖(P ×Q)Cn+n0
) ≥ sup

λ
{λEπf − ΛCn(λ)} ≥ inf

|u′−u|<ε
Λ∗Cn

(u′). (4.1)

By Theorem 5 of [16],

Λ∗(u) = lim
ε→ 0

lim sup
n→∞

inf
|u′−u|<ε

Λ∗Cn
(u′) = lim

ε→ 0
lim inf
n→∞ inf

|u′−u|<ε
Λ∗Cn

(u′). (4.2)

Let n→∞ and then ε→ 0. Since π is arbitrary, by (4.1) and (4.2), J(u) ≥ Λ∗(u). Clearly
J̃(u) ≥ J(u) and hence J̃(u) ≥ Λ∗(u).

To prove Λ∗(u) ≥ J(u), first assume u ∈ (u(∞)
min , u

(∞)
max). In this case, it suffices to show Λ∗(u) ≥

J̃(u), which also implies (1.15). Define

u
(n)
min = EP [ess inf

Y
f̄n(X, Y )] u(n)

max = EP [ess sup
Y

f̄n(X, Y )], (4.3)

where f̄ is defined as in (3.1). Then following the argument for (47) and (48) in [10],

u
(∞)
min = sup

n
u

(n)
min = lim

n→∞u
(n)
min u(∞)

max = inf
n

u(n)
max = lim

n→∞u(n)
max. (4.4)
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Therefore, for all n ≥ 1, the supremum of λu− ΛCn(λ) is achieved. Let

λ∗n = arg sup
λ∈R

{λu− ΛCn(λ)} (4.5)

and define a probability measure π̂n on Σn+n0 by

π̂n(x, y) =
exp{λ∗nndf̄n(x, y)} ×QCn+n0

(y)∑

y′
exp{λ∗nndf̄n(x, y)} ×QCn+n0

(y′)
PCn+n0

(x), x ∈ S
Cn+n0
X , y ∈ S

Cn+n0
Y (4.6)

Then it is not hard to show (1) S
Cn+n0
X -marginal of π̂n is PCn+n0

, (2) Eπ̂n f̄n(X,Y ) = u, as seen
from Λ′Cn

(λ∗n) = u, and (3) n−dHCn+n0
(π̂n ‖ (P ×Q)Cn+n0

) = Λ∗Cn
(u) (cf. [9, 17]).

Define π̃n ∈ M(ΣZd
) as the product of independent copies of π̂n on disjoint (n + n0)-blocks

t(n + n0) + Cn+n0 , i.e.
π̃n =

∏

t∈Zd

π̂n ◦ θ−1
t(n+n0)

and πn ∈Ms(ΣZ
d
) by

πn =
1

(n + n0)d

∑

t∈Cn+n0

π̃n ◦ θ−1
t . (4.7)

Since Ms is compact, there is π ∈Ms(ΣZ
d
) and a subsequence πnk

, such that πnk
→ π in weak

topology. Next show

(A) πX = P ,
(B) Eπf = u, and
(C) Λ∗(u) ≥ h(π‖P ×Q).

For statement (A), given m ≥ 1, let πX,Cm be the marginal of πX on SCm
X . Then

πX,Cm = lim
k→∞

1
(nk + n0)d

∑

t∈Cnk+n0

(π̃nk
◦ θ−1

t )X,Cm

When t ∈ Cnk+n0 \ dmCnk+n0 ,

(π̃nk
◦ θ−1

t )X,Cm = (π̂nk
◦ θ−1

t )X,Cm = ((π̂nk
)X ◦ θ−1

t )Cm = (PCnk+n0
◦ θ−1

t )Cm = PCm

where the last equality is by the stationarity of P and t + Cm ⊂ Cnk+n0 . On the other hand,
|dmCnk+n0 | = o(|Cnk+n0 |). Therefore, letting k→∞, there is πX,Cm = PCm , and thus πX = P .

To prove statement (B), i.e. Eπf = u,

Eπnf(XD, YD) =
1

(n + n0)d

∑

t∈Cn+n0

Eπ̃n◦θ−1
t

f(XD, YD)

=
1

(n + n0)d

∑

t∈Cn

Eπ̃nf(Xt+D, Yt+D) +
1

(n + n0)d

∑

i∈Cn+n0\Cn

Eπ̃nf(Xt+D, Yt+D)

=
1

(n + n0)d
Eπ̃n f̄n(X,Y ) +

1
(n + n0)d

∑

t∈Cn+n0\Cn

Eπ̃nf(Xt+D, Yt+D)
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By the definition of π̃n, Eπ̃n f̄n(X,Y ) = Eπ̂n f̄n(X, Y ) = u. Let n→∞ along nk. Then the first
summand on the right hand side converges to u. By the boundedness of f and |Cn+n0 \Cn| = o(nd),
the second summand is o(1). Therefore Eπf = u.

For statement (C), by the lower semi-continuity of h( · ‖P ×Q), in order to show h(π‖P ×Q) ≤
Λ∗(u), it is enough to show

lim sup
n→∞

h(πn‖P ×Q) ≤ Λ∗(u).

Given p ≥ 1, fix m À n À p. Denote by πn,Cm the marginal of πn on ΣCm . By the convexity of
HCm( · ‖(P ×Q)Cm) and the stationarity of P ×Q,

HCm(πn,Cm‖(P ×Q)Cm) ≤ 1
(n + n0)d

∑

t∈Cn+n0

HCm((π̃n ◦ θ−1
t )Cm‖(P ×Q)Cm)

=
1

(n + n0)d

∑

t∈Cn+n0

Ht+Cm(π̃n,t+Cm‖(P ×Q)t+Cm). (4.8)

Let C be the collection of all s(n + n0) + Cn+n0 , s ∈ Zd. Given t ∈ Cn+n0 , define

J = {V ∈ C : V ⊂ t + Cm}
I = {V : V = W ∩ (t + Cm) 6= ∅, with W ∩ (t + Cm)c 6= ∅, W ∈ C}

Then π̃n,t+Cm =
∏

V ∈J∪I π̃n,V . On the other hand, since P × Q is a stationary Gibbs field with
summable interaction potential, by Lemma 1,

(P ×Q)t+Cm ≥
∏

V ∈J∪I

e−Kp,V (P ×Q)V ,

with Kp,V defined in terms of the potential of the Gibbs field P ×Q. Therefore,

Ht+Cm(π̃n,t+Cm‖(P ×Q)t+Cm) ≤
∑

V ∈J∪I

Kp,V +
∑

V ∈J∪I

HV (π̃n,V ‖(P ×Q)V ).

For V ∈ J , by the construction of π̃n, and the stationary of P ×Q,

HV (π̃n,V ‖(P ×Q)V ) = HCn+n0
(π̂n‖(P ×Q)Cn+n0

) = ndΛ∗Cn
(u)

In addition, Kp,V = Kp,Cn+n0
, V ∈ J . On the other hand, for some constant M > 0 which only

depends on n but not m, for all V ∈ I, Kp,V + HV (π̃n,V ‖(P ×Q)V ) ≤ M . Therefore,

Ht+Cm(π̃n,t+Cm‖(P ×Q)t+Cm) ≤ |J |Kp,Cn+n0
+ nd|J |Λ∗Cn

(u) + |I|M.

Divide both sides by |Cm| and let m→∞. Then |Cm|−1|J |→ 1
(n+n0)d and |Cm|−1|I|→ 0.

By (4.8),

h(πn‖P ×Q) ≤ Kp,Cn+n0

(n + n0)d
+

nd

(n + n0)d
Λ∗n(u). (4.9)

Let n→∞. By Theorem 27 of [10], Λ∗n(u)→Λ∗(u). Then by (2.6),

lim sup
n→∞

h(πn‖P ×Q) ≤ 4γp + Λ∗(u).
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Since p is arbitrary, letting p→∞ finishes the proof.
When u < u

(∞)
min or u > u

(∞)
max, it is easy to see Λ∗(u) = ∞, giving Λ∗(u) ≥ J̃(u) ≥ J(u). It

remains to prove (1.14) for u = u
(∞)
min or u

(∞)
max. It is easy to check that

u
(n)
min ≤ u

(nk)
min ≤ u

(∞)
min ≤ u(∞)

max ≤ u(nk)
max ≤ u(n)

max, n, k ≥ 1.

If for some n, u
(n)
min = u

(n)
max. Then u = u

(n)
min, implying EP×Q[f̄n(X,Y )] = u, and hence

EP×Q[f(XD, YD)] = u.

Therefore, letting π = P ×Q in (1.14), J(u) = 0 and hence Λ∗(u) ≥ J(u).
Suppose u

(n)
min < u

(n)
max for all n ≥ 1. Let u = u

(∞)
min . Given ε > 0, choose n large enough so that

u
(∞)
min − ε < u

(n)
min ≤ u

(∞)
min ≤ u

(∞)
max ≤ u

(n)
max. Then A = (u(n)

min, u
(n)
max) ∩ (u(∞)

min − ε, u
(∞)
min + ε) 6= ∅. Choose

u′ ∈ A and repeat the proof from (4.5) to (4.9). Then it is seen

h(πn‖P ×Q) ≤ Kp,Cn+n0

(n + n0)d
+ Λ∗n(u′).

Since

Λ∗n(u(n)
min) = lim

u↓u(n)
min

Λ∗n(u), Λ∗n(u(n)
max) = lim

u↑u(n)
max

Λ∗n(u), and

Λ∗n(u) = ∞, for u 6∈ [u(n)
min, u

(n)
max],

then by the arbitrariness of u′,

inf
{

h(π‖P ×Q) : π ∈Ms(ΣZ
d
), πX = P, |Eπf − u| < ε

}
≤ Kp,Cn+n0

(n + n0)d
+ inf
|u′−u|<ε

Λ∗n(u′).

Now let n→∞ and then ε→ 0. By (4.2), J(u) ≤ 4γp + Λ∗(u). Let p→∞ to finish the proof. The
case u = u

(∞)
max is similarly proved. 2

Proof of Corollary 1: Denote B1 = {f ∈ B(ΣD,R) : ‖f‖ = 1}. For any f 6= 0, g = f
‖f‖ ∈ B1.

Therefore, by (1.7)
ID(π) = sup

f∈B1

sup
λ∈R

{λ Eπf − Λ(λf)}

with Λ(f) defined by (1.8). By Theorem 3, it is seen

ID(π) = sup
f∈B1

lim
ε→ 0

inf{h(γ‖P ×Q) : γ ∈Ms(ΣZ
d
), γX = P, |Eγf −Eπf | < ε}.

It is easy to show the limit and the supremum are exchangeable, hence proving (1.16). 2

5 Factorization formula

Proof of Theorem 4: First prove the lower bound of the LDP. Let G ⊂M(ΣZd
) be an open subset.

Fix π ∈ G and µ ∈ M(ΩX). Then there is a sequence of open subsets Un ⊂ M(ΩX) with Un ↓ µ,
such that

lim inf
n→∞

1
nd

log P{P̂X,Cn ∈ Un} ≥ −IP (µ). (5.1)
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To see this, choose open sets Vk ↓ µ, and let Nk ↑ ∞, such that for all n ≥ Nk,

1
nd

log P{P̂X,Cn ∈ Vk} ≥ −IP (µ)− 1
k
.

Let Un = V1 for all n < N2 and Un = Vk for Nk ≤ n < Nk+1, k > 1. Then Un satisfy (5.1).
Now show

lim inf
n→∞

1
nd

log inf
x:P̂x,Cn∈Un

Q{P̂x,Y,Cn ∈ G} ≥ −IQ|µ(π). (5.2)

Indeed, assume (5.2) is not true. Then there are ε > 0 and x(n) ∈ Un, n ≥ 1, such that

lim inf
n→∞

1
nd

log Q{P̂x(n),Y,Cn
∈ G} ≤ −IQ|µ(π)− ε.

Since P̂x(n),Cn
→µ, this contradicts the assumption that (µ,Q) satisfies the quasi-quenched process

level LDP wrt µ with rate function IQ|µ.
By conditioning,

1
nd

log Pr{P̂X,Y,Cn ∈ G} ≥ 1
nd

log Pr{P̂X,Y,Cn ∈ G, P̂X,Cn ∈ Un}

≥ 1
nd

log inf
x:P̂x,Cn∈Un

Q{P̂x,Y,Cn ∈ G}+
1
nd

log P{P̂X,Cn ∈ Un}

Take lim infn→∞ on both sides and use (5.1) and (5.2) to get

lim inf
n→∞

1
nd

log Pr{P̂X,Y,Cn ∈ G} ≥ −IQ|µ(π)− IP (µ),

which leads to the lower bound.
To prove the upper bound, let F be a closed subset of M(ΣZd

). Fix ε, δ > 0. For each real
valued function f , denote

f δ = min{f − δ, 1/δ}.
Extend the definition of IQ|µ so that IQ|µ(π) ≡ 0 if IP (µ) = ∞.

Fix µ ∈ M(ΩX) and π ∈ M(ΣZd
). If IP (µ) < ∞, then by the assumption of Theorem 4,

(µ,Q) satisfies the quasi-quenched LDP relative to µ. Because M(ΣZd
) is Hausdorff and regular

(cf. Theorem D.8, [11]), π has an open neighborhood Gµ,π ⊂M(ΣZd
), such that

inf
γ∈Ḡµ,π

IQ|µ(γ) ≥ Iδ
Q|µ(π). (5.3)

(cf. (4.1.3), [11]). If IP (µ) = ∞, then by the extended definition of IQ|µ, such an open neighbor-
hood obviously exists. On the other hand, by argument similar to that for (5.2), µ has an open
neighborhood Uµ,π ⊂M(ΩX), such that

lim sup
n→∞

1
nd

log sup
x:P̂x,Cn∈Uµ,π

Q{P̂x,Y,Cn ∈ Ḡµ,π} ≤ − inf
γ∈Ḡµ,π

IQ|µ(γ) + ε. (5.4)

Furthermore, shrinking Uµ,π if necessary while keeping µ ∈ Uµ,π, Uµ,π satisfies

inf
ν∈Ūµ,π

IP (ν) ≥ Iδ
P (µ). (5.5)
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Since M(ΩX) and M(ΣZd
) are compact, their closed subsets are compact as well. In particular,

F is compact, and hence so is M(ΩX) × F . Therefore, there are (µi, πi), µi ∈ F , πi ∈ M(ΩX),
i = 1, . . . , N , such that

M(ΩX)× F ⊂ ⋃N
i=1(Uµi,πi ×Gµi,πi).

Then, because X and Y are independent,

Pr{P̂X,Y,Cn ∈ F} ≤
N∑

i=1

Pr{P̂X,Cn ∈ Uµi,πi , P̂X,Y,Cn ∈ Ḡµi,πi}

≤
N∑

i=1

[
Pr{P̂X,Cn ∈ Ūµi,πi} × sup

x:P̂x,Cn∈Uµi,πi

Pr{P̂x,Y,Cn ∈ Ḡµi,πi}
]
.

Because P satisfies the LDP with rate function IP ,

lim sup
n→∞

1
nd

log Pr{P̂X,Cn ∈ Ūµi,πi} ≤ − inf
ν∈Ūµi,πi

IP (ν).

By (5.3)–(5.5),

lim sup
n→∞

1
nd

log Pr{P̂X,Y,Cn ∈ F} ≤ max
i
{−Iδ

Q|µi
(πi)− Iδ

P (µi)}+ ε

≤ − inf
π∈F

inf
µ∈M(ΩX)

{Iδ
Q|µ(π) + Iδ

P (µ)}+ ε = −Bδ + ε.

Since ε is arbitrary, in order to finish the proof, it is enough to show

lim
δ↓0

Bδ = A, A = inf
π∈F

inf
µ∈M(ΩX)

{IQ|µ(π) + IP (µ)}.

First, it is easy to see Bδ ≤ A and is non-increasing in δ > 0. Therefore, lim supBδ ≤ A. On
the other hand, because rate functions are non-negative,

Iδ
Q|µ(π) + Iδ

P (µ) = min{IQ|µ(π)− δ,
1
δ
}+ min{IP (µ)− δ,

1
δ
}

≥ min{IQ|µ(π) + IP (µ)− 2δ,
1
2δ
} − δ ≥ min{A− 2δ,

1
2δ
} − δ.

Take infimum on both sides over µ ∈ F and π ∈M(ΣZd
), then let δ ↓ 0 to get lim inf Bδ ≥ A. 2

Proposition 2 Given π ∈ M(Zd), if IQ|µ(π) is lower semi-continuous in µ, then there is µ∗ ∈
M(ΩX), such that

IP×Q(π) = IQ|µ∗(π) + IP (µ∗). (5.6)

Proof . If IP×Q(π) = ∞, then by (1.18), (5.6) holds for any µ ∈ M(ΩX). If IP×Q(π) < ∞, choose
µn ∈M(ΩX), so that IQ|µn

(π) + IP (µn) ↓ IP×Q(π). Since M(ΩX) is compact and complete, there
is a convergent subsequence µni →µ∗ ∈M(ΩX) in weak topology. Because both IQ|µ(π) and IP (µ)
are lower semi-continuous,

IQ|µ∗(π) + IP (µ∗) ≤ lim inf
n→∞ (IQ|µn

(π) + IP (µn)) = IP×Q(π)

which, combined with (1.18), yields (5.6). 2
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6 The quasi-quenched LDP for Gibbs random fields

Most part of this section is mainly the proof of Theorem 5. However, we first give a result in regard
to Proposition 2 based on Corollary 2.

Corollary 4 If Q ∈ G(U)∩Ms(ΩY ), then for any π ∈M(ΣZd
), the infimum in (1.18) is achieved.

Proof . By Proposition 2, it is enough to show IQ|µ(π) is lower semi-continuous in µ. Given π,
from (1.22) and (1.23), it is seen that IQ|P (π) as a function in P is the supremum of functions
Eπf − ΛP (f) = Eπf − limn ΛP,n(f), over f ∈ B(ΣCh ,R), h ≥ 1 where ΛP (f) and ΛP,n(f) are
defined in (1.24). Since the supremum of semi-continuous functions is again lower semi-continuous,
it suffices to show, for each such f , ΛP (f) is a continuous function in P .

Note that for any P ∈ M(ΩX) and n ≥ 1, |ΛP,n(f)| ≤ ‖f‖. Given ε > 0, repeat the argument
that leads to (3.14). It is seen that, for h ¿ k ¿ n, for all P ∈M(ΩX),

ΛP,n(f) ≥ −(3‖f‖+ 1)ε− ε|ΛP,k(f)|+ ΛP,k(f) ≥ −(4‖f‖+ 1)ε + ΛP,k(f).

Likewise ΛP,n(f) ≤ (4‖f‖+ 1)ε + ΛP,k(f). Thus

|ΛP,n(f)− ΛP,k(f)| ≤ (4‖f‖+ 1)ε, h ¿ k ¿ n

=⇒ |ΛP,n(f)− ΛP,m(f)| ≤ 2(4‖f‖+ 1)ε, n, m large enough.

Therefore, ΛP,n(f) converges to ΛP (f) uniformly on Ms(ΩX). For each n ∈ N, ΛP,n(f) is contin-
uous in P , therefore, ΛP (f) is continuous in P as well. 2

Proof of Theorem 5: To prove the upper bound, for x ∈ ΩX and finite V ⊂ Zd, denote

ΛV,x(λ) =
1
|V | log EQ

[
e|V |〈λ,f̄(x,Y,V )〉

]
, Λn,x(λ) = ΛCn,x(λ).

Then, by Theorem 4.5.3 of [11] and the boundedness of f , it is enough to show

lim sup
n→∞

Λn,x(n)(λ) ≤ Λ(λ) (6.1)

Let g(u) = 〈λ, u〉. We follow closely the argument that leads to (3.13) with two exceptions.
First, instead of the first inequality of (2.7), the second inequality is used. Second, instead of the
concavity of a linear function, its convexity is used. Again, denote Tn,k = {s : s + Ck ⊂ Cn}. For
1 ¿ k ¿ n,

Λn,x(n)(λ)X ≤ (3Kg + 1)ε +
kd

(k + n0)d

1
nd

∑

s∈Tn,k

Λk,θsx(n)(λ).

Because g(u) = 〈λ, u〉, by (3.12),

Kg ≤ (1 + ‖f‖)|λ|,

=⇒ Λn,x(n)(λ) ≤ 3ε(1 + ‖f‖)|λ|+ ε +
kd

(k + n0)d

1
nd

∑

s∈Tn,k

Λk,θsx(n)(λ).
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Also,

|Λk,θsx(n)(λ)| ≤ ‖f‖|λ|, and |Tn,k| = (1 + o(1))nd,
n

k
, k→∞

=⇒ Λn,x(n)(λ) ≤ 3ε(2 + ‖f‖)|λ|+ ε +
kd

(k + n0)d

1
nd

∑

s∈Cn

Λk,θsx(n)(λ)

= 3ε(2 + ‖f‖)|λ|+ ε +
kd

(k + n0)d

∫
Λk,ζ(λ) dP̂x(n),Cn

(ζ)

Notice that Λk,ζ(λ) is a function only depending on the values of ζt, t ∈ Ck+n0 . Therefore,
(1.21) implies the integral on the right end converges to EP Λk,X(λ) and hence

lim sup
n→∞

Λn,x(n)(λ) ≤ 3ε(2 + ‖f‖)|λ|+ ε +
kd

(k + n0)d
EP Λk,X(λ).

Let k→∞. Because ε is arbitrary, lim supn Λn,x(n)(λ) ≤ Λ(λ).
To prove the lower bound, it is enough to show that for any open set G ⊂ Rν and u ∈ G,

lim inf
n→∞

1
nd

log Pr{f̄n(x(n), Y ) ∈ G} ≥ −Λ∗(u). (6.2)

Fix 1 ¿ p ¿ k ¿ n and r > 0, such that B2r(u) ⊂ G. Denote I the collection of disjoint
(k+n0)-blocks (k+n0)t+Ck+n0 , t ∈ Zd, that are contained in Cn+n0 . For each V = s+Ck+n0 ∈ I,
let k(V ) = s + Ck and J be the collection of k(V ), V ∈ I. Define W =

⋃
V ∈J V . Then by (3.10),

for x ∈ ΩX , y ∈ ΩY ,
∣∣∣ f̄n(x, y)− 1

|J |
∑

V ∈J

f̄V (x, y)
∣∣∣

=
∣∣∣ 1

nd

∑

t∈Cn

f((θtx, θty)D)− 1
|J |

1
kd

∑

V ∈J

∑

t∈V

f((θtx, θty)D)
∣∣∣

=
∣∣∣ 1

nd

∑

t∈Cn

f((θtx, θty)D)− 1
|W |

∑

t∈W

f((θtx, θty)D)
∣∣∣

≤ 1
nd

∣∣∣
∑

t∈Cn\W
f((θtx, θty)D)

∣∣∣ +
( 1
|W | −

1
nd

) ∑

t∈W

|f((θtx, θty)D)|

≤ 2|Cn \W | × ‖f‖
nd

≤ r.

Together with
1
|J |

∑

V ∈J

f̄V (x, Y ) =
1
|I|

∑

V ∈I

f̄k(V )(x, Y ),

this implies

Q
{
f̄n(x, Y ) ∈ B2r(u)

} ≥ Q

{
1
|I|

∑

V ∈I

f̄k(V )(x, Y ) ∈ Br(u)

}

Define random variable ξV , V ∈ I, such that

ξV ∈ SV
Y , ξV i.i.d. ∼ QCn+n0

. (6.3)
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Then by (2.7), for y ∈ ΩY ,

Pr{YV = yV , V ∈ I} ≥ e
−|I|Kp,Ck+n0

∏

V ∈I

Pr{ξV = yV }

=⇒ Q{f̄n(x, Y ) ∈ B2r(u)} ≥ e
−|I|Kp,Ck+n0 Pr

{
1
|I|

∑

V ∈I

f̄k(V )(xV , ξV ) ∈ Br(u)

}
. (6.4)

For n ≥ 1, let

ζn,V = kd f̄k(V )(x
(n)
V , ξV ), V ∈ I, Tn =

1
kd|I|

∑

V ∈I

ζn,V , (6.5)

and µn the joint distribution of ζn,V , V ∈ I. Then

1
nd

log Q{f̄n(x(n), Y ) ∈ B2r(u)} ≥ −|I|Kp,Ck+n0

nd
+

1
nd

log µn{Tn ∈ Br(u)}. (6.6)

To estimate n−d log µn{Tn ∈ Br(u)}, consider the log-moment generating function of Tn. For
λ ∈ Rν , let

Λn,k(λ) =
1

kd|I| log Eµn

[
ekd|I|〈λ,Tn〉

]
. (6.7)

First consider the case where Λn,k(λ) satisfies the following condition,

(A) 〈λ, u〉 − Λn,k(λ) as a function in λ achieves

Λ∗n,k(u) = sup
λ∈Rν

{〈λ, u〉 − Λn,k(λ)}

at ηn,k, and |ηn,k| is bounded for 1 ¿ k ¿ n.

Lemma 6 Under condition (A),

lim
k→∞

lim
n→∞Λ∗n,k(u) = Λ∗(u).

Assume the lemma to be true for now. Define

dµ̃n(ζn,V , V ∈ I) =
ekd |I| 〈ηn,k, Tn〉

ekd |I|Λn,k(ηn,k)
dµn(ζn,V , V ∈ I). (6.8)

Then for any δ ∈ (0, r),

1
nd

log µn{Tn ∈ Br(u)} ≥ 1
nd

log Eµ̃n

[
1{Tn∈Bδ(u)}

ekd |I|Λn,k(ηn,k)

ekd |I| 〈ηn,k, Tn〉

]

=
1
nd

log Eµ̃n

[
1{Tn∈Bδ(u)}

ekd |I|Λn,k(ηn,k)

ekd |I| 〈ηn,k, u〉 ekd |I| 〈ηn,k, u−Tn〉
]

≥ −kd|I|
nd

Λ∗n,k(u)− kd|I|
nd

|ηn,k|δ +
1
nd

log µ̃n{Tn ∈ Bδ(u)}. (6.9)

23



Because 〈λ, u〉−Λn,k(λ) is differentiable, by (A), u = ∇Λn,k,(ηn,k). On the other hand, by (6.7)
and (6.8),

∇Λn,k,(ηn,k) =
Eµn [Tnekd|I|〈ηn,k,Tn〉]

Eµn [ekd|I|〈ηn,k,Tn〉]
=

Eµn [Tnekd|I|〈ηn,k,Tn〉]

ekd|I|Λn,k,(ηn,k)
= Eµ̃n [Tn].

Therefore,

Eµ̃n

[
1
|I|

∑

V ∈I

1
kd

ζn,V

]
= Eµ̃n [Tn] = u

Under µn, ζn,V , V ∈ I are independent. By (6.8), k−dζn,V are independent under µ̃n. In
addition, k−dζn,V are bounded by ‖f‖. Let n→∞ to get |I|→∞. By the weak law of large
numbers, µ̃n{Tn ∈ Bδ(u)}→ 1, as n→∞. Let n→∞ followed by k→∞ to get n−dkd|I|→ 1. By
Lemma 6 and (6.9),

lim inf
n→∞

1
nd

log µn{Tn ∈ Br(u)} ≥ −Λ∗(u)− δ lim sup
k→∞

lim sup
n→∞

|ηn,k|. (6.10)

Together with (6.6) and (2.6), this implies

lim inf
n→∞

1
nd

log Q{f̄n(x, Y ) ∈ B2r(u)} ≥ −4γp − Λ∗(u)− δ lim sup
k→∞

lim sup
n→∞

|ηn,k|.

By assumption (A), lim supk lim supn |ηn,k| is finite. Since δ is arbitrary, letting p→∞ finishes the
proof of (6.2).

To prove (6.2) without (A), µn is regularized as follows. Given M > 0, let Wt ∈ Rν , t ∈ Zd be
i.i.d. random variables taking finite values, such that

log E
[
e〈λ,Wt〉

]
≥

{ 1
4M

|λ|2 if |λ| ≤ 4(‖f‖+ |u|+ 1)M

(‖f‖+ |u|+ 1)|λ| if |λ| > 4(‖f‖+ |u|+ 1)M
(6.11)

Such random variables can be obtained by appropriate quantization of 1{Nt≤R}Nt/
√

M with
suitable R, where Nt are i.i.d. standard normal random variables. Suppose the support of Wt is
S2. Then it is seen (Y, W ) is a stationary Gibbs field with summable interaction potentials on
(SY × S2)Z

d
. For x ∈ ΩX , (y, w) ∈ (SY × S2)Z

d
, define

F (x, (y, w)) = f(x, y) + w(0),

where w(0) is the value of w at the origin 0. Modify ξV in (6.3) so that they are independent of
W . Then, defining F̄n by (3.1)

Pr
{
F̄n(x, (Y,W )) ∈ B2r(u)

}

≥ e
−|I|Kp,Ck+n0 Pr





1
|I|

∑

V ∈I

f̄k(V )(xV , ξV ) +
1
|I|

∑

V ∈I

1
kd

∑

t∈k(V )

Wt ∈ Br(u)



 .

Comparing (6.4)–(6.7), this suggest the following modification be used,

ζ ′n,V = ζn,V +
∑

t∈k(V )

Wt, V ∈ I, µ′n = the joint distribution of ζ ′n,V , V ∈ I,

T ′n = Tn +
1

kd|I|
∑

V ∈I

∑

t∈k(V )

Wt = Tn +
1

kd|I|
∑

V ∈J

∑

t∈V

Wt

Λ′n,k(λ) = Λn,k(λ) + log E
[
e〈λ,W0〉

]
,
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By (6.11), Λ′n,k(λ) ≥ Λ′n,k(λ), and hence Λ′∗n,k(u) ≤ Λ∗n,k(u). Since |Λn,k(λ)| ≤ ‖f‖|λ|, then for
|λ| > 4(‖f‖+ |u|+ 1),

〈λ, u〉 − Λ′n,k(λ) = 〈λ, u〉 − Λn,k(λ)− log E
[
e〈λ,W0〉

]
≤ (|u|+ ‖f‖)|λ| − (‖f‖+ |u|+ 1)|λ| < 0.

Since Λ′∗n,k(u) is non-negative, this implies that it must be achieved within |λ| ≤ 4(‖f‖+ |u|+1)
and hence 〈λ, u〉 − Λ′n,k(λ) satisfies (A). Then for r > 0, the preceding argument leads to

1
nd

log µ′n{T ′n ∈ Br/2(u)} ≥ −Λ′∗(u) ≥ −Λ∗(u)

On the other hand, by the definition of T ′n,

µn{Tn ∈ Br(u)}+ Pr

{
1

kd|I|
∣∣∣

∑

V ∈J

∑

t∈V

Wt

∣∣∣ ≥ r

2

}
≥ µ′n{T ′n ∈ Br/2(u)}

By LDP for Wt,

lim sup
k→∞

lim sup
n→∞

1
kd|J | log Pr

{
1

kd|I|
∣∣∣

∑

V ∈J

∑

t∈V

Wt

∣∣∣ ≥ r

2

}

≤ − inf
|u|>r/2

sup
λ∈Rν

{
〈λ, u〉 − log E[e〈λ,W0〉]

}

≤ − inf
|u|>r/2

sup
|λ|≤4|u|M

{
〈λ, u〉 − |λ|2

4M

}
≤ −Mr2

4
.

Therefore,

max
{

lim inf
n→∞ log

1
nd

µn{Tn ∈ Br(u)}, −Mr2

4

}
≥ lim inf

n→∞
1
nd

log µ′n{T ′n ∈ Br/2(u)} ≥ Λ∗(u)).

Letting n→∞ followed by M →∞ then finishes the proof. 2

Proof of Lemma 6: The proof is based on the following result.

Proposition 3 Whether (A) is satisfied or not,

lim
k→∞

lim
n→∞Λn,k(λ) = Λ(λ). (6.12)

Assume Proposition 3 to be true for now. When (A) is satisfied, we can fix M > 0, such that
|ηn,k| < M . Because Λn,k and Λ are convex, (6.12) implies that the convergence is uniform on for
|λ| ≤ M . Therefore, given ε > 0, when n, k À 1, Λn,k(ηn,k) > Λ(ηn,k)− ε, implying

Λ∗n,k(u) = 〈ηn,k, u〉 − Λn,k(ηn,k) < 〈ηn,k, u〉 − Λ(ηn,k) + ε ≤ Λ∗(u) + ε.

Thus lim supk lim supn Λ∗n,k(u) ≤ Λ∗(u).
On the other hand, choose λi ∈ Rν , such that if Λ∗(u) < ∞, then 〈λi, u〉−Λ(λi) ≥ Λ∗(u)− 1/i,

and if Λ∗(u) = ∞, 〈λi, u〉 − Λ(λi) ≥ i. Then,

lim inf
k→∞

lim inf
n→∞ Λ∗n,k(u) ≥ 〈λi, u〉 − lim

k→∞
lim

n→∞Λn,k(λi) = 〈λi, u〉 − Λ(λi),

leading to lim infk lim infn Λ∗n,k(u) ≥ Λ∗(u). 2
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Proof of Proposition 3: The idea of the proof is as follows. By (6.7),

Λn,k(λ) =
1

kd|I|
∑

V ∈I

log
∫

ekd〈λ, f̄k(V )(x
(n)
V ,ξ)〉 dQV (ξ), (6.13)

I = the set of disjoint blocks (k + n0)t + Ck+n0 in Cn+n0 , t ∈ Zd.

Since I does not contain all the (k + n0)-blocks in Cn+n0 , the assumption P̂x(n),Cn
→P can not

apply directly to the sum on the right hand side of (6.13). To solve this problem, given 1 ¿ h ¿ k,
each (k + n0)-block in I is divided into h-blocks and Λn,k is approximated by the sum of the
log-moment generating functions of f̄V (x(n), ξ), across all h-blocks V contained in the blocks in I.
When n and k are large enough, the collection of such h-blocks approximate that of all h-blocks in
Cn+n0 , with o(nd) difference in cardinality. Then we can apply the assumption P̂x(n),Cn

→P to the
approximating sum to get the convergence.

Fix ε > 0 and n0 ¿ p ¿ h ¿ k ¿ n. Define Tk,h and Tn,h in the same way as Tn,k in (3.9).
Let An,k = {s : s + Ck+n0 ∈ I}. Then, given λ ∈ Rν , by (6.13) and the stationarity of Q,

Λn,k(λ) =
1
|I|

∑

s∈An,k

Λk,θsx(n)(λ), Λk,θsx(n)(λ)
4
=

1
kd

log EQ

[
ekd〈λ,f̄k(θsx(n),Y )〉

]
(6.14)

In fact, Λk,θsx(n)(λ) is identical to Λk,θsx(n) defined in (3.6), with g( · ) = 〈λ, · 〉. The more
complex notation is used to stress the dependence on λ. By (3.12), Kg ≤ (1+ ‖f‖)|λ|. Then (3.13)
yields

Λk,θsx(n)(λ) ≥ −ε− 3(1 + ‖f‖)|λ|ε +
|Ch|

kd|Ch+n0 |
∑

t∈Tk,h

Λh,θt+sx(n)(λ). (6.15)

Combine (6.14) and (6.15) to get

Λn,k(λ) ≥ −ε− 3(1 + ‖f‖)|λ|ε +
|Ch|

kd|Ch+n0 ||I|
∑

s∈An,k

∑

t∈Tk,h

Λh,θs+tx(n)(λ). (6.16)

The map (s, t) 7→ s+t is one-to-one from An,k×Tk,h onto W = {s+t : s ∈ An,k, t ∈ Tk,h} ⊂ Tn,h.
Indeed, for s, s′ ∈ An,k, t, t′ ∈ Tk,h, if s + t = s′ + t′, then s + t + Ch = s′ + t′ + Ch. Since t + Ch,
t′+Ch ⊂ Ck, then s+Ck and s′+Ck intersect. Both belong to I, which consists of disjoint blocks.
It is seen s = s′, implying t + Ch and t′ + Ch intersect, and hence t = t′. By (6.16),

Λn,k(λ) ≥ −ε− 3(1 + ‖f‖)|λ|ε +
|Ch|

kd|Ch+n0 ||I|
∑

t∈W

Λh,θtx(n)(λ). (6.17)

Recall 1 ¿ h ¿ k ¿ n. It is easy to see

|W | = |An,k||Tk,h| ≥ |Tn,h|(1− ε) =⇒ |Tn,h \W | ≤ ε|Tn,h|
|Ch|

kd|Ch+n0 ||I|
=

1
nd

(1 + o(1)), |Tn,h| = (1 + o(1))|Cn|, |Λh,x(n)(λ)| ≤ ‖f‖|λ|

=⇒ Λn,k(λ) ≥ −Mε +
1
nd

∑

t∈Cn

Λh,θtx(n)(λ) = −Mε +
∫

Λh,ξ(λ) P̂x(n),Cn
(dξ),

where M is a constant only depending on f and λ. Let n, k, h → ∞ in sequel. As ε is arbitrary,
lim infk lim infn Λn,k(λ) ≥ Λ(λ). Similarly, lim supk lim supn Λn,k(λ) ≤ Λ(λ). 2
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