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Chi Z, Wu W, Haga Z, Hatsopoulos NG, Margoliash D. Template-
based spike pattern identification with linear convolution and dynamic
time warping. J Neurophysiol 97: 1221–1235, 2007. First published
November 15, 2006; doi:10.1152/jn.00448.2006. Pattern identifica-
tion for spiking activity, which is central to neurophysiological anal-
ysis, is complicated by variability in spiking at multiple timescales.
Incorporating likelihood tests on the variability at two timescales, we
developed an approach to identifying segments from continuous
neurophysiological recordings that match preselected spike “tem-
plates.” At smaller timescales, each component of the preselected
pattern is represented by a linear filter. Local scores to measure the
similarities between short data segments and the pattern components
are computed as filter responses. At larger timescales, overall scores
to measure the similarities between relatively long data segments and
the entire pattern are computed by dynamic time warping, which
combines the local similarity scores associated with the pattern
components, optimizing over a range of intercomponent time inter-
vals. Occurrences of the pattern are identified by local peaks in the
overall similarity scores. This approach is developed for point process
representations and binary representations of spiking activity, both
deriving from a single underlying statistical model. Point process
representations are suitable for highly reliable single-unit responses,
whereas binary representations are preferred for more variable single-
unit responses and multiunit responses. Testing with single units
recorded from individual electrodes within the robust nucleus of the
arcopallium of zebra finches and with recordings from an array placed
within the motor cortex of macaque monkeys demonstrates that the
approach can identify occurrences of specified patterns with good
time precision in a broad range of neurophysiological data.

I N T R O D U C T I O N

Neurons exhibit patterned activity at multiple scales of time
(Reich et al. 2000, 2001; Zugaro et al. 2004). Analysis of such
data, often obtained as extracellular recordings, is central to the
goals of neurophysiology. A subset of this general problem is
identification of spiking activity patterns in one record that
match previously identified patterns in another record. For
example, the analysis of sleep mechanisms of learning and
memory has in part involved comparison of ongoing discharge
during sleep with discharges recorded during wakeful behavior
(Buzsáki 1989). Based on the identified patterns, some infer-
ences can be made on the information processing of the brain
during sleep (Buzsáki 1998; Dave and Margoliash 2000; Hahn-
loser et al. 2006; Louie and Wilson 2001, 2002; Nádasdy 2000;
Skaggs and McNaughton 1996; Wilson and McNaughton
1994). This is a difficult problem because of the variability of
neuronal activity in sleep relative to wakeful behavior and

because there is no time referent during sleep. As another
example, from a neural decoding perspective it is of interest to
estimate the times of certain landmark events during a course
of behavior based on the associated spiking activity (Chi and
Margoliash 2001). The estimation of behavioral timing can be
useful when it is combined with procedures designed to esti-
mate spatial trajectories of motor output (Georgopoulos et al.
1986; Hatsopoulos et al. 2004; Smith and Brown 2003; Wu et
al. 2004, 2006); however, it appears that this type of estimation
has not received much attention in the literature. We show
herein that pattern identification for spiking activity can pro-
vide a good estimate for behavioral timing.

Template matching has been the basis of many pattern-
identification procedures (Abeles et al. 1988, 1993; Chi et al.
2003; Dave and Margoliash 2000; Louie and Wilson 2001;
Nádasdy et al. 1999). In these procedures, a template is
constructed based on exemplar spike trains that exhibit a
certain pattern of interest. During data analysis, each segment
of the data is scored in terms of its similarity to the template.
Segments with high similarity scores are interpreted as exhib-
iting the pattern of interest and are thus extracted for further
analysis.

In most of the current procedures, the template is treated as
nearly time locked to stimuli or behavioral events. Except for
some local variability, such as random perturbation in spike
timing, global variability is expressed as uniform timescaling,
which multiplies all the interspike intervals (ISIs) by a single
factor (Chi et al. 2003; Louie and Wilson 2001; Nádasdy et al.
1999). However, in some systems spiking activity can exhibit
“time warping,” i.e., nonuniform time compression or expan-
sion on a relatively large timescale (Dave and Margoliash
2000; Nádasdy et al. 1999). As far as we know, the procedure
introduced by Victor and Purpura (1996) is the only one that
explicitly addresses time warping. The procedure was devel-
oped to analyze the precision of temporal coding during spe-
cific short time intervals of sensory stimulation. In the proce-
dure, the ISIs are assumed to vary independently and similarity
scores are computed with dynamic time warping (DTW). Such
scores are known as “text edit distances” in the field of
computer science (Wagner and Fischer 1974). Similar proce-
dures based on text edit distances are extremely useful in
bioinformatics (Aach and Church 2001; Bishop and Thompson
1986; Needleman and Wunsch 1970; Waterman et al. 1987).
Sequences of discrete behaviors such as syllables in birdsongs
are also occasionally analyzed using the text edit distance
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(Margoliash et al. 1991; Sankoff and Kruskal 1983). DTW is
also commonly used in speech recognition (Huang and Gray
1988; O’Shaughnessy 1999; Rabiner and Juang 1993), bird-
song recognition (Anderson et al. 1996; Ito and Mori 1999;
Kogan and Margoliash 1998), and other applications.

The variability of spiking activity at local versus relatively
large timescales can be roughly described as follows (Fig. 1A).
Think of the occurrences of a pattern of interest as “texts.” The
“codewords” of the texts are short intervals with spikes. The
definition of codeword should be problem dependent. For
different systems, a codeword may contain a single spike,
multiple spikes, or a high-frequency burst. Within the code-
words, the detectable variability can be reasonably character-
ized as random local perturbation in spike timing and spike
count. Between the codewords, on the other hand, the gaps
often have quite visible nonuniform variability, resulting in
time warping. The gaps need not be activity free. Instead, they
can contain “noise” spikes that do not repeat in different
occurrences of the pattern.

Because the perturbation within codewords and the time
warping occur at different timescales, they should be treated
differently; trying to fit them into a single statistical model is
likely to end up with mischaracterization of one or both. From
this perspective, the template-based approach proposed in this
report consists of two steps: 1) applying linear convolution to
compare short data segments with individual codewords of the
template to yield “local” similarity scores; and 2) applying

DTW to combine the local similarity scores to attain optimal
“global” similarity scores. Data segments with patterns similar
to the template are identified by above-threshold local peaks in
the global similarity scores.

The local comparison should be based on specific represen-
tations of spiking activity. We shall consider two types of
representations. The point process representation registers
spike times continuously. As a result, the neural activity is
characterized as processes of points in time. The binary repre-
sentation divides the neural activity into small time bins, and
assigns 1 to a bin if there is at least one spike in it and 0
otherwise. As a result, the neural activity is characterized as
sequences of 0 and 1 s. Although the local comparison algo-
rithms for these two representations look quite different, they
derive from nearly identical arguments based on likelihood
tests.

By using DTW, the template-based approach automatically
“parses” each identified data segment into codewords and gaps
in between, thus allowing a more detailed interpretation of the
identification results (Fig. 1A). Such parsing can yield addi-
tional insight. If the spiking activity pattern is preselected in
association with a certain behavior, and each of its codewords
is reliably associated with a landmark event during the behav-
ior, then the parsing provides a way to infer from the neural
activity when the landmark events occur within the overall
behavior. Presently, the dominant procedures for inference of
the time course of behavior are based on regression or state-
space models (Brockwell et al. 2004; Carmena et al. 2003;
Serruya et al. 2002; Smith and Brown 2003; Wu et al. 2004,
2006). They are designed to estimate spatial trajectories of
motor output with minimized average error over time. The
estimation of the timing of events during motor output can
therefore provide a useful new perspective to the decoding of
neuronal activity.

In what follows, under METHODS, we describe the identifica-
tion procedures and present pseudocode for their implementa-
tions. The procedure for the point process representation was
implemented in C��, and that for the binary representation in
MATLAB (The MathWorks, Natick, MA). Under RESULTS, we
illustrate the utility of the procedures with two brief neurobi-
ological examples. The procedure for the point process repre-
sentation is applied to a single-unit (SU) recording collected
during sleep from the nucleus robustus arcopallium (RA) of
zebra finches (Dave and Margoliash 2000). The procedure for
the binary representation is applied to multielectrode record-
ings from the primary motor cortex (MI) of a behaving ma-
caque monkey during a target pursuit task (Hatsopoulos et al.
2004; Serruya et al. 2002). In this example, the times when a
target was reached and the following target appeared in each
successful trial can be estimated with error �0.2 s. This is
somewhat surprising in view of the relatively high level of
spike-timing variability in MI. For each procedure, we conduct
a sensitivity analysis, demonstrating that the procedures are
robust.

M E T H O D S

The neuronal recordings analyzed in RESULTS were obtained from
adult male zebra finches (Taeniopygia guttata) and Macaca mulatta
monkeys. The experiment procedures were conducted under protocols
approved by the University of Chicago IACUC for birds (Margoliash)
and monkeys (Hatsopoulos).
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FIG. 1. A schematic of template matching. A, top: a sketch of a template
registered in [0, D0]. Template may be a single-unit (SU) spike train, an array
of firing rates of multiple single units, or other suitable representations of
spiking activity. Shaded blocks B1, . . . , B4 represent “codewords” of the
template that are almost “rigid” and can be perturbed only locally, whereas the
blank blocks I1, . . . , I5 represent intervals that can be compressed or expanded
in time. Bottom: matching the template with a data segment at time x. Arrows
define how different parts of the template and those of the segment are
matched. Onset of the template is mapped to the onset x of the data segment.
By compressing or expanding Ii, the codewords are aligned and compared with
the data in the shaded blocks indicated by the arrows. Overall similarity score
between the template and the data segment is the sum of the similarity scores
between the codewords and the corresponding data intervals, minus a weighted
sum of the modifications on the intervals Ii. Depending on problems, the
spiking activity in the intervals Ii of the data are either ignored or treated as
noise and included in the overall similarity score as a minus term. B: template
matching for single-unit spike trains, as for the nucleus robustus arcopallium
(RA) data. Top: each Bi is a burst in the template and Ii is an interburst interval
(IBI). Bottom: bursts in the data segment are matched with the template bursts.
Spike s in the data segment does not correspond to any burst in the template
and is counted as a “noise” spike. Amount of noise in Ii is evaluated by the
number of spikes in them.
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Because of the nature of the recording technology and cortical
activity, the levels of accuracy of these two recordings were very
different. First, in terms of signal-to-noise ratio (SNR), the accuracy
of separating action potentials from background was much higher for
the recordings from RA. The SNRs of spikes from SU recordings in
the RA of zebra finches are generally �10, whereas those from the
array recordings in macaque monkeys can be as low as 3. The
difference in SNRs result from the different experimental designs and
thus different recording technologies are used: movable but small
numbers (one to four) of electrodes in the bird versus a fixed array of
large numbers (�100) of electrodes in the monkey. Second, in terms
of neurophysiological characteristics, the spike-timing variability of
zebra finch RA units is much lower as well (Yu and Margoliash 1996;
cf. Hatsopoulos et al. 2004). The differences are likely to influence the
performance of pattern identification. The sampling rate of recording
is 20 kHz for the RA data and 30 kHz for the MI data.

Part one: point process representation

The procedure described in this part is suitable when 1) the pattern
of interest consists of well-defined spike bursts; 2) across occurrences
of the pattern, the bursts exhibit low variability; and 3) the data being
analyzed constitute a single spike train, consisting of time registry of
spikes accurately estimated from the SU recording. Under these
conditions, an exemplar spike train expressing the pattern may be used
as a template. Under RESULTS, more detail will be given on how
templates are selected for SU activity in RA.

The procedure directly compares the spike times. Figure 1B illus-
trates how to compare a template with data registered around a time
location. In general, the template need not start or end with a spike.
Together with its bursts, the intervals at the beginning and at the end
of the template and those between the bursts are all parts of the
template and will be referred to as interburst intervals (IBIs). The
bursts are used as the codewords of the template pattern. The IBIs can
be thought of as independent “springs,” and the bursts as relatively
incompressible “blocks” interconnected by the springs. By compress-
ing or stretching the IBIs, the template bursts are shifted accordingly
and compared with the data registered in the corresponding time
intervals. Given a set of modified IBIs, the score of similarity between
the warped template and the data segment aligned with it is a sum of
the similarity scores associated with the bursts, minus a weighted sum
of the amount of changes in the IBIs and the number of spikes in the
data segment that do not match any template spikes. Optimizing the
weighted sum over a range of modified IBIs then yields the optimal
score at the time location. We next consider appropriate similarity
scores and their computation.

TEMPLATE. A template spike train has to be registered in an interval
[0, D] (Fig. 1B). If the template has n bursts, then in general it has n �
1 IBIs, including the interval between its onset (t � 0) and first spike,
and the interval between its last spike and offset (t � D). A subset of
template spikes is a burst if all its ISIs are less than a specified
threshold. Fix parameter � � 0, which controls the precision for
comparing spike times. Let Hn�1 � D, T0 � 0, and for 1 � i � n

Hi � the ith burst’s first spike � �, Ti � the ith burst’s last spike � �

The ith burst interval is defined as [Hi, Ti] with duration Bi � Ti � Hi;
the ith IBI is defined as [Ti�1, Hi] with duration Ii � Hi � Ti�1 (H
stands for “head”; T for “tail”).

LOCAL SCORES FOR TEMPLATE BURSTS. First, we fix a kernel func-
tion K(x). This will be used to measure the temporal discrepancy
between a data spike and a template spike. Some commonly used
kernel functions defined on [�1, 1] are constant 1 (“square” kernel),
1 � � x � (“triangular”), 1 � x2 (“Epanechnikov”), and (1 � x2)2

(“biweight”). To evaluate the similarity between the ith template burst

and a data burst s1, s2,. . . in [x, x � Bi], the idea is to translate both
to [0, Bi] so they can be compared directly. If the ith template burst
consists of spikes t1, t2,. . ., then the similarity score between the two
bursts is

Fi�x� � �
j

	i�sj � x� with 	i�s� � �1 � �� max
j

K�s � �tj � Hi�

�
�� �

(1)

with � � 0 the maximum absolute negative contribution a nonmatch-
ing data spike can make to the local score. From Chi et al. (2003),
Fi(x) can be computed as a linear convolution of the entire data spike
train with 	i.

GLOBAL SCORE FOR THE ENTIRE TEMPLATE. Denote by N(a, b) the
number of data spikes between a and b. For the ith IBI, let Gi(x) � 0
be a cost function for its warping. Suppose the warped template has its
IBIs changed by v1, . . . , vn�1. Denote

Vi
k � ��i � . . . � �k if i � k

0 otherwise

Then the total similarity score between the warped template and the
data at x is

l�x, �1,. . ., �n�1� � �
i�1

n

Fi�x � Hi � V 1
i � � �

i�1

n�1

Gi��i�

� ��
i�1

n�1

N�x � Ti�1 � V 1
i�1, x � Hi � V 1

i � (2)

Equation 2 is derived in the appendix and can be explained by Fig. 1B.
By changing the IBIs, the ith template burst is aligned to the data in
[x � Hi � V1

i , x � Ti � V1
i ], yielding the first term on the right-hand

side of Eq. 2. The second term penalizes the changes on the template
IBIs. In the warped template, the IBIs are [x � Ti�1 � V1

i�1, x � Hi

� V1
i ], 1 � i � n � 1. Data spikes in these intervals are counted as

“noise” and reduce the similarity. This gives rise to the third term in
Eq. 3.

By the probabilistic interpretation given in the APPENDIX, the overall
similarity score assigned to the time location x is defined as

L�x� � max
�1, . . ., �n�1

l�x, �1,. . ., �n�1� (3)

In general, there can be multiple solutions to the optimization in Eq.
3, each one being a set of changes in the IBIs. Let v̂1(x), . . . , v̂n�1(x)
be a solution. By Fig. 1B, we can establish a one-to-one correspon-
dence between the intervals I1, . . . , In�1 in the template and I
1, . . . ,
I
n�1 in the data segment and identify the latter as a set of optimal
matching IBIs. Then we can identify the intervals B
1, . . . , B
n between
I
1, . . . , I
n�1 as a set of optimal matching burst intervals. The inter-
lacing I
1, B
1, I
2, . . . , B
n, I
n�1 form a partition of the data segment
between x and the right endpoint of I
n�1, which is an optimal match
to the template that one can possibly find at time x under the similarity
score. The optimal matching IBIs I
i and burst intervals B
i are com-
puted as follows

I
i � �x � Ti�1 � V̂ 1
i�1�x�, x � Hi � V̂ 1

i �x�� 1 � i � n � 1

B
j � �x � Hj � V̂ 1
j �x�, x � Tj � V̂ 1

j �x�� 1 � j � n (4)

Because of the one-to-one correspondence between their subintervals,
we can inspect in more detail how similar the optimal matching data
segment and the template are.
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DTW FOR THE GLOBAL COMPARISON. To compute L(x) and
v̂1(x), . . . , v̂n�1(x), let

lk�x, �k, . . ., �n�1�

� �
i�k

n

Fi�x � Hi � Vk
i � � �

i�k

n�1

Gi��i� � � �
i�k

n�1

N�x � Ti�1 � V k
i�1, x � Hi � V k

i �

Lk�x� � max
�k, . . . ,n�1

lk�x, �k, . . ., �n�1�

Mk�x,�� � Fk�x � Hk � �� � Gk��� � �N�x � Tk�1, x � Hk � v�

Clearly, l(x, v1, . . . , vn�1) � l1(x, v1, . . . , vn�1) and thus L(x) �
L1(x). Because

lk�x, �k, . . ., �n�1� � Mk�x, �k� � lk�1�x � �k, �k�1, . . ., �n�1�

it follows that Lk(x) � maxv [Mk(x, v) � Lk�1(x � v)]. Therefore L(x)
and v̂1(x), . . . , v̂n�1(x) can be computed by DTW. Table 1 summa-
rizes the procedure.

FINDING MATCHING SEGMENTS. Data segments that potentially
match the template can be identified by above-threshold local maxi-
mum points in L(x). Specifically, if x satisfies the following criteria,
then the data in [x, x � Hn�1 � V̂1

n�1(x)] are extracted.
1) L(x) � �, where � is a given threshold;
2) L(x) � max {L(y) : � y � x � � r}, with r the radius for local

comparison; and
3) L(x) � L(y) for at least one y with � y � x � � r. This is to make

sure that L is not a constant in [x � r, x � r].
A reasonable choice for r is D, the duration of the template. When

some of the extracted segments overlap in time, a disjoint subset of the
segments may be selected.

The selection of the threshold value � in general is a difficult
problem. One important reason is that the stochastic properties of
the data can be difficult to grasp. In RESULTS we will describe
an ad hoc method for the RA activity that tries to simulate the noise
in the data. A different ad hoc method was used for the data
collected from the MI of monkey, which will also be described in
RESULTS.

ADAPTIVE SELECTION OF PARAMETER VALUES. The parameters �
and � can be set based on estimation. For �, we first compute the
mean value d of the template ISIs, which can be regarded as the
minimum resolution to distinguish template spikes. If the square

kernel is used in Eq. 1 to compute the local scores, then set � � d/2.
To use a different kernel K, � has to be adjusted. The reason is that
except for x � 0, K(x) is strictly less than the square kernel. Without
adjusting �, the kernel puts less total weight to data spikes that match
the template spikes, resulting in artificially lower similarity scores.
We set

� � cKd/2 (5)

where cK � 1 such that the area under K(x/cK) is 2. The value of cK

is 2 for the triangular kernel, 1.5 for the Epanechnikov kernel, and
1.875 for the biweight kernel.

From Eq. A1 in the APPENDIX, � 
 log (�0/�)/log (�
/�0), where �

is the firing rate within template bursts, � is the firing rate within
template IBI, and �0 is the mean firing rate in nonmatching spike
trains. Because for a Poisson process the density is the reciprocal of
the mean ISI, we set the value of � based on the approximation

� �
log �d/d0�

log �d0/d
�
(6)

where d
, d, and d0 are the mean ISIs in template bursts, template IBIs,
and the entire data spike train, respectively. In estimating d, if a
template IBI has no spike, then its duration substitutes for a sample
ISI. Whereas d
 and d are fixed once templates are selected, d0 is
dependent on data. Therefore the selection of � is adaptive.

NUMERICAL ISSUES. In data analysis, L(x) is computed on a discrete
time grid jd, with j � 0, �1,. . ., and d � 0 a fixed step size. Also, the
warping of each IBI has to be bounded. Table 2 contains a version of
the algorithm that takes into account these constraints. It requires that
Fi(x0 � jd) be computed and stored for a given x0. We apply the
subroutine below to compute Fi(x0 � jd). Let  a denote the smallest
integer no less than a, and  a the largest integer no greater than a.

1) Let Fi(x0 � jd) � 0 for all j.
2) For each data spike s and j � j0, . . . , j1, increase Fi(x0 � jd) by

	i(s � x0 � jd), where j0 �  (s � x0 � �)/d and j1 �  (s � x0)/d .
3) Return all Fi(x0 � jd).

Part two: binary representation

The procedure described in this part is suitable when 1) the spiking
activity is recorded from multiple single units and exhibits significant
amount of variability in spike timing across trials and/or 2) the neural
signals have lower SNRs compared with SU recordings; typically, the
spike trains are obtained from multielectrode recordings by spike
sorting. Under these conditions, the spike train of a single unit
typically cannot represent the variability in a pattern of interest and
therefore it alone cannot be directly used as a template for pattern
identification. Instead, we shall construct a template as a linear filter
that is made up of log-likelihood ratios estimated from sample spike
trains of all the recorded single units. The statistical model involved
in the construction is an integral part of the pattern identification
procedure and is described below.

BASIC SETUP. Suppose the spiking activity pattern we are interested
in is associated with a sequence of n landmark events during the
course of a certain type of behavior. For example, if a behavioral task
requires a monkey to reach n targets in sequence, then for i � 1, . . . ,
n, the ith event may be defined as the cursor reaching the ith target
(see more detail in RESULTS). The n � 1 intervals between the times of
consecutive events during an occurrence of the event sequence will be
referred to as interevent intervals (IEIs).

We suppose that the multielectrode spike trains are recorded from
the same set of C units and each data spike has been associated with
one of the units by spike sorting. Fix parameter � � 0 as the duration
of time bin. For c � 1, . . . , C, the binary representation for the

TABLE 1. DTW for the point process representation: general form

1 Compute

�*n�1�x� � argmax
�

Mn�1�x,��

Ln�1�x� � Mn�1�x,�*n�1�x��

with Mn�1�x,�� � � Gn�1��� � �N�x � Tn, x � Hn�1 � ��

2 For i � n down to 1,

�*i�x� � argmax
�

�Mi�x,�� � Li�1�x � ���

Li�x� � Mi�x,�*i �x�� � Li�1�x � �*i �x��

with Mi�x,v� � Fi�x � Hi � �� � Gi��� � �N�x � Ti�1, x � Hi � ��

3 Let L(x) � L1(x), and �̂1(x) � �*1(x)

4 For i�2, . . . , n�1,

�̂i�x� � �*i �x � �
k�1

i�1

�̂k�x��
5 Return L(x) and �̂1(x), . . ., �̂n�1(x)
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spiking activity of the cth unit is a binary sequence xc(1), xc(2),
xc(3), . . . , such that

xc�t� � � 1 if the unit generates spikes in the tth time bin,
i.e. in the between �t � 1�� and t�

0 otherwise.

When � is small enough, almost all time bins can have at most one
spike, and the binary representation induces little loss of information
on spike count.

To start, one needs to collect a sample of multielectrode spike trains
associated with multiple occurrences of the event sequence. For each
sample spike train, if T1, . . . , Tn are the associated event times, then
the segments of the spike train in surrounding intervals [Ti � A�, Ti

� B�] are registered as codewords, where A, B � 0 are fixed integers.
As in the case of point process representation, the codewords cannot
be warped in time.

STATISTICAL MODEL. The procedure is based on the following
assumptions.
● Conditional on the occurrence of an event at time t, the spiking

activities of the units in the time interval [t � A�, t � B�] are
independent, such that the activity of each unit forms a Poisson
process.

● Conditional on the occurrence of the entire event sequence, the
joint spiking activities of the units associated with the individual
events and the IEIs are all independent of each other.

The above assumptions of conditional independence are weaker than
the assumption of unconditional independence because they require
independence only during certain specific events. The assumption
allows for continuity of the firing rates over time as well as different
firing rate functions to be associated with different events.

For i � 1, . . . , n, c � 1, . . . , C, and j � �A, . . . , B, let pi,c( j) be
the probability that the cth unit generates spikes in the jth time bin
away from the ith event. The probability can be estimated using a
peristimulus time histogram method. That is, for the ith event and cth
unit, we first align the sample spike trains of the unit at the event, then
estimate pi,c( j) as the fraction of those sample spike trains that have
spikes in the jth time bin relative to the time of the event.

For i � 1, . . . , n � 1, we use q(t, �i) to model the probability
density of the duration of the ith IEI. The parameter �i can be
estimated based on the sample as well.

LOCAL SCORES FOR SPIKING ACTIVITY PATTERNS AROUND

EVENTS. To identify the occurrences of the whole event sequence,
the first step is to evaluate the likelihood of the occurrence of a single
event in each time bin. The derivation of the likelihood is given in the
APPENDIX. Here we consider the computational procedure only. For the
ith event and the cth unit, we introduce 	i,c( j), such that for j �
�A, . . . , B, it is evaluated as

	i,c�j� � log
pi,c� � j�

1 � pi,c� � j�

It follows that

log �Prob �the ith event occurs in the tth time bin�� � �
c�1

C

	i,c � xc�t� � Const.

(7)

where � denotes the mathematical convolution and 	i,c � xc(t) is the
tth entry of the convolution between 	i,c and xc. The derivation of the
formula is given in the APPENDIX. We therefore use

Fi�t� � �
c�1

C

	i,c � xc�t�

as the similarity score between the joint spiking activity starting in the
tth time bin and the pattern associated with the ith event. The sequence
	i,c acts as a discrete linear filter. By convolving 	i,c with the entire
binary sequence xc, the score is obtained for all time bins.

GLOBAL SCORE FOR THE EVENT SEQUENCE. For the ith IBI, i �
1, . . . , n � 1, and t � 1, let Gi(t) � �log q(t�, �i). Then for any time
bin t and I1, . . . , In�1, the logarithm of the probability that the tth time
bin contains the onset of an occurrence of the event sequence with
IEIs I1�, . . . , In�1� can be expressed as l(t, I1, . . . , In�1) plus a
constant, where

l(t, I1, . . ., In � 1) � �
i�1

n

Fi(t � I1 � . . . � Ii � 1) � �
i�1

n�1

Gi(Ii) (8)

We therefore define the score assigned to the time bin t as

L(t) � max
I1,. . .,In�1

l(t, I1, . . ., In�1) (9)

Up to an additive constant, L(t) is the maximum likelihood that an
occurrence of the event sequence starts in the tth time bin.

Denote by Î1(t), . . . , În�1(t) the maximizers associated with L(t).
As in the case of the point process representation, L(t), Î1(t), . . . ,
În�1(t) can be computed using DTW. The algorithm is sketched in
Table 3.

FINDING OCCURRENCES OF EVENTS. Once the score function L(t) is
computed for all time bins, we can use it to detect occurrences of the
event sequence. The detection is based on the assumption that the
score at the onset of an occurrence of the event sequence (i.e., the time
of the first event) is higher than the scores elsewhere within the
neighborhood of the onset. The local maximum points associated with
L(t) are therefore identified as potential onsets of occurrences of the
event sequence. For each identified t, the time bins of the onsets of the
associated events are obtained as

t
i � t � Î1(t) � . . . � Îi�1(t) i � 1, . . ., n

The actual times of the events are estimated as t
i�. In practice,
because the score function L(t) can be quite noisy, it may need to be
smoothed to extract meaningful local maximum points.

TABLE 2. A discrete version of the DTW procedure in Table 1
that computes L(td), with t an integer and d � 0 a fixed step size

1 Compute
I*n�1�t� � argmax

�An�1�k�Bn�1

Wn�1�t,k�

Qn�1�t� � Wn�1�t,I*n�1�t��, t � 0, 1, . . .

with Wn�1(t, k) � �Gn�1(kd) � �N(td � Tn, (t � k)d � Hn�1)

2 For i � n down to 1,
I*i �t� � argmax

�Ai�k�Bi

�Wi�t,k� � Qi�1�t � k��

Qi�t� � Wi�t,I*i �t�� � Qi�1�t � I*k �t��, t � 0, 1, . . .

with
Wi�t,k� � Fi��t � k�d � Hi� � Gi�kd�

� �N�td � Ti�1,�t � k�d � Hi�

3 Let L(td) � Q1(t), and Î1(t) � I*1 (t)

4 For i � 2, . . ., n � 1,

Îi�t� � I*i �t � �
i�1

k�1

Ii�t��
5 Return L(td) and �̂i(td) � d � Îi(t), i � 1, . . ., n � 1

For i � 1, . . ., n � 1, Ai �  ai/d and Bi �  bi/d , where [�ai, bi] is the range
of allowed change to the ith IBI (Ii). In each iteration of Step 2, Fi(td � Hi)
should be computed and stored before the optimization.
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To summarize, the numerical procedure for the binary representa-
tion starts with estimating pi,c( j) and q(x, �i). Next the procedure
constructs filters 	i,c for i � 1, . . . , n, c � 1, . . . , C, and also
constructs Gi(x) for i � 1, . . . , n � 1. The scores and potential
occurrences of the event sequence are then computed by the algorithm
in Table 3.

R E S U L T S

Application to RA of zebra finch

We applied the procedure for point process representations
to the SU spiking activity in RA of adult male zebra finch. The
data were high signal-to-noise ratio recordings from chroni-
cally implanted movable electrodes in RA, collected in a
previous study (Dave and Margoliash 2000). Male birds di-
rected their songs toward females housed in adjacent half-
cages.

For each RA unit, the goal was to identify segments in its
spontaneous spiking activity during sleep that exhibited tem-
poral patterns similar to its premotor activities associated with
daytime singing. Such segments have been interpreted as
replay of premotor activity during sleep that may be involved
in learning and maintaining song (Margoliash 2002). The
female-directed songs of adult male zebra finches are highly
stereotyped intense behaviors (Sossinka and Böhner 1980),
acquired through learning (Brenowitz et al. 1997), and are
dynamically maintained in adults by auditory feedback (Nor-
deen and Nordeen 1992). The songs constitute sequences of
“syllables” repeated in a fixed pattern to form one or more
repeated “motifs.” Premotor spiking activity in RA associated
with song renditions are highly stereotyped and exhibit precise
temporal patterning within bursts, with the SD in spike timing
as low as 0.2 ms (Chi and Margoliash 2001; Yu and Margo-
liash 1996). Therefore the point process representation is
preferred to the binary representation for RA activity.

For these data, the spontaneous activity of a unit during
sleep can be probed with one or more templates. Once a

signature motif of the bird was identified, any spike train of the
unit associated with a rendition of the motif could serve as a
template (Fig. 2, A and B). To partition a template into bursts
and IBIs, we aligned the spike trains associated with all the
identified renditions of the motif by their onset times (Fig. 2C).
The raster plot revealed common temporal structures of the
spike trains that had a many-to-many correspondence to the
acoustic structures of the motif. Based on the structures, we
partitioned the spike trains into bursts and IBIs by the criteria
that adjacent bursts be at least 20 ms apart. Within the bursts of
these spike trains, the mean ISI was d
 � 3.06 � 2.68 ms, and
within their IBIs the mean ISI was d � 73.02 � 55.97 ms. The
same partition was obtained when we applied a more refined
alignment procedure which minimized the total L1 distances of
the spike trains (Chi and Margoliash 2001).

We used the spike train in Fig. 2B as a template. The data of
spontaneous activity during sleep had a duration of about 100
min, much longer than the duration of the template (660 ms).
It would be very labor intensive to identify matching segments
from the data by visual inspection. It is important to keep in
mind that there were no behavioral events to serve as time
referents for the sleep activity and so one could base the
identification only on similarity scores.

To implement the procedure in Table 2, we used the bi-
weight kernel to compute local similarity scores by Eq. 1. The
parameter to control the temporal precision for spike matching
was � � d
/2 � 1.875 � 3.06/2 � 1.875 � 2.869 ms by Eq.
5. To calculate the global similarity scores by Eq. 2, we set
Gi(x) � 0 and fixed the maximum proportion of warp at 1/5 for
each template IBI. The score function was computed on a grid
with step size 0.5 ms.

A 100 ms

B

1 2 3 4 5 6

C

FIG. 2. A: spectrograph and waveform of a rendition of zebra finch song
motif, which has a duration of 660 ms. B: a single-unit neuronal trace
associated with the motif rendition. Trace has the same duration as the motif
rendition, but starts 40 ms ahead. Lead time is taken out in the plot for the 2
to be aligned. C: raster plot of spike trains associated with different renditions
of the same motif, aligned by the onset times of the renditions. Neuronal trace
in B, in the 3rd row of the plot, is partitioned into 6 burst intervals marked by
horizontal bars and 7 IBIs based on the raster plot.

TABLE 3. DTW for the binary representation

1 Construct filters 	i,c for all i � 1, . . ., n and c � 1, . . ., C

2 Compute

Fn�t� � �
c�1

C

	n,c � xc�t�

and define Ln(t) � Fn(t)

3 For i � n � 1 down to 1,

Fi�t� � �
c�1

C

	i,c � xc�t�

I*i �t� � argmax
I

�Fi�t� � Li�1�t � I� � Gi�I��

Li�t� � Fi�t� � Li�1�t � I*i �t�� � Gi�I*i �t��

4 Let L(t) � L1(t) and Î1(t) � I*1 (t)

5 For i � 2, . . ., n � 1,

Îi�t� � I*i �t � �
k�1

i�1

Îk�t��
6 Return L(t) and Î1(t), . . ., În�1(t)
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During the spontaneous activity of the unit in sleep, the
mean ISI was d0 � 49.05 � 20.85 ms. By Eq. 6, the penalty on
each nonmatching spike was � � 0.1434. We then calculated
the similarity scores across the data to identify segments that
exhibited similar patterns to the template.

The results from one session of the data are shown in Fig. 3;
plot A displays the similarity scores across. To identify match-
ing segments, we set the threshold for similarity score � � N/3,
where N � 41 was the total number of spikes in the template.
Four above-threshold local peaks were identified in this ses-
sion, with scores 16.6, 19.2, 15.9, and 15.4, respectively. The
second and fourth peaks are marked by x and z in Fig. 3A. By
Eq. 4, we extracted the optimal matching segments at the peak
locations and partitioned them into burst intervals and IBIs that
were mapped one to one to those in the template (Fig. 3, B and
C). The identified segments exhibited a high degree of simi-
larity to the template and also showed nonuniform time warp-
ing of the IBIs.

The scores captured the similarity between the data seg-
ments and the template reasonably well. For example, in Fig.
3A, the score function peaks at location y, however, the value
is only about half that at x and z. A closer look of the neuronal
trace around y reveals that, although it has some similarity to
the template, the level of similarity is substantially lower than
those exhibited by the traces at x and z.

To see whether DTW was necessary in this example, we
collected all the identified optimal matching segments from the
data. There were 15 of them, with mean score 16.6 � 1.9. To
see how much warping of the template was involved to match

these segments, we analyzed the two longest IBIs in the
template, which were the fourth and fifth IBIs. The time
compressions/expansions of the two IBIs, �4.2 � 21.5 and
�2.5 � 9.6 ms per segment, showed no significant correlation
with each other (r � 0.34, P � 0.22, 95% CI � [�0.21, 0.73],
t-test). For instance, to match the segment at x in Fig. 3A, the
two IBIs were compressed by 33.5 ms and expanded by 6.5 ms,
respectively. This suggests that nonuniform, wide-ranging time
warping was present in the data, supporting the use of DTW for
the pattern identification.

Another question is whether the probability distribution of
the time warping in the premotor activity could be used in the
pattern identification for the sleep data. The answer seems to be
negative. There is evidence that the variability of IBI in the
spontaneous activity during sleep differed from that during
wakeful behavior. In the preceding data, the variance of the
fourth IBI in the identified matching segments was signifi-
cantly larger than the one in the exemplar spike trains associ-
ated with motif renditions. The ratio of the two was r � 18.61
(P � 10�5, 95% CI � [6.25, 55.44], F-test). The variances of
the fifth IBI on the other hand did not exhibit significant
difference (r � 2.20, P � 0.15, 95% CI � [0.74, 6.54]). The
change in the statistical properties of neuronal activity across
different behavioral states poses difficulty for the selection of
parameter values, as we tried to use the templates obtained in
one state to analyze the activity in another.

Sensitivity to temporal precision of spike matching

We had used � � 1.875
, where 
 � 1.53 ms was the half
mean ISI within the bursts of the exemplar spike trains asso-
ciated with the motif renditions, and the coefficient 1.875
“standardizes” the biweight kernel. To examine how sensitive
the pattern identification was to �, we compared the results to
those obtained with different preselected values of � � 1.875

while keeping the other parameters unchanged. For larger 
,
the temporal precision required for template matching was
lower and more segments with above-threshold similarity
scores were expected. The question is how sensitive the num-
ber of identified segments was to the change in 
. Denote by n
the number of segments that were identified using a preselected
value of 
 but missed by the original procedure that used 
 �
1.53 ms and n
 the number of those the other way around


, ms 0.5 1 2 3 4
n 1 0 1 6 10
n
 15 3 0 0 0

Recall that the original procedure identified a total of 15 segments.
Therefore the summary shows that the number of identified
segments was reasonably stable for 
 around the value selected
based on the exemplar spike trains. Except for 
 � 0.5, all the
extra segments identified using the preselected values of 
 were
not completely overlooked by the original procedure. They actu-
ally showed up as local peaks with relatively high scores (�10).
Therefore the increasing trend in n could be offset by lowering the
threshold in the original procedure. The extra segment identified
with 
 � 0.5 was also not completely overlooked by the original
procedure. It had roughly 50% overlap in time with a segment
identified by the procedure.

A

x y z

B

1 2 4 5 6

Spon at x

Template

C
1 3 4 5

Spon at z

D Spon at y

FIG. 3. Detection for RA activity. A: similarity scores over 5 min of the SU
spontaneous activity in RA during sleep, using the spike train in Fig. 2B as the
template. Three local peaks in the similarity scores are marked as x, y, and z.
B, top row: enlarged view of the scores in an interval of 11 s around x. 2nd row:
RA activity in the same interval. Horizontal bar indicates a segment of RA
activity that may have a pattern similar to that of the template. Onset of the
segment is the location of the peak. 3rd row: an enlarged view of the segment
of neuronal trace. Bursts in the segment are labeled with the indices of the
corresponding optimal matching template bursts. A match to the 3rd template
burst is missing. 4th row: same spike train in Fig. 2B shown for comparison.
C: neuronal trace in the interval marked by z. Spike between the bursts labeled
4 and 5 is counted as a “noise” spike. D: neuronal trace in the interval marked
by y. Relatively low score at y is indicative of the low level of similarity
between the template and the activity in the interval.
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Sensitivity to the penalty on mismatching spikes

In the procedure, the penalty � � 0.1434 was selected adap-
tively, based on the firing rates of the premotor activities associ-
ated with motif renditions and the spontaneous activity during
sleep. We compared the results to those obtained with different
fixed values of � while keeping the other parameters unchanged.
Let n be the number of segments identified by using a preselected
value of � but missed by using the adaptively selected value and
n
 the number of those the other way around:

� 0 0.25 0.5 0.75 1
n 2 0 0 0 0
n
 0 1 5 7 8

Recall that with the adaptively selected � � 0.1434, 15 optimal
matching segments were identified. The summary shows that
for values of 
 around the adaptively selected value, the
identification results were quite similar.

Sensitivity to kernel

We evaluated how sensitive the pattern identification proce-
dure was to the kernel. We implemented the procedure using
the square, triangular, and Epanechnikov kernels, respectively.
By Eq. 5, � had to be adjusted accordingly. Denote by n the
number of segments that were identified using a different
kernel but missed by using the biweight kernel and n
 the
number of those the other way around:

K Square Triangular Epanechnikov
�, ms 1.53 3.06 2.30
n 4 2 0
n
 0 1 0

Recall that with the biweight kernel, 15 optimal matching
segments were identified. Therefore the summary shows that
the procedure was reasonably stable by using different kernels.
The differences in the number of identified segments arose
from the small changes in similarity scores. For example, all
four extra segments identified using the square kernel actually
generated local peaks in the score function obtained with the
biweight kernel. The scores were just slightly below the thresh-
old � � 41/3, with differences 0.54, 1.20, 1.47, and 0.50,
respectively.

Simulations for threshold selection and
performance evaluation

For the pattern identification procedure, the issues of thresh-
old selection and sensitivity to noise are complicated by the
fact that the statistical properties of the sleep data are likely to
be different in some unknown but important aspects from the
premotor activity that generated the templates. The simulation
method is based on the idea that by testing the pattern identi-
fication procedure on artificial data that incorporate certain
statistical properties of the sleep data, some reasonable infer-
ence might obtain.

We generated simulated data using the exemplar spike trains
associated with motif renditions (Fig. 2A) because they had
unambiguous interpretation. The pattern identification proce-
dure was then applied to the simulated data to yield score
functions. Because the peak values in these score functions
were associated with “true targets” (i.e., spike trains known to

exhibit the pattern of interest), we could use their distributions
to draw inferences on the ability of the procedure to find true
targets corrupted by noise.

Given an exemplar spike train T registered in [0, D], a
simulated spike train was generated as follows.

● Each spike in T was randomly deleted with probability q
and each remaining spike was randomly shifted by s �
N(0, �).

● The modified T was embedded into a larger interval I �
[0, D � 2B] and a sample from the Poisson process with
density � was added to I as “noise” spikes.

● Finally, some of the spikes were removed from the result-
ing spike train so that all remaining ISIs were at least �.
Because DTW automatically accounts for time warping of

IBIs, we did not randomly modify the IBIs. In all the simula-
tions, � � 1 ms, which is a plausible lower bound for the ISI
in RA. We also fixed B � 500 ms in all the simulations. The
value of � was selected based on the average firing rate of the
spontaneous activity during sleep, which was estimated at 21
Hz. We set � � 20 Hz. The parameters q and � are unobserv-
able from the spontaneous activity during sleep. We set �
around or above the half-mean 
 (�1.53 ms) of the ISI within
the bursts of the exemplar spike trains, so that there was a good
chance for a spike in the exemplars to have a large “jitter”
relatively to the ISIs. We conducted four simulations, with q �
1/4, 1/3 and � � 1.5, 2 ms, respectively.

For each of the exemplar spike trains, 100 simulated spike
trains were generated. The raster plot of a total of 1500
simulated spike trains with � � 1.5 ms and q � 1/3 is shown
in Fig. 4. Despite the relatively high chance of spike deletion
in the true targets, the simulated spike trains maintained the
overall temporal structure of the exemplar spike trains. How-
ever, not all of them exhibited enough similarity to the exem-
plars. A small percentage a of the simulated spike trains either
failed to yield similarity scores above � � N/4, with N the
number of spikes in the template, or failed to have peak
locations in score function within 50 ms from the onsets of the
true targets. Excluding these spike trains, denote by S the peak
value in the score function of any remaining spike train. The
distribution of S was close to a Normal distribution. As � or q
increased, a increased and the distribution of S shifted toward 0.

FIG. 4. Raster plot of simulated spike trains with “noise” added to ran-
domly modified copies of the exemplar spike trains in Fig. 2A. Horizon bar
represents the time interval of 660 ms where the random copies are inserted.
Each exemplar spike train generated 100 random spike trains that appear in the
same block in the raster plot.
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Simul. �, ms q a 
S �S

1 1.5 1/4 1.3 � 10�2 18.20 2.51
2 1.5 1/3 2 � 10�2 17.17 2.44
3 2 1/4 0.9 � 10�2 17.58 2.53
4 2 1/3 2.3 � 10�2 16.48 2.40

A threshold could be selected based on the distribution of S. A
sensible choice would be 
S � 2�S. For all the simulations,
this value was a little less than the actually used threshold value
N/3. Therefore a few more segments would have been identi-
fied, and the sum of a and the tail probability under N(
S, �S)
(
2.5%) could serve as a nominal false negative rate.

We also tested with increased noise level � � 50 Hz. In
these simulations, the signal-noise ratio became much lower,
greatly reducing the number of identified segments. For exam-
ple, with all the other parameters the same as in the second
simulation, the number of identified segments was only 87
(results not shown). This result, however, made no sense for
the data we analyzed. Our suggestion is that to conduct mean-
ingful simulations, the parameters in the simulations should be
tuned as much as possible according to the data.

Application to MI of macaque monkey

We applied the procedure for the binary representation of
neuronal activity to recordings obtained from the arm area of
MI in the left hemisphere of a trained adult macaque monkey.
The data were collected using a chronically implanted silicon
microelectrode array composed of 100 electrodes (1.0-mm
electrode length; 400-
m interelectrode separation; Cyberki-
netics Neurotechnology System, Foxboro, MA). Based on
histological evidence from previous implants that we have
performed, the electrode tips are likely to be in lower portions
of layer 3 or in layer 5. To acquire extracellular action poten-
tials, signals were amplified (gain � 5,000), band-pass filtered
(250 Hz to 7.5 kHz) and sampled at 30 kHz per channel. Only
waveforms that crossed a threshold were stored and spike-
sorted using Off-line Sorter (Plexon, Dallas, TX). The monkey
was trained to repeatedly perform a sequence of movements
(see following text) to receive a juice reward. From a decoding
perspective, it is of interest to have a means to estimate the
times of certain landmark events in the behavior during each
trial based on the associated neuronal activity. These estimates
were compared with the actual event times recorded during
each trial.

The monkey was operantly trained to perform a target
pursuit task by moving a cursor to a target with its right arm.
The cursor and the target were displayed on a horizontal
projection surface in front of the monkey. The monkey’s arm
rested on cushioned arm troughs secured to links of a two-joint
robotic arm (KINARM system; Scott 1999) underneath the
projection surface. The shoulder joint was abducted 90° such
that shoulder and elbow flexion and extension movements were
made in the horizontal plane. The target was programmed to
appear on the four corners of a fixed square. A trial could start
at any time after the end of the previous one. At the start of a
trial, the target appeared at the upper right corner of the square
and the monkey had to move the cursor to it. Once reached, the
target jumped counterclockwise to the next corner and the
monkey had to move the cursor again, and so on (Fig. 5). A
trial was registered as successful only if the monkey reached
the target at all of the four corners within 5 s. In the data we

collected, there were 240 successful trials; see Fig. 5 for some
sample traces of hand movement in successful trials. A total of
up to C � 49 MI single units were simultaneously recorded.

In the experiment, a landmark event was defined as the
cursor reaching any of the corners of the square which also
corresponded to the time at which the next target appeared. A
movement sequence started at the time when the first corner
was reached. Therefore in a successful trial, there were n � 4
events and three IEIs. For each i � 1, 2, 3, the distribution of
the duration of the ith IEI was concentrated between 0.5 to 1 s,
but with a long tail extending �3 s. We fitted the distribution
by the Gamma distribution

q�t,�i� �
1

bi
ai��ai�

tai�1e�t/bi

with parameter �i � (ai, bi). We shall mainly report results
attained by incorporating the fitted Gamma distributions in the
scoring. Later, we will show that similar results were attained
as well without exploiting these distributions.

The temporal pattern of the spiking activity in MI has more
variability than in RA. Taking this into account, the time bin
duration was selected so that 99.9% of the time bins each
contained at most one spike. Under this condition, the largest
time bin duration was about 10 ms. We therefore chose � � 10
ms. The binning reduced the size of the data while keeping
most of its information. The hand position data were also
down-sampled at 10-ms resolution to estimate the times when
the corners were reached.

We used the movement sequences in the first 200 successful
trials as the training data set to estimate the firing probabilities
pi,c( j) within 1 s around each event, with i � 1, . . . , 4 indexing
the events, c � 1, . . . , 49 indexing the units, and j �
�100, . . . , 100 indexing the time bins within 1 s around a time
of event. The parameters �i for the Gamma distributions were
estimated as well. The estimates of pi,c( j) and �i were then used
to construct the template. The recording after the 200th suc-
cessful trials was used to test the accuracy of the identification
procedure.

The score function L(t) was computed according to Table 3
over the entire recording and then smoothed with a low-pass
filter with cutoff frequency 0.5 Hz. Because successful trials
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FIG. 5. Trajectories of hand movement of a macaque monkey in 5 success-
ful trials of the target pursuit task as described under RESULTS. In each of the
trials, the monkey’s hand passed the 4 corners of a square in counterclockwise
order to reach a target that jumped from one corner to another, starting from
the top right corner. Time when the top right corner was reached was defined
as the onset of the movement sequence in a trial. Corners of the square are
denoted by circles.
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occurred at a much lower frequency (�0.21 Hz) than the cutoff
frequency, the smoothing had no aliasing effect on the estima-
tion of the onset times of the movement sequences (i.e., the
times when the first corner was reached) in successful trials.

Across the entire recording period, 622 time locations t*i
were identified where the smoothed score function L̃(t) peaked
locally (Fig. 6). Based on the assumption that the scores were
higher near the onsets of the movement sequences in successful
trials than elsewhere, only t*i with L̃(t*i ) � L̃(t*i�1) were se-
lected, resulting in 202 estimated onset times. For each of the
selected t*i, the corresponding event times were estimated as in
Table 3 (Fig. 7).

To evaluate the performance of the procedure, a selected t*i
was defined as a true positive if the mean error of its associated
estimated event times was �1 s; that is, the estimated event
times were �1 s on average from the actual event times. Any
selected t*i with the mean error �1 s was defined as a false
positive. The counts of true positives, false positives, selected
t*i, and events that actually occurred in the training data set, test
data set, and the entire data set are as follows

Training Test Total
True positives 144 29 173
False positives 18 11 29
Selected t i* 162 40 202
Successful trials 200 40 240

The power of the procedure was defined as the ratio of the
number of true positives to that of successful trials. Evaluated
over the entire data set, the power was high (173/240). The
result was similar when the power was evaluated within the test
data set only (29/40). The procedure also attained a high rate of
true positives, defined as the ratio of the number of true

positives to the number of selected t*i. For the test data set, the
rate of true positives was 29/40. (Incidentally, within the test
data set, the number of selected t*i was 40, the same as the
number of successful trials.) The rate of true positives for the
training data set was even higher (144/162).

To see how sensitive the above evaluation of power was to
the threshold for the mean error, we varied the threshold value
from 0.5 to 1.5 s, causing the power to change from 62 to 73%
(Fig. 8A). The slight change in the power indicates that the
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FIG. 8. A: robustness of power with respect to varied thresholds ranging
from 0.5 to 1.5 s. Power varied from 62 to 73% in the examined range. B:
histogram of mean error of estimated event times associated with the true
positives identified from the entire recording. For each true positive, the mean
error is the average of the errors in the estimates of the times when the 4
corners were reached. Among a total of 173 true positives, 144 were identified
from the training data set and the remainder from the test data set.
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FIG. 6. Detection of movement sequences during successful trials in the
target-pursuit task for the macaque monkey. Top: dark gray curve denotes
the smooth score function using a low-pass filter on the original similarity
scores over the entire recording period. Black dots mark all the estimated
“max-maximum” points, which are local peak points of the smoothed score
function with higher values than their adjacent local peaks. Gray vertical
lines mark the actual onset times of movement sequences during successful
trials (i.e., times of reaching the first corner). Bottom: sections extracted
from the top panel showing details of the score function and identified
onsets of movement sequences. Left panel: taken from the training data set
(recording until the 200th successful trials). Right panel: test data set (the
remaining 40 trials).
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FIG. 7. Estimated times of events within identified movement sequences
for the target-pursuit task experiment. In the top panel, the gray curve denotes
the smoothed matching scores; the stars mark all the estimated starting points
(first corner) of squared movements and the dots are the estimated points at the
other 3 corners. Vertical lines mark the actual event times at the 4 corners of
squared movements: the solid lines are for first corners and the dashed lines are
for the other 3 corners. Bottom panels extracted from the top panel are 2 legible
examples in the training (left) and test (right) data.
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evaluation was robust to the threshold selection thus justifies
using 1 s as the threshold value.

On average, the accuracy of the estimated event times
associated with true positives was high. For most of the true
positives, the mean error of the estimated event times was ��1
s (Fig. 8B). For the test data set, the mean error was 0.223 �
0.200 s. For the training data set, the mean error was 0.204 �
0.242 s. Interestingly, the estimated event times associated
with different corners of the square exhibited different levels of
accuracy. For the test data set, the errors associated with the
four corners were 0.505 � 0.606, 0.044 � 0.063, 0.089 �
0.164, and 0.254 � 0.469 s, respectively. For the training data
set, the mean errors were 0.564 � 0.740, 0.001 � 0.009,
0.001 � 0.013, and 0.250 � 0.691 s, respectively. Therefore
the estimates of the times when the second or the third corner
was reached were substantially more accurate and those for the
first corner were the least accurate.

Finally, we tested the procedure without incorporating the
estimated distributions of the IEIs in scoring. Equivalently, all
Gi were set to 0. For the test data set, we again attained a high
power (29/40) and a high rate of true positives (29/41). The
mean error in the estimated event times was 0.226 � 0.196 s
and the errors associated with the four corners were 0.536 �
0.607, 0.045 � 0.062, 0.092 � 0.189, and 0.231 � 0.433 s.
The results for the entire data set and those for the training data
set were similar to these reported results. The results were only
marginally inferior to those attained by exploiting the esti-
mated distributions of the IEIs.

Comparisons with Kalman filter decoding method

A number of decoding methods have been proposed for MI
of Macaque monkeys, including population vectors, linear
filters, artificial neural networks, or Kalman filters (Carmena et
al. 2003; Georgopoulos et al. 1986; Serruya et al. 2002; Wu et
al. 2006). These methods have been demonstrated to be effec-
tive and accurate in estimating kinematic parameters such as
hand movement direction or hand trajectory. However, none of
them addresses the estimation of the timing of landmark events
during a movement. This is largely attributed to the experiment
paradigms these methods are designed for, which generate
fairly straightforward hand movement of monkey, making it
unnecessary to decode event timing during the movement. In
contrast, in our squared movement paradigm, the monkey
moved its hand following four corners of a square in each trial.
In this paradigm, the times when the hand reached the corners
provided important information on the movement. This raises
a new perspective toward decoding: if a movement can be well
defined by certain landmark events, then one may aim to
decode the timing of the events without estimating the move-
ment trajectory.

We compared the proposed procedure with the Kalman filter
method, which was shown to yield better trajectory estimation
than other current methods (Wu et al. 2006). We modified the
Kalman filter procedure reported in Wu et al. (2006) so it could
perform pattern identification. First, for each successful trial,
we registered the time interval that started 1 s before the
reaching the first corner and ended 1 s after the reaching the
fourth corner. Then the procedure was applied to estimate the
hand positions at discrete time points within the interval using
the firing rates of all the 49 MI units. Finally, for each corner,

the nearest 5% estimated hand positions in terms of the
Euclidean distance to the corner were identified, which ac-
counted for about 25 time points per trial. The average of these
time points was used as an estimate of the time when the corner
was reached. In our study, the estimation was fairly robust
when we varied the percentage of nearest hand positions from
5% to nearby values.

Note that unlike the template matching procedure, for the
Kalman filter procedure, the spike trains had to be segmented
into intervals containing individual trials. The segmentation
was necessary to make sure that the Kalman filter procedure
only used the nearest positions within the same trial to estimate
the event times. On the other hand, the segmentation provided
the Kalman filter procedure with critical information on time
that was not accessible to the template matching procedure.
Consequently, the estimated event times by the Kalman filter
procedure were automatically within the trials, and so by our
criteria on true positives, the procedure had power 1.

To make a reasonable comparison, we computed the mean
errors in the estimated event times obtained by the Kalman
filter procedure, in parallel to those obtained by the template
matching procedure. Across the last 40 trials, which were
automatically true positives for the Kalman filter procedure,
the mean error was 0.260 � 0.123 s, and the errors associated
with the four corners were 0.262 � 0.178, 0.231 � 0.343,
0.184 � 0.156, and 0.362 � 0.327 s, respectively. Except for
the estimated event times associated with the first corner,
which benefited from the segmentation, the errors in the
estimated event times associated with the other corners were
significant greater than the template matching procedure. The
same conclusion was drawn if we restricted to the 29 true
positives identified by the template matching procedure.
Across these trials, the Kalman filter procedure yielded mean
error 0.255 � 0.128 s, and errors associated with the four
corners 0.269 � 0.166, 0.203 � 0.266, 0.184 � 0.164, and
0.373 � 0.373 s, respectively.

Essentially, the worse performance of the Kalman filter
procedure was explained by the fact that it is intrinsically
designed for the reconstruction of kinematic parameters, e.g.,
direction, speed, trajectories, and kinematic decoding and time
decoding are rather different concepts. Figure 9 shows an
example in which the Kalman filter procedure yielded a very
good trajectory reconstruction but provided poor estimation for
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FIG. 9. One example trial: 4 corners of the square (gray circles), true hand
trajectory (gray dashed line), and reconstruction using the Kalman filter (gray
solid line). Thick black line denotes the reconstruction during a [�0.1 s, 0.1 s]
time window aligned with the true reaching time at each corner.
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when the corners were reached. This example indicates that the
estimation of timing has interest of its own and is worthy of
investigation in the motor cortical study.

D I S C U S S I O N

Current pattern identification methods

In neurophysiological analysis, various template matching
methods have been developed to identify segments of patterned
activity from neuronal recordings (Abeles et al. 1988, 1993;
Chi et al. 2003; Dave and Margoliash 2000; Louie and Wilson
2001; Nádasdy et al. 1999, 2000). From the perspective that
spike timing plays an important role in neural coding, most of
the methods directly match spike times or ISIs registered on a
continuum (Abeles et al. 1988, 1993; Dave and Margoliash
2000; Nádasdy et al. 1999, 2000). In these methods, similarity
to a template is computed by counting the number of matching
spikes or ISIs. Although the counting approach is suitable for
patterns with a small number of spikes, in our experience, it
significantly slows down for patterns with a moderate number
of spikes, which is undesirable when relatively complex pat-
terns need to be analyzed for large data sets. It is also not clear
how to apply the approach effectively when simultaneous
spiking activity of many units over hundreds of time bins needs
to be compared with a template, as in the case of MI data.

When a pattern is represented by many spikes, template
matching can be based on cross-correlating firing rate functions
(Louie and Wilson 2001). Because this approach requires
kernel smoothing, it is suitable for patterns without much fine
temporal structure. However, as in the case of the RA data,
when precise temporal structure is important for pattern iden-
tification, the firing rate–based approach is insufficient. The
filtering method in Chi et al. (2003) is an attempt to balance
between high temporal precision and computational efficiency.
On the one hand, it evaluates similarity based on temporal
closeness between data spikes and template spikes; on the other
hand, it computes the similarity scores using a smooth profile
of the template, in which each template spike is blurred into a
“bump” that is a few milliseconds wide. Similarity scores
across a data spike train are computed efficiently by linear
convolution with the profile.

In all these methods, a template cannot be warped. To
incorporate timescaling, the template has to be compressed or
expanded uniformly in time beforehand. This is in contrast to
the DTW approach of Victor and Purpura (1996), which
adjusts template ISIs “on the fly” during template matching.
This report proposes an approach that combines linear convo-
lution and DTW for template matching. In this approach, linear
convolution is applied at the level of individual components of
a template, whereas DTW is applied at the level of the entire
template. Because both linear convolution and DTW can be
implemented efficiently, satisfactory computational efficiency
can be achieved.

A combinatorial approach was recently proposed for pattern
identification. The approach aims to identify data segments that
exhibit a specific temporal order in which a set of neurons fire,
regardless of the temporal details of the firing pattern (Lee and
Wilson 2002, 2004; Smith and Smith 2006). This goal is
different from the type of pattern identification considered
here.

Flexible combination of local matching and time warping

The proposed approach is flexible in modeling and combin-
ing information at two timescales. We showed that linear
convolution can be applied for both point process representa-
tions and binary representations of spiking activity. Linear
convolution can be applied for other representations as well. In
general, as long as local similarity scores are defined as
weighted sums of measures of spiking activity at different time
points, they can be computed by linear convolution with a filter
consisting of the weights involved. For example, to cross-
correlate firing rates, the filter is simply the firing rate function
of the template registered backward in time. In most cases,
however, it is a major issue how to select appropriate filters.
We showed that based on the principle of likelihood testing,
some of the filter parameters can be estimated from data. The
estimation-based approach reduces the number of parameters
that have to be manually tuned, thus allowing a procedure to be
more easily applied for different data sets and more objective
comparisons of the results.

In our proposed pattern identification procedures, linear
convolution and DTW are more or less two separable modules.
Depending on the problem at hand, one may replace linear
convolution with another method to compute local similarity
scores, and then apply DTW to combine the local scores into
similarity scores for the entire template. The point of using
DTW is that it is capable of dealing with variability at a
relatively large timescale. Such variability is evident in the
spontaneous activity during sleep in RA (Dave and Margoliash
2000); it is even more evident in the analyzed MI activity,
presumably because it was influenced by many factors. The
distinction between local and more global temporal variabili-
ties adapted herein is a simplification. Spiking activity can
exhibit temporal variability at multiple timescales (Reich et al.
2000, 2001; Zugaro et al. 2005). From a computational per-
spective, to handle the variability at more finely graded time-
scales, one could introduce a hierarchy of procedures, each one
computing the similarity scores at one timescale by combining
scores obtained at a smaller timescale.

The DTW step in our approach has two useful properties.
First, it estimates the times of individual components within
each identified occurrence of a preselected pattern. The esti-
mation of timing can be useful for decoding neural activity.
Although our study does not preclude the possibility that the
spike rates of neurons could be used to identify behaviorally
relevant event times, there is a precedent for using spike
patterns to identify the event times. Riehle et al. (1997) trained
monkeys to expect go cues (i.e., cues to initiate movement) at
certain predefined times. The study found that transient spike
synchronization between two motor cortical neurons occurred
at the expected cue times even when the cue did not appear.
Interestingly, the spike rates of the individual neurons did not
modulate during these expected times. One unanticipated result
in our experiment was that the pattern identification procedure
could attain very good estimates on when a macaque monkey
moved a cursor to different targets. Further controlled experi-
ments are necessary to determine the biological significance of
this observation. For example, it is unclear whether these
patterns related to aspects of the monkey’s movement to the
target or were associated with the visual appearance of the next
target. Nevertheless, the example shows that, when appropri-
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ately designed, a computational method can reveal intriguing
phenomena that otherwise are difficult to detect. The discovery
of very fine submillisecond neuronal “drift” in zebra finch RA
spiking activity during singing is another such example (Chi
and Margoliash 2001).

The second useful property of the DTW step is that it
estimates the amount of warping for each compressible interval
in the template. This may provide extra parameters to describe
the large timescale dynamics of neural activity under certain
condition. For example, as the experiment on the RA data
indicates, one possibility is to test to what degree the assump-
tion of uniform timescaling holds for the spontaneous spiking
activity during sleep. On the other hand, although in principle
extra parameters can provide more information for pattern
identification, our experiment on the MI data indicates that it
yielded only marginal improvement to incorporate a parametric
statistical model for time warping. It remains to be seen
whether parametric models can be more effectively exploited
for pattern identification.

Selection of representation

Although our pattern identification procedures for the point
process representation and the binary representation appear to
be quite different, they are based on the same perspective. That
is, a spiking activity pattern can be divided into components
that are incompressible in time and those that can be scaled in
time, and the information about the pattern is mostly incorpo-
rated in the incompressible components. Most of the current
pattern identification methods are based on point process rep-
resentations. To avoid potential side effects arising from dis-
cretization of time, point process representations should be the
default choice for pattern identification, even for spiking ac-
tivity with higher (electrophysiological) variability than that in
RA. Higher variability can be accommodated by lowering the
temporal precision for spike matching or using multiple filters
to account for different aspects of variability (Chi et al. 2003).

If the precision of spike time acquisition or computational
load is of concern, then binary representations are more suit-
able. The choice between the two types of representations
should be problem dependent. For the MI data, because the
goal was to estimate behavioral timing of a monkey, which
intrinsically could be highly variable, it was reasonable to
discretize spike times to the extent that the resulting loss of
temporal information caused no abrupt changes in the estima-
tion. The binary representation was tested with multiple SUs
extracted from simultaneous records drawn from an electrode
array. It should be noted that continuous multiunit (MU) data,
as opposed to single-unit or multielectrode data, can also be
transformed into binary representations. Depending on the
quality of the MU recording, it may be advantageous to set an
amplitude threshold, count the number of threshold crossings,
and quantify this as a binary signal. Alternatively, for record-
ings that sum over a larger number of units, it may be
advantageous to measure the total amplitude of the rectified
signal over some bin (e.g., Margoliash 1986) and quantify this
as a binary signal. The pattern identification approach may then
be applied to the binary signal.

Limitations and possible improvements

One important situation that the proposed approach cannot
handle is where the relative timing of the spiking activity of
multiple units exhibit variability. Such “interunit temporal
variability” may be significant if the recorded units are in
different nuclei. Our procedure for the point process represen-
tation of neuronal activity is applicable only for SU recordings.
The procedure for the binary representation essentially as-
sumes that the units are time-locked with each other in their
spiking. Therefore it cannot apply when the interunit timing
variability has to be taken into account. One possible approach
to this type of variability is to treat the relative timing of the
units the same way as IBIs with appropriate DTW procedures.
However, even with a moderate number of recorded units, the
computational load can become heavy because the optimiza-
tion involved in DTW may have to take into account the
relative timing for many pairs of units. An intermediate ap-
proach may be to group the units into clusters, such that within
each cluster, the interunit variability can be ignored. Then,
appropriate DTW procedures may be developed for the clus-
ters.

A second issue is how to combine the two pattern identifi-
cation procedures developed here. This can be useful when
different classes of neurons exhibit different levels of temporal
precision in their spiking activity. For example, in the birdsong
system, the spiking activity in the nucleus HVC, which is
afferent to RA, has projection neurons with high temporal
precision and interneurons with lower temporal precision
(Hahnloser et al. 2002; Yu and Margoliash 1996). In general,
given the interest in simultaneous recordings from multiple
areas (Hoffman and McNaughton 2002), it is valuable to
develop pattern identification procedures for the joint activity
in multiple areas. To manipulate behavior directly based on
spiking activity, it would also be useful to extend our proce-
dures for real-time pattern identification.

The proposed pattern identification approach does not offer
a recipe for threshold selection for similarity scores. The
simulation-based method in the experiment for RA could
provide a reasonable range for the threshold values. However,
because no simulations can account for all the statistical
properties of spiking activity, simulation methods should be
used with caution. Despite its statistical derivation, the pro-
posed approach is essentially of observational nature. In the
end, how large a similarity score should be to identify a data
segment as a match is based on an experimenter’s own judg-
ment, irrespective of whether it is supported by statistical
significance measures such as P values. The biological signif-
icance of the identified patterns can be determined only by
controlled experiments.

A P P E N D I X

Score function for the point process representation

The score function is derived from a likelihood ratio test on the
pattern of interest versus background. We model the background as a
Poisson process with constant density �0. Let T � {t1, t2,. . .} be a
template representing the pattern of interest. It randomly generates a
data spike train as follows.

1) Each t in T generates a set of spikes from a constrained Poisson
process with density g(x � t), such that the likelihood of t generating
A � {x1, . . . , xk} is
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p�A� � � Z�1�
i�1

k

g�xi � t� if 0 � k � N and �xi � t� � �

0 otherwise

Here 
 is the maximum “jitter” in spike times, N is the maximum
number of spikes a template spike can generate, and Z � ZN is a
normalizing constant. Although N depends on the recorded unit, it will
be seen that different values of N lead to the same form of similarity
scores up to an additive constant. Therefore we can use the same
formula for template matching without having to estimate N.

2) The IBIs are compressed or expended independently of each
other, such that the amount of change to the ith IBI follows a
probability distribution fi(x).

3) For each warped IBI, a sample from the Poisson process with
density � � �0 is added into the warped IBI as noise spikes. The
density of spikes within the pattern is assumed to be continuous.
Therefore � � g(��) � g(�).

For a spike train S that starts at time x and consists of spikes s1 �
s2 � . . ., the log-likelihood that it is generated from T in such a way
that the IBIs of T are changed by v1, . . . , vn�1 and the (hi�1 �
1)th, . . . , (hi)th spikes in S are generated by ti is

L1 � �
i�1

n�1

log fi��i� � log � � �total number of spikes in the warped IB s of T�

� �
i

	log
1

Z
� �

j�hi�1�1

hi

log g�sj � x � ti � �1 � . . . � �ki
�


where ki is the index of the template burst that contains ti. On the other
hand, the log-likelihood of S being part of the background is L0 � log
�0 � (total number of spikes in S). The log-likelihood ratio is then

�
i�1

n�1

log fi��i� � log
�

�0

� �total number of spikes in the warped IB s of T�

� �
i

�
j�hi�1�1

hi

log
g�sj � x � ti � v1 � . . . � vki

�

�0

� C

with C a constant dependent only on T. Next write log [g(x)/�0] as
(1 � �)K(x/�) � �, where � � 0 and 0 � K(x) � 1 is defined on [�1,
1] with K(0) � 1, K(�1) � 0. To this end, divide the log-likelihood
ratio by M � log [g(0)/�0], and define

� �
log ��0/��

M
�

log �0 � log �

log g�0� � log �0

, K�x� �
� � log g��x�/M

1 � �
�A1)

Let Gi(v) � �log fi(v)/M and ignore constant C. Then, following Chi
et al. (2003), the transformed log-likelihood ratio is l(x, v1, . . . , vn�1)
in Eq. 2. As a result, up to a multiplicative factor M and an additive
factor C, L(x) in Eq. 3 is the maximum log-likelihood ratio of S being
generated from T versus from the background.

Score function for the binary representation

We first derive the score function associated with a single event,
i.e., Eq. 7. For each t � 1, 2,. . ., let

Pi�t� � Prob�the ith event occurs in the tth time bin�

Then under the assumptions of conditional independence in our
statistical model

Pi�t� � �
c�1

C �
j��A

B

Pi,c�j�
xc(t�j)�1 � pi,c�j��

1�xc(t�j)

and thus

log Pi�t� � �
c�1

C �
j��A

B

�xc�t � j� log pi,c�j� � �1 � xc�t � j�� log �1 � pi,c�j���

� �
c�1

C �
j��A

B

xc�t � j� log
pi,c�j�

1 � pi,c�j�
� �

c�1

C �
j��A

B

log �1 � pi,c�j��

� �
c�1

C �
j��A

B

xc�t � j�	i,c� � j� � Ci

� �
c�1

C

	k,c � xc�t� � Ci

where Ci is a constant dependent only on i. This therefore verifies Eq. 7.
To verify Eq. 8, following the same idea for the point process

representation (cf. Fig. 1B), it can be seen that the probability that the
tth time bin contains the onset of an occurrence of the event sequence
with IEIs I1�, . . . In�1� is

P�t, I1�, . . ., In�1��

� �
i�1

n

Prob �the ith event occurs in the �t � I1 � . . . � Ii�1�th time bin�

� �
i�1

n�1

q�Ii�, �i� � �
i�1

n

Pi�t � I1 � . . . � Ii�1� � �
i�1

n�1

q�Ii�, �i�

Take the logarithm on both sides. Then

log P�t, In �, . . ., In�1�� � �
i�1

n

Fi�t � I1 � . . . � Ii�1� � �
i�1

n

Gi�Ii� � C

with C a constant. This therefore verifies Eq. 8. The interpretation of
L(t) in Eq. 9 as a maximum likelihood up to an additive constant
follows from a similar argument as the one for the point representa-
tion. For brevity, the argument is not elaborated.
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