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Abstract. Let X = {X;},cza ~ P and Y = {Y;},c74 ~ Q be two independent stationary random
fields with finite state spaces. Suppose Y is a Gibbs field with summable potential. Given a random
realization = of X, the conditional large deviation principle (LDP) associated with (x,Y});czq are
established at 3 levels, for empirical means, marginals, and field. In general, the rate function is a
random variable. However, when X is ergodic, the rate function is deterministic and a variational
characterization of the conditional LDP in terms of the specific relative entropy with respect to
P x (@ is established. We then prove a factorization formula which characterizes the LDP associated
with P x @ in terms of the LDP associated with P and the “quasi-quenched” LDP associated with
P x @ relative to P. Finally, we show that if ) is a stationary Gibbs field with summable potential,
then for any stationary P, the “quasi-quenched” LDP associated with P x @ relative to P exists
and is equal to the expected value of the quenched LDP. As a consequence of the results, if the
LDP holds for P, then the LDP holds for P x @ as well.
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1 Introduction

In this article, we consider the conditional LDP for Gibbs random fields and related issues.

1.1 Conditional LDP

Let X = {Xi}icpa ~ P and Y = {Y;},cz¢ ~ @ be two independent stationary random fields,
with respective finite state spaces Sx and Sy. Given a random realization x of X, there are three
versions of LDP for (z,Y") = (x4, Y}),ez4, one for the empirical means, one for the empirical marginal
fields, and one for the empirical field (“the process level LDP”), all of which henceforth are referred
to as the conditional LDP of (X,Y), given X = x. The conditional LDP is also often termed
“quenched LDP” because it is established for a fixed, though random, value of X. Several cases
of conditional LDP were established by Comets [6], when both X and Y are i.i.d. In recent years,
the topic has been actively studied in the context of lossy data compression using random code
books (cf. [9, 17, 4, 10] and references therein). Results in this regard are referred to as generalized
Asymptotic Equipartition Property (AEP). Except for [10], where the generalized AEP for random
fields is considered, the focus of the studies has been on the conditional LDP for empirical means
for processes on Z or R satisfying various mixing conditions.

We shall consider the conditional LDP for (X,Y") given X = x when X is a stationary random
field and Y is a Gibbs random field defined on Z?. For the topic of the (unconditional) LDP for
Gibbs random fields, we refer the reader to [13]. First, fix some general notations. Let S be an
arbitrary finite set, D C Z%, and n,v € N. Then

SZ* = the compact space of functions w : Z% — S equipped with product topology;

f; = the shift operator on SZd, Oix — T, Ty = Tgyg, VT € SZd, vt € 7

M(SP) = the compact space of probability measures on S topologized by weak convergence;
MS(SZd) = the closed subspace of M(SZd) consisting of P such that P = P o ;! Vt € Z¢;
zp = the restriction of z on D, Vz € Szd;

C,, = the block {(t1,...,tq) € Z9: 0<t; <n};

B(SP,R¥) = {f : f is a bounded function S — R"};

£l = supzegp | f(2)], Vf € B(SP,R");

B ={ueR":|ul<r}, r>0.

For the particular problems considered here, we also introduce the following notations

Y = Sx x Sy, Qx = S, Qy = 5%,

Bx (resp. By) = the product topology of Qx (resp. Qy);

G(U) = the class of all Gibbs measures with respect to (wrt) a stationary summable interaction
potential U on S%d;

I = the o-algebra of shift invariant sets of Qx.

Suppose X ~ P € M;(Q2x) and Y ~ Q € G(U) N M4(Qy) are independent. Since (Qx,Bx)
is a Borel space, there is a regular conditional distribution for X given Z, denoted P(-|Z)(x),
x € Qx, which is stationary and ergodic (section 4.3, [1]). Our result on the conditional LDP for
the empirical means associated with (X,Y), given X = z, is as follows.



Theorem 1 (Conditional LDP for empirical means) For P-almost all z € Qx, for any ng,v € N,
and f € B(XP,RY), with D = C,,,, the empirical means

% S (6, 6:Y)p), nEN (1.1)
teCh

satisfy the LDP with a good rate function I(-;z) = A%(-) parameterized by =, where

Aj(u) = sup {(A ) = Ae() (1.2)
Ae) = Tim Ane(N), Ana(d) = Ac,2(M) (1.3)

and for any finite V C Z¢,

1

log Eq eXP{Z</\vf((0t‘79tY)D)>} ‘ Z|(z) (1.4)

teVv

Remark: When P is ergodic, the above conditional LDP has a deterministic good rate function. O

Given a probability space €2, for any w € €, denote by J,, the probability measure on €2, such
that 0,(B) = 1p(w), B C € measurable. Given X = z, the empirical marginal measures are
random elements of M(XP) given by

\ 1
P.Z’,Cn,D = m tezc; 6(9t$,9tY)D (15)

and the empirical fields are random elements of M(Ezd) given by
- 1
Poc, =3 > ooy (1.6)
teCn

On the conditional LDP for the empirical marginals and fields, we have
Theorem 2 (Conditional LDP for empirical marginals and fields) For P-almost all x € Qx, the
following hold.

(a) For any finite D C Z¢, the empirical measures (1.5) satisfy the LDP in M(XP) wrt the
weak topology, with a convex good rate function parameterized by =,

Ip(myz) = sup {E.f—A(f)} (1.7)
fEB(SP R)

where

A(f) = Tim L Ep

n4»a3nd

log Eq exp { > F((6: HtY)D)} ’ Z| (z). (1.8)

teCp

(b) The empirical fields (1.6) satisfy the LDP in M(2%") wrt the weak topology, and with a
convex good rate function parameterized by z,

I(m;z) = sup{l¢, (7c, ;) : n > 1} (1.9)
Furthermore,
I(myz) =00 ifm¢ MS(EZd).
Remark: When P and @ are i.i.d., (1.7) is implied by Theorem IV.1 of [6]. O



Theorem 1 is established by adapting the asymptotic value method [2] and an idea of [13] to
divide a block into smaller blocks, with modifications to handle the randomness introduced by X.
By the separability of the space

B. = Ugo:1 UDCZd: |D|<o0 B(ED7RV)7

it is seen that almost surely, given X = z, the LDP for the empirical means holds simultaneously
for all f € B.. Then different levels of conditional LDP in Theorem 2 are obtained by lifting the
LDP for the empirical means using Dawson-Gértner projective limit theorem [8].

1.2 Variational characterization of conditional LDP

From the previous subsection, it is seen that when X is stationary, the conditional LDP in general
is random. For example, the process level LDP for (X,Y) conditioning on X has a (B x Z)-
measurable rate function [(7;z), with B the Borel o-algebra induced by the weak topology of
M(Ezd) (Proposition 1). When the stationary random field X is ergodic, the rate function is
deterministic and, under certain circumstances, can be characterized as a constrained maximum
function.

In data compression, a variational characterization of the rate function is established as follows
[9, 17, 4, 10]. Suppose X and Y both are stationary and ergodic and Y satisfies some strong mixing
condition. Then given f € B(X,R), for any u < Ef(X,Y), almost surely, conditioning on X = z,

. 1 1 . .
nlimoo—ﬁlogpf {ndt; f(z,Yr) < u} = R(P,Q,u) = lim v 1]1(1/[f )H(VHHHn). (1.10)

where II,, = (P x Q)c, is the marginal of P x Q on X7,

Hl) = 3 p(z)log A2 (1.11)

)
2€X%n y(z)

is the relative entropy of p wrt v, u,v € M(ZC"), and

1
M, (u) = {Vn € M(ch) : S}C;n_marginal of V,, = Pg,, and WEV” Z f(z:,Y5) < u} .
1€Clh

It would be interesting to see if the rate functions of the conditional LDP have similar variational
characterizations, in particular, ones in terms of the specific relative entropy wrt P x @, at least
for the case where X is ergodic. Recall that given p,v € M(sz), and V C Z4, letting Hy (u|lv) =
Hy (j1,||lvy,), the specific relative entropy of v wrt y is given by

. 1
hullv) = lim —Ho, (u]]) (1.12)

provided the limit exists.

In [6], for X ~ P and Y ~ @ both i.i.d., it was shown that the empirical means (1.1) satisfy the
LDP wrt the deterministic convex rate function J(u) = inf h(7||P x Q)), where the infimum is taken
over all stationary random fields © on Y2 with O x-marginal equal to P and E;f(X1,Y1) = u.
This constrained variational characterization was established first for the empirical fields, then for
the empirical means by the contraction principle (Theorem IIL.1, [6]).



We shall establish variational characterizations for the conditional LDP when both P and Q
are Gibbs. Comparing to the i.i.d. case in [6], it is now more difficult to directly establish the LDP
for the empirical fields. Instead, we shall first deal with the LDP for the empirical means as in
equation (1.10). Then we shall obtain a variational characterization for the LDP for the empirical
fields by projective limit. The results by this approach are summarized as follows.

Theorem 3 (Variational characterization of the LDP of empirical means) Suppose that, for some
summable interaction potential U”, P € G(UT) N M;(f2x) and is ergodic. In addition, suppose
Q € G(U) N Ms(Q2y). Define functions A(A), Ap(A), A*(A) by (1.2)—(1.4), with = being omitted
from the subscript, as all these functions are deterministic. Define

X3 (u) = sup{hu = An(3)}

For 7 € M(sz), denote by mx the marginal distribution of Qx. Define

(c0)

Umin max

— inf{u:sup A (u) < oo} ul%) = sup{u:sup Af(u) < oo} (1.13)
n>1 n>1

Then for any u,
A (u) = J(u) = lin1oinf{h(7rHP XQ): we MS(EZd), wx =P, |Exf —u| < €}. (1.14)

(), (o0)

Moreover, for u # u, ;| Umak,

A (u) = J(u) = inf{h(x|P x Q) : m € M ("), nx = P, Exf = u}. 0 (1.15)

Remark: Since P x Q is a stationary Gibbs random field on $%°, h(-||P x Q) exists and is lower
semi-continuous on M (%) (cf. Eqs (2.15-16), [13]).

Corollary 1 (Variational characterization of empirical marginal fields) The rate function Ip (),
7€ M(S2") in (1.7) has the following variational characterization

Ip(m)=lim sup int{h(7|[PxQ): v€ M35, vx =P, |Eyf — Exf| <¢}.  (1.16)
€~V reB(=PR)
Ifll=1

1.3 The “quasi-quenched” LDP and a factorization formula

The results in the previous subsection expresses different levels of the conditional LDP associated
with X and Y in terms of the product of the two random fields. Conversely, it may be asked
whether the LDP for the product of two random fields can be expressed in terms of the conditional
LDP. The main result we obtain in this regard is that if one of the two random fields satisfies the
process level LDP, and the other one satisfies the so called “quasi-quenched” process level LDP
defined in a moment (Definition 1), then their product satisfies the process level LDP.

First, given z € Qx, y € Qy, define the empirical fields pm,Cn € M(Qx) and Px,y,Cn € M(sz)
by

. 1 A 1
P:Jc,Cn('): nd Z S0:2( "), Px,y,Cn(') = nd Z 59tﬂc,9ty(')' (1.17)
teCy, teCp



Definition 1 (“Quasi-quenched LDP”) Suppose p € M(Qx) and v € M(Qy). If there is a rate
function I on M(sz), such that for any {z(™, n € N} C Qy satisfying pac("),Cn — p in weak
topology, the following two bounds hold,

1 .
liminf —log{P,m y ¢, € G} > — inf I(7), VG C M(EZd) open
n D 1 TFEG

n—oo

1 .
limsup — log V{ Py, € F} < — inf I(x), YF C M(S%") closed
n b b n

n— oo TeF

then (i, v) are said to satisfy the quasi-quenched process level LDP relative to u. The rate function

I will be denoted by I,

Remark: Because M(sz) is compact, I is necessarily a good rate function. |

The term “quasi-quenched LDP” is used to make distinction with the conditional LDP as well
as the annealed LDP. The conditional LDP is for the empirical fields Jf’x7y7cn, n > 1, with z € Qx
a single random realization of X, and the annealed LDP is for the empirical fields fA’X’y,cn, ie.,
the process level LDP for P x @ [7]. In contrast, the quasi-quenched LDP involves a sequence of
elements (™ € Qx. In general, if X is not ergodic, then (™) are not necessarily identical or random
realizations of X. For instance, consider Z¢ = Z. If for each n € N, the first n elements of z(™ are
made up of |n/2| consecutive 0’s followed by [n/2] consecutive 1’s, then the empirical measures
given by (™) converges to 7 = (60 + 1), with ¢ = (¢, ¢, ...), which is stationary but not ergodic.
Since no random realizations of X are involved in the quasi-quenched LDP, the corresponding rate
function is deterministic, which is different from the conditional LDP.

Theorem 4 (Factorization of the LDP for product fields) Suppose P € M({x) satisfies the
process level LDP with a good rate function Ip, i.e.

1 .
liminf —log P{Pxc, € G} > — ngIP(V), G € M(Qx) open
n—o00 n ve
1 .
hmsupﬁlog P{Pxc, € F} < — in1f$ Ip(v), F e M(Qx) closed
ve

n— o0

Suppose @ € M(Qy) such that for any p € M(Qx) with Ip(u) < oo, (i, Q) satisfies the quasi-
quenched process level LDP relative to p with a good rate function Ig),. Then P x Q satisfies the
process level LDP with a good rate function

Ipcq(m) = _inf {Igy(m) + Ip(1)}. (118)

for 7 € M(XZ%). O

The idea of the proof for Theorem 4 is to condition on the empirical field induced by the random
realization of X. Roughly speaking, letting N(-) stand for an infinitesimal neighborhood in weak
topology of a measure, one may derive

. 1 -
—Ipyg(m) = nh_)moo e log Pr{Pxy,c, € N(m)}

. 1 . . .
~ lim—glog [ Pr(Pye, €U| Pro, € N} PriPxc, € N(u)

n—oon

1 ~ - .
~ lim “Largest”m [log Pr{Pxyc, € N(7)|Px,c, € N(u)} +1logPr{Px ¢, € N(u)}}

n— o0

~ —inf e pmiax) Hop(m) + Ip(p)}-



Since factorization naturally arises from conditioning, similar formulas have appeared in a few places
in different contexts [3, 7]. In [3], factorization derives from a sequence of probability transition
kernels satisfying the LDP continuity condition which is different from the quasi-quenched LDP
condition in Definition 1. The form of the factorization (1.18) is similar to Egs. (7) and (9) in [7]
(also see Eq. (9) in [14]).

1.4 The quasi-quenched LDP for Gibbs fields

Comparing to the conditional LDP for the empirical fields, the quasi-quenched LDP imposes more
restrictive conditions on ). However, if () is a stationary Gibbs random field with summable
potential, then for any P € M(Qx), (P,Q) satisfies the quasi-quenched LDP relative to P.
Furthermore, the associated rate function is deterministic, whose dual function is the expected
value of the dual function associated with the conditional LDP. Indeed, we have

Theorem 5 Suppose X ~ P € My(Q2x) and Y ~ Q € G(U) N M;(Qy). Define
Av(X) = EpAvx(N), A, (A) =EpA, x(A), A= lim A,(N), (1.19)

where Ay, x (), Ap x () are defined in (1.3) and (1.4). Because A, x () is bounded, equation (1.3)
and dominated convergence imply that the limit in (1.19) exists. Define

A*(w) = sup {(A,w) = AV} (1.20)

Suppose {m(")}nzl is a sequence of elements in 2 x such that

P, =P n—oo (1.21)
in the weak topology. Then the empirical means of
1
— D F((0™.0:Y)p),
teCn

satisfy the LDP with a good rate function A*(u). O

Consequently, by similar argument to that for Theorem 2 as well as by Theorem 4, there is

Corollary 2 Suppose @ € G(U) N My(Qy). For any P € M (Qx), (P, Q) satisfies the quasi-
quenched process level LDP relative to P, with a good rate function

Igp(r) = sup{lc, p(rc,) in > 1}, me M(S%), (1.22)
where for any m € M(2P), D € Z finite,

Ipp(m)= sup {E:f—Ap(f)} (1.23)
fEB(ZP R)

with

Ap(f)= Tim Apa(f), Apa(f) = Fp (1:24)

n— o0

log Eg exp { Z f((0:X, OtY)D)}

teCn

By Corollary 2, we get

Corollary 3 Suppose Q € G(U) N M4(Qy). For any P € Ms(Qx) satisfying the process level
LDP with a rate function Ip having the property that Ip(u) = oo for p & Ms(Qx), P x @ satisfies
the process level LDP with the rate function (1.18). O



The upper bound of the quasi-quenched LDP is proved by essentially the same argument for the
upper bound of the conditional LDP. However, the argument for the conditional LDP to show that
the lower and upper bounds arise from the same rate function does not work for the quasi-quenched
LDP. A different approach is required to the lower bound of the quasi-quenched LDP. We shall
adapt a method in [4], which relies more specifically on the properties of Gibbs random fields.

The rest of the article proceeds as follows. In section 2, we fix notations and collect preliminary
results on Gibbs random fields. Theorem 1 and Theorem 2 are proved in section 3. Theorem 3 and
Corollary 1 are shown in section 4. Theorem 4 is proved in section 5. Finally, Theorem 5 is proved
in section 6.

2 Preliminaries
Given t = (t1,...,tq), s = (s1,...,8q) € Z%, V C Z¢, p € N, define

Distance between t and s: |t — s| = max;—1__q{|t; — si|}

Distance between t and V: d(t,V) = min,cy{|t — 7|}

Translation of V by t: t +V ={t+s: sV}

For any s € Z¢, refer to s + C), as an n-block

Outer boundary area of V: 9,V = {t € V¢:d(t,V) < p}

Inner boundary area of V: d,V = {t € V : d(t,V°) < p}

For p =1, d,V is referred to as the boundary of V' and denoted by oV
p-neighborhood of t: N,(t) = {s € Z: ||s — t|| < p}

For convenience, define shift operators in the following more general way. Given ¢ € Z%, and
V C 74, the shift operator 6; wrt V is a map S¥ — S~V such that for any x € SV, y = b,z €
S~V with ys = 2444, s € —t + V. When there is no confusion, V will not be specified.

For V C Z¢, denote by Fy the o-field on Q generated by the projections = — x(t), t € V. For
p € M(Q) and V C Z% with |V| < oo, let py be the marginal distribution of 4 on SV, and uy (- |y)
the marginal distribution of uy (- |Fy<)(y) on SV, with the latter being the regular conditional
distribution on Fya given Fy. at y € €.

An interaction potential is a collection of maps Uy : SV — R, |V| < co. It is stationary if

UV(.Q?V) = Ut-i—V((et_lx)t—i—V)a T € Q, t e Zd (21)

U is called summable, if

U] = Z UV < oo, (2.2)
oeVv
Define
w= > Ul (2.3)

0€A, AZN,(0)

Then 7, — 0 as p— 0o0. A measure Q € M(Q2) is called a Gibbs measure wrt U if Qv (- |y), y € Q,
can be chosen as

Qv(zvly) = (Zv(y)) ' exp{-Ev(zvly)}, with By(avly) = Y Ua(éa), z€Q  (24)
ANV )



where Zy (y) is a normalization constant and { = £(z,y, A) € Q is given by
€(1) = Tv(Da(t) + Lye(Dy(t), t e (2.5)

It is known that U is stationary and summable, then G(U) N M4(Q) # 0 (Theorem 4.3, [15]). The
following standard lemma will be used in the proof of the results.

Lemma 1 For finite V C Z¢ and p € N, define
Kpy = 4y|V]+ 25l ov]|U]. (2.6)
Then for finite W C Z¢ disjoint with V, and y € Q,
e frVQy(av) < Qv(avlyw) < eV Qy(zv). (2.7)
Proof. Given z € , for y, ¥/ € Q, define £ and £ by (2.5) correspondingly. Since Ua(€a) = Ua(&)y)
for ACV,

By (ovly) = Bv(avly)l = | Y. (Ual€a) —Ua(€h) )

ANOV #£D
<2 > 0Al<Y] D0 Wagal+ D2 D 1Ussal
ANOV #D €V  0€A z€dpVUI,V 0€A
AZNp(0)
(a) d 1
< 29|V + @p)YOVIIUI = 5 Kpy,

where (a) is by stationarity of U. Therefore,

e~ 2Knv e Bv(avly) < omBv(zvly) < o3Kpv =By (avy),

Take sum over all xy to get

Ty 2y (y) < Zv(y) < 250V 2y (y),
— e " VQu(zvly) < Qulavly) < PV Quavly).

Integrate over 3’ wrt dQ to get

e "V Qy(zvly) < Qu(zv) < PV Qu(zvly). (2.8)

By conditioning,
Quow(ov,w) = [ Quowevwin) QUn) = [ @u(avIE)Qu (o o) Q(an)
with £(t) = Lwe(t)n(t) + 1w (#)Y (t), t € Z. By the first inequality of (2.8),

Qvuw (xv,yw) > /G_K”’VQV(JUV)QW(ZJWM) Q(dn) = e *»V Qv (zv)Qw (yw)

leading to the first inequality of (2.7). The second inequality is similarly proved. o



3 Conditional LDP for a Gibbs measure

Theorem 1 follows from several lemmas. The first one is a conditional-integral version of Bryc’s
asymptotic value result (Theorem 7.1, [2]). However, it only gives a lower bound of the conditional
LDP.

Recall that D = Cy,. Henceforth, for V,W C Z%, with |V| < oo and [,y (t + D) C W, denote

f_V(xay) - “]}’ Zf((etxyety)D)v fn(x,y) - .fC'n(l.vy)7 (%,y) € EW? (31)
teV

Lemma 2 P-almost surely, for all g : R¥ — R continuous concave,
1 _
L(g;X) = lim —Ep [log Eqexp {ndg(fn(X, Y))} ‘ I}
n—oon
exists, and

liminf%logEQ exp {ndg(fn(X, Y))} = L(g; X). (3.2)

n— oo

The next result implies an upper bound for the conditional LDP, by using a conditional-integral
version of the log-moment generating functions.

Lemma 3 P-almost surely, for all A € R”, the limit in (1.3) exists, and

lim sup % log Eg exp {nd(A, fn(X, Y)}} =Ax(N). (3.3)

n—oo

Lemma 4 For x € Qx such that (3.2) and (3.3) hold, let
I(u;z) = sup{g(u) — L(g;z) : g € C(R”) concave}.

For the other x € Qx, define I(u;x) arbitrarily. Then P-almost surely, the realization of X is one
such that (3.2) and (3.3) hold, and I(-;X) = A*(-;X), where A*(-;X) is defined by equations
(1.2) to (1.4). O

Assuming the lemmas for the moment, the proof for Theorem 1 precedes as follows.

Proof of Theorem 1: First of all, since f is bounded, the probability distributions of f,(x,Y") consist
an exponentially tight family. Suppose x is a random realization of X such that both (3.2) and
(3.3) hold. Then for G C R” open, it is not hard to show

| 3 .

171111_1)151; d logPr{fu(z,Y) € G} > _«jrelé I(u;x), (3.4)
following argument similar to the one for Lemma 4.4.6 [11]. More specifically, given u € G, define
h : R” =R to be a continuous concave function such that h(u) = 1 and h(u) < 0 for v ¢ G. For
m > 0, define hy, = m(h —1). Then

Eqexp {ndhm(fn(as, Y))} < e~mn’ L pr {fn(aj, Y) e G}
On the other hand, h,, is continuous and concave with h,(u) = 0. Then by (3.2), it is seen

max{lim inf n~¢log Pr {fu(@,Y) € G},—m} > L(hp;x) > —1(u;z).

9



Figure 1. Spatial relationship of the blocks for cal-
culation of the empirical means. The largest block is
Ch+ny, the one with thick boundaries is C,,, and the
one with dotted boundaries is Ci4p,. s is a point in
Cltno- Each shaded block is s+t(k+mng)+C}, for some
t € Z% and belongs to J,. Each small block that imme-
diately contains s-+t(k+mng)+Cl is s+t(k+n0)+Chiny,

" which belongs to I,. The union of Js over s € Cjp,
consists of all t + C, C Cp, t € Z% For the partic-
1 ular s, Wy is the union of the shaded blocks, and Ag
the union of the blocks that immediately contain the
! S shaded ones.
o — P

Letting m — oo then finishes the proof for (3.4).
On the other hand, by Theorem 4.5.3 by [11], for any compact set F' C R,

1 _
lim inf o logPr{fn(z,Y) € F} < — inf A*(u;z). (3.5)

n— oo ueF

By the exponential tightness of the laws of f,,(z,Y), Lemma 3 leads to an upper bound of the LDP.
Finally, the LDP is implied by Lemma 4. O

Proof of Lemma 2: Denote I' = {u € R” : |u| < ||f||}, and T° its inner part. For V C Z9, |V| < oo,
and n € N, define

Ay, =

= m log EQ €‘V|9(JZV(17Y)) , Anw = Acn@, (36)

Note that g(f,.(z,Y)) only depends on g|r. First, we show that if g € C(T') concave, then A,, x
converges P-a.s. Given e > 0, fix integers 1 < p < k < n. For each s € Cy4p,, let I; be the
collection of all the disjoint (k + ng)-blocks s + (k + ng)t + Cgpn, contained in Cpyp,, t € Z%, and
Js the collection of all the disjoint k-blocks s+ (k+ng)t + Cj, contained in C),. Note the one-to-one
correspondence between Js and I,

V=t+Cped, <= V,=t+Chin €I (3.7)
Ve =Uev(t+ D). (3.8)

Let A; = UVGIS V, Wy = UVGJS V (cf. Fig. 1). The union of Js over s € Ciyy, contains all
t+Cp CCy, t€Z% ie.

UseCrin, Js = {8+ Cris € Top}, Tap={s€ 7 s+ Ch C Oy} (3.9)

Then, letting £ = k%(k 4+ 10) ™% bY |disneCringl < (k4 10)HOCh 1m0,

Ws CCpny  Cring \ QktngCning C As C Crng (3.10)
= [Wil= Y V=5 IVI=klAs > 6(ICninol — (k +10)40Crno])
Veds Vel
— |C,\ W,| < en?
— |fulz,y) = f (@, 9) < 26| fll,  (,) € B2 (3.11)
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Because g is concave,

Ky = sup{lg(), (1+ 7]} ‘M  u €T, u v} < oo (3.12)

Thus, by (3.11), |W,| = |Js|k?, and the concavity of g,

_ _ 1 _
9(fn(z,y)) = —2Kge + g(fw,(z,y)) = A g(fv(z,y))
slved,
nd
= Ay x > —2Kge+ i log Eg exp WA Z g(fv(X,Y))
Slyved,
Given V € J, it is easy to see that the value of fv(X,Y) only depends on X, Y;, s €
User (t + D) = Ve C A,. Also, by (2.7), (3.7), and successive conditioning, it is easy to verify
Qa.(ya,) = e e TT Qu(yw).
Vels
Then,
nd nd —
Slyved, YA, Slved,

> eXp{m

v,
yVEESYE:VeJS

> 9(fv(Xy,, yve”} e e I @v.ov)

Veds Veds

d
_ e—\Js|KP-,Ck H EQ exp {Gs‘ g(fV(Xa Y))} .

Therefore, by the definition of K, ¢, , for 1 < p < k < n,

Js| Ky, 1 -
A 2 —2Kge — ey ZlogEQexp{—(|J| k) Ky + K (fv<X,Y>)}
VGJS
k4|, 1
_ e s 2 9(Fv(X.Y))
> 2K e —¢ ( )Kg—i—nd‘;log]ﬂ@[ v }

1 K g(Fo (XY
> —(3K4+1)e+ ndvez; log Eg [e 9(fv( ))] .

The above inequality holds for each s € Ciy,,. By (3.9) and the fact that JsNJ, =0, s, t € T, x,
s # t, averaging over s € Cjyn, leads to

1 1 kd £ XY
> - g(f8+c ( ) ))
ATMX (3Kg—|—1)€+ nd (l{? no)d E IOgEQ |:6 k :|

SETn,k

—~

@) _ 11 K g(Fe(0:X,Y))
£ -Gy + et G 2 ls o E |

SeTn,k
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where (a) is follows from the stationarity of Q. Thus, by (3.6),

K1
Aox>—-BK,+1 _— A . 3.13
x > —(3K, + )€+(k+no)dnd GXT: k05X ( )
s n,k

Take expectation wrt P(-|Z) on both sides of (3.13). Because P(-|Z) is stationary,

k4| Tkl

Ep|A, x|ZT] > —(3K, 1 —_—
P[ ,X| ]— (3 9+ )€+(k+n0)d nd

Ep [Agx|T]. (3.14)
Fix k and take liminf,, _, oo on both sides. Then \Tn7k|n_d —1 and

L4
liminf Ep[A, x|Z] > —(3K4 + 1)e +

im in 5 5 ngya DPHAwx I

Let k — oo on both sides. Then k%(k + ng)~¢ — 1 and

liminf Ep[A, x|Z] > —(3K,4 + 1)e + limsup Ep[Ay x|Z].

n— o0 k— 0o

Because € is arbitrary, Ep[A, x|Z] converges, with the limit denoted by L(g; X).
Take liminf,, _, o on both sides of (3.13). Because X is stationary and Z is the o-algebra of
shift invariant subsets of x, by the ergodic theorem (Theorem 6.21, [1]), P-almost surely,

. k4
Let k — oo on the right hand side. Since € is arbitrary, liminf,, . o Ay x > L(g; X). Since A, x is
bounded, Fatou’s lemma gives Ep[liminf, - A, x|Z] < L(g; X). By (3.6),

1 —
liminf — log Eq {e"dg(f”(xy))] = L(g; X), P-as. (3.16)
n—oo 1

Thus the P-almost sure convergence is verified for each g € C(T") concave. The set of concave
functions in C(I") is separable. Moreover, given x € Qx,

%M%VWMW,%&%Mwﬂwmﬁﬂw,wl

as a family of functions on C(I') are equi-continuous. It is then not hard to show that P-almost
surely, (3.16) holds for all g € C(T") concave. O

Proof of Lemma 3: Define ¢( - ) such that it is equal to (A, -) on {u € R : |u| < || f]|}. Then it can
be shown that P-almost surely, for all A € R”,

1 2 1 F
lim sup — log Eq [V O] = im — g [1Og Eq [G\VH/\,fv(X,Y))} M = Ax(\).
n n—oon

n— oo

Proof for this follows similar argument to Lemma 2, except using the second inequality of (2.7)
instead of the first one, and the convexity of (), -) instead of its concavity. O

12



To prove Lemma 4, we need one more auxiliary result.

Lemma 5 For any sequence {n;} C N, there is a sub-sequence {my}, such that for P-almost all
x € Qx, fm,(z,Y) satisfy the LDP with a good rate function I(u;x).

Proof. Again, let I' = {u € R” : |u| < || f||}. First, given g € C(I") concave, let Fy,(g; X) = Ap x
given by (3.6). Let G,,(X) = Ep[F,(9; X)|Z] and D,, = F;, — Gy,. Then limj _, oo Ep[D,, ] = 0 and
by Lemma 2, liminfy o Dy, = 0. Since D,, 0 (cf. Lemma 2, [5]), there is a sub-sequence
my, such that D,,, — 0, P-a.s., giving F,, (9; X) — L(g; X), P-a.s. Furthermore, {g € C(I') : ¢
concave} is separable, and given x € Qx, {F,(g;x), n > 1} U {L(g;x)} as a family of functions
in g is equi-continuous. Based on the above two facts, by the diagonal argument, it is seen that
from my one can find a sub-sequence my, such that P-almost surely, for all ¢ € C(T") concave,
Fp,(9;2) — L(g; x) (cf. Theorem 3, [5]). Then by Bryc’s inverse Varadhan lemma, for P-almost all
x € Qx, fm,(2,Y) satisfy the LDP with a good rate function I(u;z). O

Proof of Lemma 4: By Lemma 5, I(u;x) is a good rate function of an LDP. Therefore, in order to
demonstrate I(u;x) = A*(u;x), it is enough to show [ is convex (Theorem 4.5.10, [11]).
Let e = (1,0,...,0) € Z%. Denote

C, =(n+ng)e+Cpn, V,=CrUC,.

Then repeating the same argument that leads to (3.4) and (3.5), it can be shown that P-almost
surely, equations (3.4) and (3.5) hold simultaneously for C,, C}, and V,, and for all ¢ € C(T")
concave. Therefore, by Lemma 5, there is a sub-sequence {n;} C N, such that for P-almost all
x € Qx, fcnk (,Y), f(;%k (x,Y), and ank (z,Y) satisfy the LDP with a good rate function I(u;x).

Given z € Qx and V C Z? finite, denote by Ly the probability measure on R” induced by
fv(z,Y). Given r > 0, fix a concave function g such that g(0) = 0, g(u) < —1, u € B,. Given
ui,uz € R, let u = (u1 + u2)/2. Denote G; = u; + B,, i = 1,2, and G = 4 + B,. For any m > 0,

J= / emVlot=n Ly (du) < eVl 4+ Ly, (G). (3.17)

On the other hand, letting g;(u) = mg(u — u;), i = 1,2, by the concavity of g,

J = Eg [emwmg(fvnk W))—a)} > Eo [ewnkgl(fvnk @Y) |Crl92cy, <~”L’7Y>>}

The two exponentials in the integral on the right hand side only depend on the values of Y on
Chjtno and (ny + ng)e + Cp,4ng, respectively. Therefore, given p >0, (3.17) and (2.7) lead to

1
7|V EnCoin + 316 |10g/ OB L (du)
ng

log/ lC"k‘QZ Lc;zk(du).

1 —-m
Vo log{e"Vnil 4 Ly, (G)}
N

k

Let kK — oo and then p — oo to get

max{hmlnf log Ly, (G),—m} > %(L(gl;x) + L(g2; x))

1
Vi |
Since L(g;;z) = —(gi(u;) — L(gi; ) > —1(u;), i = 1,2, letting m — oo leads to

1
llkrglo%f Vi log Ly, (u+ By) > _i(l(ul) + I(ug)).
Let r — 0 to get —I(u) > —%(I(u1) + I(u2)), proving the convexity of I. O
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Proof of Theorem 2:
(a) Fix v € N. For 2 € Qx, f € B(XP,R¥), g € C(R") concave, and finite V C Z9, write

An,x(fa g) = % log EQ exXp {ndg(fn(xa Y))} ) Mn,x(fa g) = EP[An,- (fa g) |I] (-T)

As a matter of fact, A, ,(f,g) is identical to A, , in (3.6). The more complex notation is used to
emphasize the dependence on both f and g.
From Lemma 2 and Lemma 3, for each f € B(XP R¥), g € C(RY), there is L(f, g, X) such that

lim M, x(f,g) =liminf A, x(f,9) = L(f,9,X), P-as. (3.18)
In addition, if g(u) = (A, u) for some A € R”, then there is also

limsupAmX(f,g) :L(fagvX) (319)

n— o0

Given v, K € N, let
Fx ={f € BE",R"): |fl < K}, Ag = {g€ C(Bk),g concave}.

Given (f,g) € Fk x Ak, (3.18) holds P-a.s. On the other hand, given z € Qx, M, .(f,9),
A z(f,9), n > 1 consist a family of functions on F x Ag. Under the sup norm, the family is equi-
continuous and Fx x Ay is separable. Therefore, with probability 1, (3.18) holds simultaneously
for all (f,g) € Fx x Ag. Consequently, by B(XP RY) = | Fi, with probability 1, (3.18) holds
simultaneously for all v € N, g € C(R¥), and f € B(X”,R¥). Similarly, with probability 1, (3.19)
holds for all f € B(XP,R¥) and A € R”. Now by the same argument for Theorem 1, for P-almost
all z € Qy, for f € B(XP,RY), the empirical means f,,(z,Y) satisfy the LDP with a convex good
rate function. Then the LDP for vacm p follows.

(b) For P-almost all & € Qx, for each n > 1, we can establish LDP for the empirical measure
ﬁ0n7£7y. Thus the LDP in (b) follows from Dawson-Gértner’s theorem on the LDP for a project
limit (Theorem 3.3, [8]). Then I(m;2) = oo for m & M(%Z"), following argument similar to (Eq.
5.4.15, [12]). Indeed, for some finite A C Z¢, f € B(X4,R), and [ € Z¢,

/ F(Br, 1) 4) dr(, ) > / £((,y)a) dm(a, ) + 1.

Choose D = Cp, D AU (Il + A) and define h(z,y) = f((01z,01y)a) — f((z,y)a). Then for any
M >0, [ Mfdr > M. On the other hand, for any C,, C D,

(2, y)| = | (O, Oy) — fu(z,y)| <0~ fI1Cn A (14 Ch)l,
where C,, A (I + C,,) stands for C,, U (I + Cy,) — C, N (I + Cy,). Thus

_ 2071 1Cn A (14 G

—0
nd

1 ndh .
—iBr [logEQ [eM hn<va>] ’I} ()

leading to L(Mh; &) = 0. Therefore, by I(m; &) > [ Mhdr — L(Mh; ) > M, I(m;2) = co. O

Proposition 1 Both A;(\) and A% (u are (B(RY) x Z)-measurable, where B(R") is the Borel o-
algebra of R”. Furthermore, letting B be the Borel o-algebra generated by the weak topology of
M(SZ), I(m;2) is (B x I)-measurable.
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Proof. From (1.3) and (1.4), for P-almost all z € Qx, Az(\) is continuous, while given A\, Az(\)
as a function in = is Z-measurable. For n > 1, let 7, be the collection of all binary cells

IkynZ{()\l,...,Al,)ERV:kiz_nS)\Z‘< (ki+1)2_”, i:1,...,V}, k:(kl,...,ky) ez”.

Then define Fy,(A\;z) = > ey Au(k277)1y, (A). For each k, A, (k27") is Z-measurable, and

1z, (A) is B(R”) is measurable. Therefore, F, is (B(R”) x T)-measurable. Because for each =,

Az (X) is continuous, F;, — A point wise, as n — 0o, leading to A;(\) being (B(RY) x Z)-measurable.
By the continuity of A, (\), given z, it is easy to see that for each 0 < a < oo,

{(n,2) s A(u) < a} = Maeof(w.2) : (A w) — As(X) < a} € BRY) x .

where @ is the set of rational points in R”.

Given n > 1 and f € B(X% R), E.f — A.(f) as a function in (7, ) is (B x T)-measurable.
Since for each (m, ), E;f — Ax(f) is continuous in f, and B(X",R) is separable, from (1.9), it is
seen I¢, (m;x) is (B x Z)-measurable, and hence so is I(7; ) by (1.9). O

4 A variational characterization of the deterministic rate func-
tions

Proof of Theorem 3: Fix ¢ > 0 and 7w € MS(ZZd), such that 7x = P and |E,f — u| < €. Given
n>1,x¢€ S)C("Jrno, and X € R, since An?f, (z,) is bounded, by Lemma 3.2.13 in [12],

HCn+nO (Trcn+n0 ( : ’x) H an+n0)
> [ e dnc,., (vlo) ~log [ exp {M'Fu(e)} Qe )
Integrate both sides over x, then divide them by n¢ . Since = is stationary and mx = P, then

1
W‘ch-&-no (Tron-&-no H(P X Q)Cn+n0) Z >\E7rf - Acn ()\)

Since A is arbitrary and |E;f — u| < e,
1

WHCTH'W'O (7TC’n+n0 ”(P X Q)Cn+n0) Z Sl;\p{)\ Eﬂ'f - AC ( )} > ‘u,i%ﬁ<e Aén (u/) (4]‘)
By Theorem 5 of [16],
A (u) = hm0 lim Sup| 1nf‘ A (W) = limo lim inf‘ inf‘ AL (u). (4.2)
€e—0 n—ooo |U/—ul<e €—0 n—00 |u—ul<e

Let n— oo and then ¢ —0. Since 7 is arbitrary, by (4.1) and (4.2), J(u) > A*(u). Clearly
J(u) > J(u) and hence J(u) > A*(u).

To prove A*(u) > J(u), first assume u € (u Sﬁ?, ugna))() In this case, it suffices to show A*(u) >
J(u), which also implies (1.15). Define

W = Ep[ess inf f,(X,Y)] "), = Epless Sup fn(X, V)], (4.3)

IIlll’l

where f is defined as in (3.1). Then following the argument for (47) and (48) in [10],
(c0) (n) _ (n) ul®) =

Uy = SUP Ui = nhm Uiy ok
n

i 1nf u = lim ()

X max*
n— oo

(4.4)
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Therefore, for all n > 1, the supremum of Au — A¢, (A) is achieved. Let

A, = arg sup{\u — A¢c, ()} (4.5)
AER

and define a probability measure 7,, on X" by

expNn Fu(2, 1)} X Qi (1)
S exp{Ain (e, y)} x Qe ()

yl

7Arn(xay =

Pe,., (x), €Sy, ye sy (4.6)

Then it is not hard to show (1) S)(?”"O marginal of 7, is Po, +n0, (2) Bz, fn(X,Y) = u, as seen
from A, (\2) = u, and (3) n~He,,.,_(in || (P % Q)cyn) = Ay (1) (cE. 9. 17).
Define 7, € M(sz) as the product of independent copies of 7, on disjoint (n + ng)-blocks

t(n+no) + Cring, 1€
~ A -1
Ty = H Ty 0 Gt(n+n0)
tezd
and m, € M,(3%) by
1
Ty = ————— Z Y (4.7)

d
(n + no) tGCn+n0

Since M is compact, there is 7 € M S(Ezd) and a subsequence 7, , such that m,, — 7 in weak
topology. Next show

(A) X = P7
(B) Exf = u, and
(C) A*(u) = h(m|[P x Q).

For statement (A), given m > 1, let mx c,, be the marginal of 7x on S)C(m. Then

1
— lm Py 007
TX,Cm = I (nk + no)? Z (Tony, © 07 )X O
tGanJrnO
When t € an+n0 \dmcnk—i-nm
(ﬁnk o et_l)X,Cm = (frnk ° gt_l)X,Cm = ((ﬁ-nk)X © et_l) (PC"k+"0 Ht_l)c’” = Fo,

where the last equality is by the stationarity of P and ¢t + Cy, C Cp,4n,- On the other hand,
| Crapotno| = 0(|Crptno|). Therefore, letting k — oo, there is 7x ¢, = Pc,,, and thus mx = P.
To prove statement (B), i.e. Exf = u,

Er, f(Xp,Yp) = 5 Y EBap1 /(XD YD)

n + n
0 tECn.»,_nO

1 1
= 3 > EafXepYeun) + ———3 > B f(Xesp, Yiip)
(n + n(] teCh, (n * nO) ieon+n0 \Cn

1 - 1
= B n(XY) + —— Z B, f(Xe+D,Yi4D)
d Tnd N I d Tn )
(n + nO) (n + nO) tecn+n0 \Cn
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By the definition of 7, Fz, fu(X,Y) = Ez, fu(X,Y) = u. Let n— oo along ng. Then the first
summand on the right hand side converges to u. By the boundedness of f and |Cy,yn, \ Cn| = o(n?),
the second summand is o(1). Therefore E, f = u.
For statement (C), by the lower semi-continuity of A( - ||P x @), in order to show h(7||P x Q) <

A*(u), it is enough to show

limsup h(m,||P X Q) < A*(u).

n—oo
Given p > 1, fix m > n > p. Denote by 7, ¢, the marginal of 7, on »C¢m By the convexity of
He,, (- |I(P x Q)c,,) and the stationarity of P x @,

1 ~ -1
He,, (mn,c, (P % Q)c,,) < mm))dteczn;no He,,((Tn o0, "), (P x Q)c,,)
1
=gt 2 HecwFaecn (P x Qic,). (4.8)

t€C7L+nO
Let C be the collection of all s(n + ng) + Ching, S € Z4%. Given t € Chng, define

J = {VelC:VCt+Cpn}
I = {V: V=Wn({t+Cy)#0, with Wn(t+Cy)#0, WecC}

Then 7pt4vc,, = [lyesur v On the other hand, since P x @ is a stationary Gibbs field with
summable interaction potential, by Lemma 1,

(PXQt+C>H KoV (P x Q)v,

VeJul

with K,y defined in terms of the potential of the Gibbs field P x (). Therefore,

Ht‘f’cm(ﬂnt‘i‘cmH(Pth‘i‘cm — Z V+ Z HV('ﬁ'nJ/”(PXQ)V)
VeJul VeJul

For V € J, by the construction of 7,, and the stationary of P x @,

Hy (Fny||(P x Q)v) = He, o (Finll(P X Q)Cpyny ) = n?AE, (1)

V € J. On the other hand, for some constant M > 0 which only
(P x Q)v) < M. Therefore,

In addition, K,y = K, ¢

n+n0 Y

depends on n but not m, for all V € I, K, v + Hy (7,

Hei0,, (Tt Ol (P X Q)t4C) < N1 Kp, oy + 1% TIAG, () + [T M.

Divide both sides by |C,,| and let m — co. Then |Cy,| 7t J| —
By (4.8),

(n—i—no)d and |Cm‘ 1‘” —0.

d

vacn+no n *
h(ma||P x Q) < (n + no)? + (n_|_n0)dAn(u)' (4.9)

Let n — oo. By Theorem 27 of [10], A} (u) — A*(u). Then by (2.6),

limsup h(m, || P x Q) < 4y, + A*(u).

n— oo
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Since p is arbitrary, letting p — oo finishes the proof.
When v < v or u > w3, it is easy to see A*(u) = oo, giving A*(u) > J(u) > J(u). It

i (00) . (o0)

remains to prove (1.14) for u = u ./ or Umax. It is easy to check that

W < ) < (00) < yle0) k) )

mm — min max’

(n) (n) (n)

If for some n, u, ;. = Umax. Then v =wu_,

n, k> 1.
implying Epxg[fn(X,Y)] = u, and hence

Epxlf(Xp, YD) =u

Therefore, letting 7 = P x @ in (1.14), J(u) = 0 and hence A*(u) > J(u).
Suppose uEm)n < ugngx foralln > 1. Let u = uﬁnm) Given € > 0, choose n large enough so that

w6 <l < (%) < Ur(na))( < Ugna)tx Then A = (u Em)n, ugngx) N (u(o-o) —€ u(oo) +¢€) # (0. Choose

min min — min min ) Pmin

v € A and repeat the proof from (4.5) to (4.9). Then it is seen

KpCuin .
hmal| P Q) < =i + AL ().

Since

M) = Tim A (w). Aj(uld) = lim A7 (w), and
7J’lumm ’U‘TU‘maX

Aj(u) = oo, for u & [ub, ull].

mm’ max

then by the arbitrariness of u/,

. d K nd n . *
inf {h(wHP % Q): me My(Z%Y), mx = P, |Enf —ul < e} < m’lﬁ + 0k A ),

Now let n— oo and then e — 0. By (4.2), J(u) < 4v, + A*(u). Let p— oo to finish the proof. The
(00)

case U = Upmax 18 similarly proved. O

Proof of Corollary 1: Denote By = {f € B(XP,R) : ||f|| = 1}. For any f # 0, g = IITfH € By.
Therefore, by (1.7)

Ip(m) = sup sup{\E.f — A(Af)}
f€B AeR

with A(f) defined by (1.8). By Theorem 3, it is seen

Ip(m) = sup lim mf{h(7||P x Q) : 7 € M(SEY, yx = P, |Eyf — Exf] < €}.
feB1 ¢

It is easy to show the limit and the supremum are exchangeable, hence proving (1.16). O

5 Factorization formula

Proof of Theorem 4: First prove the lower bound of the LDP. Let G C M(Ezd) be an open subset.
Fix 7 € G and p € M(Qx). Then there is a sequence of open subsets U,, C M(Qx) with U,, | pu,
such that

1 A
lilniiglof d log P{Px,c, € Uy} > —Ip(p). (5.1)
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To see this, choose open sets Vi, | u, and let Ni T oo, such that for all n > Ny,

1 - 1
mlog P{Pxc, € Vi} > —Ip(p) — %
Let U, =V for all n < Ny and U,, = Vi for N, < n < Ngi1, k > 1. Then U, satisfy (5.1).
Now show
1 .
liminf —log  inf  Q{Pryvc, € G} > —Igj (7). (5.2)

n—oo nt " Lp U,

Indeed, assume (5.2) is not true. Then there are € > 0 and 2™ e U,, n > 1, such that

hm 1nf - log Q{P ey, € G < —Igu(m) — e

Since Px(m@n — p, this contradicts the assumption that (i, Q) satisfies the quasi-quenched process
level LDP wrt p with rate function Igj,.
By conditioning,

flogPr{PXYCn € G} > — logPr{nycn € G PXC’n e U, }

> —d log inf Q{pxyygn eGl+ 7log P{pX,Cn eUy,}
n z:Pp ¢, €Un n

Take liminf,, _, . on both sides and use (5.1) and (5.2) to get

hmlnfn log Pr{Pxyc, € G} > —Ig|u(m) — Ip(p),

which leads to the lower bound.
To prove the upper bound, let F' be a closed subset of M(Ezd). Fix €¢,6 > 0. For each real
valued function f, denote

f2 =min{f —6,1/5}.
Extend the definition of I, so that I;Qm(w) =0if Ip(p) = oo.
Fix p € M(Qx) and m € M(X%). If Ip(u) < oo, then by the assumption of Theorem 4,

(1, Q) satisfies the quasi-quenched LDP relative to p. Because M(EZd) is Hausdorff and regular
(cf. Theorem D.8, [11]), 7 has an open neighborhood G, » C M(SZ"), such that

inf I, > 10 (7). 5.3
o Qu(v) = 15,(7) (5.3)

(cf. (4.1.3), [11]). If Ip(u) = oo, then by the extended definition of Ig),, such an open neighbor-
hood obviously exists. On the other hand, by argument similar to that for (5.2), u has an open
neighborhood U, » C M(f2x), such that

1 R _
limsup —log  sup  Q{FPryc, € Gur} < — inf Igu(y) +e (5.4)

n—00 Py, €U r VEGur
Furthermore, shrinking U, . if necessary while keeping p € Uy, », U, » satisfies

inf Ip(v) > I%(p). (5.5)

VGU;,LJT
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Since M(€Qx) and M(Ezd) are compact, their closed subsets are compact as well. In particular,
F' is compact, and hence so is M(Qx) x F. Therefore, there are (u;,m), i € F, mi € M(Qx),
1=1,..., N, such that
M(Qx) x F C U (Upim, X Gpipm,)-

Then, because X and Y are independent,

N
Pr{Pxyc, € F} <> Pr{Pxc, € Uyr;, Pxy.c, € Gum;}
=1
N
< Z [Pr{PX,Cn € Uui,m} X sup Pr{P,yc, € GMiﬂTi} ‘
i=1

x:ﬁ’x’anUMi’ﬂ
Because P satisfies the LDP with rate function Ip,

1 . _
limsup — log Pr{Pxc, € Uy, r,} < — inf Ip(v).
n

n— oo veUu, n;

By (5.3)—(5.5),

1 .
lim sup o logPr{Pxyc, € F} < max{—[%w (mi) — I (i)} + €
7

n—oo
< —inf inf {I% (7)) + I&(p)} + €= —Bs+e
= weFueM(QX){ Q|u( )+ Ip(1)} )
Since € is arbitrary, in order to finish the proof, it is enough to show

limBs = A A=inf inf {I I .
im By = 4, ;gmeﬁlmx){ o™+ Ip()}

First, it is easy to see By < A and is non-increasing in § > 0. Therefore, limsup By < A. On
the other hand, because rate functions are non-negative,

1

Igm(ﬂ') + I%(u) = min{Ig,(T) — 4, %} + min{Ip(p) — 0, 5}
1

1
> mj — 925, —}—§>min{A — _ 4.
> min{lq,(7) + Ip(n) — 26, 26} 0 > min{A — 24, 25} 0

Take infimum on both sides over u € F and 7 € M(Ezd), then let 6 | 0 to get liminf Bs > A. O

Proposition 2 Given © € M(Z%), if I, () is lower semi-continuous in 4, then there is u* €
M(Qx), such that

Ipxq(m) = Tgue (m) + Ip(u). (5.6)

Proof. If Ipxg(m) = oo, then by (1.18), (5.6) holds for any p € M(2x). If Ipxg(m) < oo, choose
pn € M(Qx), so that I, (7) + Ip(pn) | Ipxq(m). Since M(f2x) is compact and complete, there
is a convergent subsequence i, — p* € M(§x) in weak topology. Because both Io, () and Ip(u)
are lower semi-continuous,

Iquu () + Ip(p") <liminf(Ig,, (7) + Ip(pn)) = Ipxq(T)

which, combined with (1.18), yields (5.6). O
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6 The quasi-quenched LDP for Gibbs random fields

Most part of this section is mainly the proof of Theorem 5. However, we first give a result in regard
to Proposition 2 based on Corollary 2.

Corollary 4 If Q € G(U) N M,(y), then for any © € M(XZ"), the infimum in (1.18) is achieved.

Proof. By Proposition 2, it is enough to show I, () is lower semi-continuous in p. Given T,
from (1.22) and (1.23), it is seen that I p(7) as a function in P is the supremum of functions
E.f — Ap(f) = Exf — lim, Ap,(f), over f € B(X%,R), h > 1 where Ap(f) and Apn(f) are
defined in (1.24). Since the supremum of semi-continuous functions is again lower semi-continuous,
it suffices to show, for each such f, Ap(f) is a continuous function in P.

Note that for any P € M(§2x) and n > 1, |Ap,(f)| < || f||. Given € > 0, repeat the argument
that leads to (3.14). It is seen that, for h < k < n, for all P € M(Qx),

Apn(f) = =GIfl + Ve = el App(f)] + Apk(f) = = (Al f]] + De + Api(f)-
Likewise Ap,,(f) < (4]|f]| + e + Api(f). Thus

ralf) = Aradf) < B+ ) bl
= |Apn(f) — Apm(f)] < 2(4] f]] + 1)e, n,m large enough.

Therefore, Ap,,(f) converges to Ap(f) uniformly on M,(Qx). For each n € N, Ap,(f) is contin-
uous in P, therefore, Ap(f) is continuous in P as well. O

Proof of Theorem 5: To prove the upper bound, for z € Qx and finite V C Z%, denote

Ava(N) = = log g [eV1OTEN] 8,0 () = Ac, 2 (V).

|V!
Then, by Theorem 4.5.3 of [11] and the boundedness of f, it is enough to show

limsup A, ;o (A) < A(A) (6.1)

n—oo
Let g(u) = (A, u). We follow closely the argument that leads to (3.13) with two exceptions.
First, instead of the first inequality of (2.7), the second inequality is used. Second, instead of the

concavity of a linear function, its convexity is used. Again, denote T, = {s: s + Cj C C,}. For

1<k < n,
k:d

A (N X < (BKg+1)e+ Wnd Z Ay g,xm (A)-
0 eTn k
Because g(u) = (A, u), by (3.12),
Kg < (1+ [IFIDIAL
— Ao () <31+ LD+ €+ s 3 Mg
eTn k
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Also,
n
A gozon N < ISl and [T x| = (14 o(1))n, koo

k1
= AN <3e2+IfIDIA + e+ T+ no)end Z Ay gzt (A)
seChn

k4 -
= 362 + DI+ s [ AncVdPron c, (0

Notice that Ay (M) is a function only depending on the values of (;, t € Cjyp,. Therefore,
(1.21) implies the integral on the right end converges to EpAy x () and hence

kd
limsup A, ;) (A) < 3e(2+ || f])|A] + €+

——  EpA A).
n— oo ’ (k+n0)d P k7X( )

Let k — oo. Because e is arbitrary, limsup,, A, ,m (A) < A(A).
To prove the lower bound, it is enough to show that for any open set G C R” and v € G,

1 _
liminf — log Pr{f,(z'",Y) € G} > —A*(u). (6.2)
n—oo N
Fix 1 < p < k < n and r > 0, such that By,(u) C G. Denote I the collection of disjoint
(k+mng)-blocks (k+mn0)t + Ching, t € Z9, that are contained in Cy,yp,. For each V = s+ Clip, € 1,

let £(V) = s+ C} and J be the collection of k(V), V' € I. Define W = |J;,; V. Then by (3.10),
for x € Qx, y € Qy,

‘f(xy mevxy‘

Ved
:‘nde (6, 60,y) D ’J’deZf (01, 0:)p) |
teChp VedteV
= |22 X 10w 0m)0) — i 3 10 09)) |
teCp teWw
1
<l X r0womn)| + (G -a2) X 0w 0m)0)
teCp\W teWw
20, \ W] < |
< HOAW

Together with

this implies
Define random variable &y, V' € I, such that

&vesy, &iid ~Qc,,,,- (6.3)
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Then by (2.7), for y € Qy,

Pr{Yy =gy, V €I} > e e TT Priey =y}

Vel
_ _ 1 _

= Q{fu(x,Y) € By (u)} > e 1. Cung Pr{ Z fk(V)(fL'Va‘fV> € By(u) p. (6.4)

e

For n > 1, let

_ " 1

oy = K¢ fk(V)(iU§/)>§v), Vel, T, = T Z G,V (6.5)
e
and (i, the joint distribution of ¢, -, V € I. Then
1 = (n — N Kp i 1

m IOg Q{fn(l‘( )a Y) € BQT(U)} 2 TM + W IOgﬂn{Tn € BT(U)} (6'6)

To estimate n~%log i, {T}, € B,(u)}, consider the log-moment generating function of T},. For
A ERY, let

1 d
Ani(N) = kTmlogEn[e’f |f|<Aan>]. (6.7)

First consider the case where A,, () satisfies the following condition,

(A) (A, u) — Ay, k(N) as a function in A achieves

A7 () = sup {0 u) = Apr(N)}

at &, and |1, x| is bounded for 1 < k < n.

Lemma 6 Under condition (A),

lim lim A7 (u) = A*(u).

k— oon— 0o

Assume the lemma to be true for now. Define

ekd \I| <77n,ka Tn>

diin(Cny, V el) = KT A () dpin (G, V € I). (6.8)

Mn,k

Then for any d € (0,r),

1 1
W log Un{Tn c Br(u)} > W 10g Eﬂn

ek A g (11, 1)
L e Bs () T G oy

]. ekd |]‘An,k(nn,k) kd I _T
= W log E*n 1{TnEB§(u)}W€ | Hnn,kvu n>
kI kI 1.
=z —n’d nk (1) = = = k6 + 5 1og fin{Ty € Bs(u)}. (6.9)
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Because (A, u) — A, k(1)) is differentiable, by (A), u = VA, i, (n.k). On the other hand, by (6.7)
and (6.8),

d d
E,, [Tnek |I\<nn,k,Tn>] B, [Tnek |I|(nn,k,Tn>]
E,,, [X" W16 5 Tn)) T Ak k)

VAn,k,(nn,k) = = Eﬂn [Tn]

Therefore,

B, [Th] = u

[|I‘ Z deTLV

Vel

Under pin, ¢nv, V € I are independent. By (6.8), k‘any are independent under f,. In
addition, k~9¢, 1 are bounded by ||f||. Let n— oo to get |I| —oc. By the weak law of large
numbers, fi,{T,, € Bs(u)} — 1, as n— o0o. Let n— oo followed by k — oo to get n~9k%|I| — 1. By
Lemma 6 and (6.9),

hmmf o 7 log 1p{Tn € By(u)} > —A"(u) — §lim sup lim sup |1, k|- (6.10)

k;—)oo n— oo
Together with (6.6) and (2.6), this implies
1 _
liminf —log Q{fn(z,Y) € Bar(u)} > —4vyp — A*(u) — ¢ limsup lim sup |, |-
n—oo n k—oo mn—o00

By assumption (A), lim supy, limsup,, |1, x| is finite. Since § is arbitrary, letting p — oo finishes the
proof of (6.2).

To prove (6.2) without (A), uy, is regularized as follows. Given M > 0, let W, € R¥, t € Z% be
i.i.d. random variables taking finite values, such that

1 .
k%EF@qu{zmﬂMz if A < 4(| ] + ful + 1M 611)
AN+ Tul + DAL G A} > 4+ [ul + 1) M
Such random variables can be obtained by appropriate quantization of 1y,<r) Vi /v M with
suitable R, where N; are i.i.d. standard normal random variables. Suppose the support of W; is

Sy. Then it is seen (Y, W) is a stationary Gibbs field with summable interaction potentials on
(Sy x S2)Z°. For z € Qy, (y,w) € (Sy x 92)%°, define

F(‘T’ (ya w)) = f(xvy) + w(O),

where w(0) is the value of w at the origin 0. Modify &y in (6.3) so that they are independent of
W. Then, defining F}, by (3.1)

Pr{F,(z,(Y,W)) € BQ,.(u)}

> 6—|I‘Kp Ck+ng Pr |I| Z fk(V Va§V |I| Z Z Wy € B
vel Ferk tek(V)
Comparing (6.4)—(6.7), this suggest the following modification be used,
Gv=—Cuv+ Y Wi, VeI p,=the joint distribution of ¢/, 1,V €1,
tek(V)

T, = k.d| |Z Z Wi = kd| |ZZWf

veltek(V) VeldteV

mw=mmm+MEpWﬂ,
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By (6.11), A, 1 (A) > A7, 1 (A), and hence A7 (u) < A, . (u). Since [Ay g (A)] < [ f[[|A], then for
AL > 41+ [l F 1),

(Au) = A k() = (A u) = App(X) — log E [6<*’W">] < (ful + [FIDIAL = LI+ Jul + DAL <O

Since A’} ;. (u) is non-negative, this implies that it must be achieved within [X| < 4(|| f]| +]u|+1)
and hence (A, u) — A} (A) satisfies (A). Then for 7 > 0, the preceding argument leads to

1 * *
1o T4 € Byp(w)} = —A" (u) > —A*(u)

On the other hand, by the definition of T},

1{T, € By (u )}+Pr{kdm ‘ ZZWt) > }>un{T’ € B,o(u)}

VedJteVv

By LDP for W,

. . r
hmsuphmsupkdu| logPr{kd|I| ‘ ZZW,:‘ 2}

k—oo m—oo vedtev

< — inf su A u) —lo E[eMWo)
N |“|>T/2)\€I£"{< ) 8 £l ]}

2 M 2
< — inf  sup {()\ u)y — AP } < iy

4M 4

[ul>7/2 | \|<4|u| M
Therefore,

Mr?

1 1
max {lim inf log — un{T € Br(u)}, — } > liminf — log p, {T;, € Byja(u)} > A*(u)).
n — 00 n n—oo n

Letting n — oo followed by M — oo then finishes the proof. O
Proof of Lemma 6: The proof is based on the following result.

Proposition 3 Whether (A) is satisfied or not,

lim lim A, r(X) = A(N). (6.12)

k—oon— oo

Assume Proposition 3 to be true for now. When (A) is satisfied, we can fix M > 0, such that
|n.k| < M. Because A, ; and A are convex, (6.12) implies that the convergence is uniform on for
|A] < M. Therefore, given € > 0, when n,k > 1, Ay, (Mn.1) > A(Nn k) — €, implying

AG k() = (e ) = A (k) < (g, w) — Al k) + € < A™(u) + €

Thus lim supy, lim sup,, A, ; (u) < A*(u).
On the other hand, choose A\; € R, such that if A*(u) < oo, then (A;,u) — A(N;) > A*(u) —1/i,
and if A*(u) = oo, (A, u) — A(N\;) > i. Then,

lim inf hmlannk( ) > (i, u) — lim lim Ay (N) = (A u) — A(N),

k—o0 m—o00 k—ocomn— o0

leading to lim infy liminf,, A} | (u) > A*(u). O
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Proof of Proposition 3: The idea of the proof is as follows. By (6.7),

YN S Ty 8
B = iy S log [ X0 190 agy (e), (613)

Vel
I = the set of disjoint blocks (k + 19)t + Ckiny in Cring, t € Z2.

Since I does not contain all the (k + ng)-blocks in Cj4p,, the assumption Px(”),Cn — P can not
apply directly to the sum on the right hand side of (6.13). To solve this problem, given 1 < h < k,
each (k 4 ng)-block in I is divided into h-blocks and A, is approximated by the sum of the
log-moment generating functions of fv(x(”),§ ), across all h-blocks V' contained in the blocks in 1.
When n and k are large enough, the collection of such h-blocks approximate that of all A-blocks in
Ching, With o(n?) difference in cardinality. Then we can apply the assumption Px("%Cn — P to the
approximating sum to get the convergence.

Fix € > 0 and np < p < h < k < n. Define T}, j, and T,, }, in the same way as T, ; in (3.9).
Let Ap = {5: 54 Ciino € I}. Then, given A € R”, by (6.13) and the stationarity of @,

1 A F (0.
An?k(A) - m Z Akﬁsx(”) ()\), Ak‘,@s$(") ()\) kjd log EQ <)\7fk(68 ’Y)>:| (614)

sEAn,k

In fact, Ay g . (A) is identical to Ay ) defined in (3.6), with g(-) = (A, -). The more
complex notation is used to stress the dependence on A. By (3.12), K4 < (14| f||)|A|. Then (3.13)
yields

Ch
Matr () 2 —¢ = 31+ [FDNe+ 2Pl 3 Ay (A, (6.15)
’ h+n0‘ tETk h
Combine (6.14) and (6.15) to get

At 2 =€ =30+ DN+ gt Y Mg (6.16)
+no

seA, ok tETk h

The map (s, t) — s+t is one-to-one from Ay, j x Ty, p, onto W = {s+t : s € Ay j,t € T p} C Ty -
Indeed, for s,s" € Ay, t,t' € Tp, if s+t =5+, then s+t + Cj, = s’ + ¢ + Cy. Since t + Cp,
t'+Cy C Ok, then s+ Cy, and s’ + C}, intersect. Both belong to I, which consists of disjoint blocks.
It is seen s = §', implying t + C}, and ¢’ 4+ C}, intersect, and hence ¢t = t'. By (6.16),

|Chl
Ans(N) > —€ — 31+ [ £\l + § (A 6.17
(\) (L4 (IFIDIA] Tl voallT] h.0, (6.17)

Recall 1 < h < k < n. It is easy to see
(W = [Ankl[Tipl = [Topl(1 =€) = |Tup \ W[ < €[Th 1]

|Ch 1
O~ LT o) [Taal = @+ oMW)ICul, [Bpaw NI < IAIA
1
= Ap k(X)) > —Me+ i Z Ah,@ﬁc(")()‘) =—Me+ /Ahg P, (d¢),

teCn

where M is a constant only depending on f and A. Let n,k,h — oo in sequel. As € is arbitrary,
lim infy, lim inf,, Ay, 5 (A) > A(X). Similarly, lim supy, lim sup,, A, x(A) < A(N). O
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