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ON THE ASYMPTOTIC OF LIKELIHOOD RATIOS FOR
SELF-NORMALIZED LARGE DEVIATIONS

By Zurvi Cur'*

Department of Statistics, University of Connecticut

Motivated by multiple statistical hypothesis testing, we obtain
the limit of likelihood ratio of large deviations for self-normalized
random variables, specifically, the ratio of P(v/n(X + d/n) > z,V)
to P(v/nX > z,V), as n — oo, where X and V are the sample mean
and standard deviation of iid Xi,...,X,, respectively, d > 0 is a
constant and z, — o0o. We show that the limit can have a simple
form %%, where zo is the unique maximizer of zf(xz) with f the
density of X;. The result is applied to derive the minimum sample
size per test in order to control the error rate of multiple testing at
a target level, when real signals are different from noise signals only

by a small shift.

1. Introduction.

1.1. Background. Suppose X1, Xo, ...areiid random variables with den-
sity f, such that P(X; > 0) > 0. Forn > 1, let S, = X1 +--- + X,,. We

shall consider the biased t statistic

o n 1/2
\/ﬁX . * S?’L 1 o\ 2
T, = v with X = —, V= ﬁi§:1(Xi—X) .

n

The choice for T}, is only for simplicity of notation. All the results obtained
for T}, in the paper hold for the standard ¢ statistic v/n — 1.X/V as well.

The aim here is to find the limit of the ratio of tail probabilities for T;,,
specifically, the limit of

P (Vn(X +d/n) > z,V)
P (y/nX > z,V) ’

as n — 00,

where d > 0 is a constant and z,, — oo in a suitable rate. The problem

pertains to large deviations for self-normalized random variables [5, 9]. On
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the other hand, it is directly related to statistical multiple hypothesis testing,
in particular, the False Discovery Rate (FDR) control [1], which in recent
years has generated intensive research due to its applications in microarray
data analysis, medical imagery, etc, where a very large number of signals
(“null hypotheses”) have to be sorted through in order to identify signals of
interest (“false nulls”) from the other, noise signals (“true nulls”) [6,/7, 8,/10].

A measure of performance for multiple testing is the fraction of falsely
identified noise signals (“false discoveries”) among the identified ones. Given
that at least one signal is identified, the fraction is a well-defined random
variable and its conditional expectation is called positive FDR, or pFDR.
For a testing procedure, it is desirable that, given a target control level «,
the procedure attains pFDR < a. However, whether or not this is possible
depends on the property of the data distributions as well as how much data
is available to assess the hypotheses. We consider a typical multiple testing
problem, where the data distributions are shifted and scaled versions of each
other.

Suppose the data distributions are Fj(z) = F(s;x — u;), where F is a
fixed distribution, and s; > 0 and u; are unknown. In order to identify from
F; those with u; # 0, we test null (hypotheses) H; : u; = 0 to see which
one can be rejected. To this end, let n iid observations be sampled from Fj,
which can be written as Y1 = (X1 + u;)/Si, - ., Yin = (Xin + ;i) /s, with
Xi; ~ F. Suppose the nulls are tested independently of each other, so that
X;j; areiid for 7 > 1, j = 1,...,n. Typically, H; is rejected if and only if the
t statistic of Yj1,..., Y}, is larger than a cut-off value x,. Suppose that false
nulls occur randomly in the population of nulls, such that each H; can be
false with probability p € (0, 1) independently of the others, and u; = u > 0
when H; is false. By definition, a falsely rejected null is a true null, i.e.,
u; = 0. It is then not hard to see

. : - I-p
1.1 P(H; is falsely rejected | H; is rejected) = —————
(1.1) ( y rej | H; is rej ) —

where R, is the ratio of tail probabilities

P(y/n(X +u) > z,V)
P(y/nX > x,V)

R, (u) =

It follows that the minimum attainable pFDR is equal to the right hand
side of (1.1) as well [4]. Consequently, if real signals are weak in the sense

that u ~ 0, then R,, can be close to 1, implying that when a nonempty set
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of nulls are rejected by whatever multiple testing procedure, it is likely that
most or almost all of them are falsely rejected.

For the t test, the only way to address the above limitation on the error
rate control is to increase n, the number of observations for each null. From

(1.1)), in order to attain pFDR < «, n must satisfy

(1.2) R,(u) > (1/p—1)(1/a—1).

An important question is, as u ~ 0, what would be the minimum n in order
for (1.2) to hold.

The issue of sample size for pFDR control was previously studied in [3].
However, in that work the ¢ statistic was defined in a different way, with X
and V derived from two independent samples instead of from the same sam-
ple. Although that definition allows an easier treatment, it is not commonly
used in practice. Furthermore, the asymptotic result in [3] is different from

the one reported here for the more commonly used ¢ statistic.

1.2. Main results. We need to be more specific about the cut-off value
. Usually, as n increases, one can afford to look at more extreme tails to
get stronger evidence against nulls. This suggests there should be x, — o
asn — oo. If EX > 0 and EX? < oo for X ~ F, then x, should be at
least of the same order as y/n, otherwise inf pFDR — 1, where the infimum is
taken over all possible multiple testing procedures that are solely based on Tj;.
Furthermore, for F' = N(0, 1), it is known that there should be z,,/\/n — 0
in order to attain inf pFDR [3]. Based on the considerations, for the general

case, we will impose x,, = a,+/n with a,, — oo as the cut-off value.

THEOREM 1.1. Suppose the density f satisfies the following conditions.

1) f is bounded and continuous on R and there is v > 0, such that

lim 277 f(2) < o0.

rT—00
2) zf(z) has a unique mazimizer zo > 0.
3) h :=log f is three times differentiable on R, such that sup|h”| < oo
and sup |h"| < cc.

Let a,, — 00, such that a} = o(n/logn). Then for any d,, — d € (0,00),

P (X >a,V)

— el g5 n— 0.

Note that for different n, X and V are different random variables.
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Let ki = ki«(u) be the minimum n in order for to hold. The asymp-

totic of ky as u — 0 is a consequence of Theorem 1.1}

COROLLARY 1.1. Suppose f and a, satisfy the conditions in Theorem
1.1. Let p € (0,1) and o € (0,1) be fized in (1.2). Then

ko(u) ~ (z0/u) In[(1/p — 1)(1/ax — 1)], as u—0+.

Many probability densities satisfy conditions 1)-3) of Theorem|1.1, for ex-
ample, Gaussian density fi(z;u,0) = e_(w_“)2/202/\/ﬂ0 and Cauchy den-
sity fo(x; p,0) = on o2+ (x—p)?] L. In particular, when p = 0 and o = 1,
both have zy = 1. Therefore, even though all the moments of f; are finite
whereas all those of f5 are infinite, in terms of the amount of data needed
to control the pFDR, these two are asymptotically the same. On the other
hand, Theorem [1.1 is not applicable to densities with zeros on R. Since the
conclusion of Theorem [1.1/has nothing to do with the continuity of A = log f
over R, it is desirable to remove condition 3) altogether.

In the rest of the paper, Section 2 proves Theorem[1.1 and Corollary [1.1!

Sections 3 and 4 contain proofs of lemmas for the main results.

2. Proof of main results. A key to the proof is the fact that the
analysis can be localized at zg, which is revealed by a representation of the
event {7,, > \/na,} given by Shao [9]. It is easily seen that for ¢ > 0,

{Tnzt}_{%Zt(#>l/2}7

where Q, = /X?+ -+ X2,

(cf. [9]). If t = y/nay, then, letting = 1 — (14 a;2)~1/2 and following [9],

= {Sup Y bX; — M(XEH)?)} zo}
b>0 i L 2
_ - _bzr(Z—r)_l—r b 2
{7 - () )
st [Pr@=n b N
‘{22%’2(1—&2 (* 1—7”20}'
Let z=b/(1 —r) and o, = \/r(2 — 7). Then

(2.1) (T, > Vna,} = {aﬁz inflzn:<&—1>2}.

z>0Mn 4 z
=1
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Under the assumption of Theorem r=1-1+a;?)"V?=0a;?/2+

o(a;?), and hence 02 ~ 2r = a2 + o(a,?), yielding
(2.2) on — 0, not/logn ~n/(allogn) — oco.
Equations (2.1) and (2.2) are the starting point of the proof.

LEMMA 2.1.  Suppose f satisfies condition 1) and 2) in Theorem|1.1. Let
oy — 0 such that not /logn — oo. Then, given r > 0, there is § = §(r) > 0,

such that
1SN /X, +d 2
P{o? > inf = L -1
{72z a> (R )

: z
lim sup =1 =
=0 plo2 > inf —Z( it —1)
|z—z0|<r M pat z

The lemma will be proved later. The following heuristic explains why
the analysis can be localized at zy. Let d = 0. For 02 < 1, if the event
E, = {02 > (1/n) X" 1(Xi/z — 1)?} occurs, then most of X; must fall
between (1 — 0,,)z and (1 + 0,,)z, implying

log P(E,) = nlog P(|X — z| < op2) = nlog(20,2f(2)).

As a result, given that at least one E, occurs, the most likely value of z
should be the maximizer of zf(z), i.e., zo.

The following fact will be used in the proof of Theorem/[1.1l If X1, ..., X,
are iid with density f and n > 3, then the joint density of X and V is

(2.3) h(t,s) = (V)'s™ 2 [ T] 5t + vinsw o (d)
=1

where i, is the uniform distribution on a (n — 2) dimensional unit sphere
perpendicular to (1,1,...,1) in R", i.e.,

n

n
Uy, = {wER":ngzl, Zwi:()}.
i=1

i=1
For completeness, a sketch of the proof of (2.3) is given in the Appendix.

Finally, recall that for any ¢ € R and random variables &1, ..., &,,
d(&i—a)?=(E-a) + V¢,

where £ is the sample mean of &, and V; = n=1/2 m (& —€)? is the

1=

biased sample standard deviation.
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Proor or THEOREM [1.1. Fix d,, > 0 such that d,, — d < oco. Given
r >0, for n > 1, |dy/n| < 6, where § = 6(r) > 0 is as in Lemma [2.1] It
therefore suffices to consider the limit of

1 & (X 2
Plo2> inf — |
{an_ in Z<z )}

o |[z—zo|<r TV P

b= 1 (X 2
Plo2> inf - S
{an_ in Z<z )}

|z—z0|<r M P}

where X, := X; 4+ dp,/n has density f(x —d,/n). Let

r,= {(t, 5) € (—00,00) x [0,00) : 02 > inf

|z—z0|<r z
Then for any random variables &1,...,&,,
02> inf lzn:<é—1>2 = {(§,Vg) €Tn}.
"= |z—zo|<r M -1 \ % e "

Apply the above formula to X;, and X; respectively. By (2.1) and (2.3),

/ s" 2T £t = dn/n+ Vnswi) pn(dw) dt ds
(tvsvw)EFnXUn i—1

/ sn2 H f(t+ vnsw;) pn(dw) dt ds
(t,8,w)ET R XUn i1

n =

:/ p(t, s,w)r(dt,ds, dw),

(trsvw)EFnXUn

where v(dt,ds,dw) is the probability measure on I';, x U, proportional to
s"2 IR f(t 4 vnsw;) pin (dw) dt ds, and

I (= du/n + Viisw)
Lt i)

For each (t,s,w) € I';, x Uy, by Taylor expansion,

p(t,s,w) =

p(t,s,w) = exp {zn: [h(t + Vnsw; — dy/n) — h(t + \/ﬁswz)]}

=1

= exp {—d—: Zh/(t + v/nsw;) + en}
=1

where sup ;) len] = O(d;;/n) = O(1/n) due to sup, ["(z)| < co. By

Taylor expansion and wy + -+ + wy, = 0,

% zn: B (t + V/nsw;) = 1 (t) + % En: R (t 4 0v/nsw;) (vVnsw;)?
i=1 i=1
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for some 6 € (0, 1). Because w? add up to 1 and (t,s) € Ty,

n

1
=Y W (t+ Vnsw;) — K ()| < sup | ()]s < Ao,
s @

where A = (29 + 7)?sup,, |h"(x)| < co. For (t,s) € Ty, as |t — z| < 0,2 for
some z € [z0 — 71,20+ 1|, [t — 20| <1+ 0,(20+71) < 2r for n > 1. Combining

the above bounds,

—dnA(2r)—Ac2 —sup |en | < P(t, 5, w) < dnA(2r)+Ac2+sup |en|
€ P ! — € )
e—dnh(20)

with A(c) = sup,_. <. |h/(2) — #'(20)|. Since r is arbitrary and A’ is contin-

uous, from the expression of L, and d, — d, it is seen that L, ~ e—dl (z0)
as n — oo. Finally, since zp maximizes logz + h(z), h'(z0) = —1/2p. So
Ly, ~ %%, O

Proor OoF COROLLARY [1.1. First, it is necessary to show that as u —
0+, k«(u) — oo. To this end, it suffices to show that, when n and ¢ > 0 are
fixed, then

P(X +u>cV)
l(u) == PX > V) — 1, as u — 0+,
where X and V are defined in terms of X1,..., X,,. The limit follows from

a corollary to Fatou’s lemma, which states that if [,,(z) < fp(z) < up(z),
ln(z) = l(x), fu(z) — f(z) and uy(z) — u(x) pointwise as n — oo, and
[l — [land [u, — [wu, then [ f, — [ f. Specifically, let

1 <N [ 2
= N 2> — A(L_
A(r) {(xl,...,xn).r _ggn g <z 1> }, for r > 0.

i=1
Then by (2.1), there is o € (0,1), such that

n

P(X +u>cV) :/1{$EA(J)}Hf(xi—u)dzcl---dacn
i=1

P(X > V) = /1 (v € ()} [] f(ws) das - - da.
i=1
Apparently, 0 < 1{zx € A(o)} i, f(x; —u) < IIi=; f(x; — u), with the
right hand side having the same integral as [/, f(z;). Since f(z —u) —
f(z) pointwise as u — 0, the above corollary to Fatou’s lemma implies
P(X +u>cV)— P(X >¢cV) > 0. Then £(u) — 1.
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Next, we show that uk,(u) is bounded from oo as u — 0+. Suppose that
there is a sequence wu; such that w;k.(u;) — oo. Clearly, n; := ky(u;) — oo.
Then, given any M, u;n; > M for i > 1 and hence by Theorem [1.1]

P(X +ui = an,V) - P(X + M/ni > an, V)
P(X >a,V) — P(X > ap,V)
M s (1/p— 1)(1/a— 1),

which contradicts the definition of k. (u;).

It only remains to show that uk.(u) — dy := zoIn[(1/p — 1)(1/a — 1)]
as u — 0. It suffices to show that for any sequence u; — 0 with convergent
wikx (u;), the limit of u;k, (u;) is do. Indeed, let the limit be d. Then, following
the above argument, e%/?0 = (1/p — 1)(1/a — 1), giving d = do. O

3. Proof of Lemma [2.11

LeEMMA 3.1. Let o € (0,1), 7 >0 and s > 0. Then

1 (X, 2
inf  — 1) <o?
{sSzSI(I}—&-nJ)s n 12:: < z > =9 }

1

C {%z”: (ﬁ - 1)2 < (1+770)2(1+7])202}.

i=1 NS

PROOF. Suppose (1/n) 31 (X;/z —1)? < o2 for some z € [s, (1 +n0)s].
Then |X/z — 1| < 0. By 0 < 1—5/z <no and 22/s? < (1 +n0)?,

_ 2
1 /X 21 Z o (X

S (R S1) = S (X - X 2
n;(s ) nszig;(Z )+ s

2 1 & _ X 2
S nz =1 z z

22 1” X»L 2 X
< —= = — =1 2
] nz< )+ z

i=1 z

)

N

with the last expression no greater than (1 + no)?(1 4 n)%02. O
In the next, let X7, Xo,... be iid random variables with density f.

LEMMA 3.2.  Suppose lim, .. 277 f(z) < oo for some v > 0. Let ,, — 0
such that lim, no, > 0. Then, given 7" > 0 and § > 0, there is a = a(T,§) >
0, such that for n > 1,

1 1/ X;+d 2
sup —logP{afL > inf —Z( ite 1) } <logo, —T.
z>

|d|<s T amn— z
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PROOF. We first show that there is a = a(T') > 0, such that

1 1 (X 2
(3.1) —logP{aﬁz inf—Z(——l) }glogan—T.
n

zzamn “ z
=1

Fix n € (0,1) with n > (1+7/8)*(1+n/4)? — 1. Let oy, = 1 + 10, /4. For
n > 1 with o, < 1/2, a,, < 1+ /8, so by Lemma (3.1} for any a > 0,

Let s = (1 +n)o2. By Chernoff’s inequality, for z > 0 and ¢ > 0,

(3.3) P{s > lzn: (& - 1)2} < {z/ets_tﬁf(z—i—zu)dur.

n i z

Fix A > lim, oo 177 f(2). Let M(2) = (v/2)logz and t = M(z)/s. Then

S—’lL2 A K Z)— Z’lLZS
Z/et t f(z+zu)du§W/neM() M(2)u2/s g,

+ z/ eME)=ME/s (20 4 u) du
lul=n

M(z
L AN TS L ME-MEP/s
A\ M) T
2
Iy

Since eM(®) = 27/2 and /s = /(1 + 1)on, for z > 1, I; < Az="?5,/2.
On the other hand, z > 1 and o, < 1, the following (in)equalities hold

2
o
Iy = 2077/9)/2 < 5=/2,750meE < Az7a,/2,

so I} + I, < Az~7/?5,. Then by (3.2)and (3.3]),

P {0721 > inf — Z (& — 1)2} < i [A(aafg)_”/%n]n
>an - s

(Aa="%a,)"
1— (14 noy,/4)—1m/2
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Since o, — 0 and lim, no, > 0, there is K > 0 such that for all n > 1,
1—(1+n0,/4)" 72 >1— e Mmon/9 > 1/K. Thus

1 1 /X, 2

—log P {0721 > inf — Z (—Z — 1) } <logoy, —i—log(Aa—’Y/?) +

n

i=1 z

log K
-

Since A and K are fixed independently of a, by choosing a = a(T) large
enough, (3.1) is proved.
Finally, for d € [—0, 4] and z > a,

X;+d 2 (z—d)? X 2 (a=0)? (1 X; 2
_ — _ > _
( z 1) 22 <z—d 1) - a? <z—d 1) ’

Therefore,

X;+d 2
sup — logP{o > 1nf— < i —1) }
=1

|dj<s T z
2 1 n XZ 2
l P > inf — — -1 .
©8 {( 5)2_,2;25712(2 )
=1
Then the lemma follows from (3.1). O

LEmMMA 3.3. Suppose f is bounded. Let o,, — 0 such that lim, no, > 0.
Then, given T' > 0, there is b = b(T) > 0, such that for n > 1,

X 2
sup — logP{ inf —Z( +d 1) }<logan—T.

deR T i—1 z

PROOF. Given 1 > 0 such that n > (1+n/8)%(1+n/4)? — 1, by the same
argument for (3.2), for b > 0, d € R and n > 1 with o, < 1/2, letting
ap =1+ 770n/4,

P{a >12§,52<X td 1)2}

=1

o0 1 n
< P2 > inf — < >
; { " banT T <2 <bay? n;

Jj=0

[e'S) n 2
§ZP{(1+?7)032%Z<M—1> }

J=0

Denote A =sup f. For any s > 0, z > 0 and d € R,

[ 0 fo —dydw < A [l G = Aoy
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Since the density of X; + d is f(x — d), by Chernoff’s inequality,

2 oo
fe s £ S
( bym(+m)an)"

1=+ /4"

By the same argument for Lemma 3.2] the lemma is then proved. O

LEMMA 3.4. Let 0 < b < a < oo and suppose f is continuous and
nonzero in a neighborhood of [b, a]. If o, — 0, then, given n > 0, for n > 1,

n 2
lk%p{agz%g;(5~—g }<hgon+mg¢ e 2f(2)] + 7,

n

holds for all z € [b, a).

PROOF. Fix ¢ > 0 such that 2log(14¢) < n. Because f is continuous and
positive in a neighborhood of [b, a], there is s > 0, such that for all z € [b, a]
and u € [—s,s], f(z+uz) < (14 ¢)f(2). Then

I(z) = /exp{% - é <§ _ 1)2}]’(:5)(1:”
= z\/é/e_UQ/(Qai)f(z+uz) du
<=va+ i) [

—S

e~ gy, 4 ze(1=52/70)/2 / f(z+uz)du

ul>s

< V2reon (1 + c)zf(2) + 157 /o0)/2,

By inf.cpq 2f(2) > 0 and o, — 0, it follows that for n > 1, I(z) <
V2mean(1+ ¢)?2f(2) < V2meonezf(z). Together with Chernoff’s inequal-
ity, this implies the inequality in the lemma. ]

To demonstrate Lemma we need the following application of the uni-

form exact LDP of [2]. The result will be proved in the next section.

PROPOSITION 3.1. Suppose f is bounded on R. Let z > 0 such that f

is continuous and nonzero at z. Define

(3.4) h(t) = log [z/etUQf(z +uz)du|, t>0.
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Let 0, — 0 such that not/logn — oo. Then, for each n, there is a unique

t, > 0, such that h/(t,) = —c2, and moreover, as n — 0o,
1

(3.5) tn ~ 22’

(3.6) h(tn) =log oy + log[v2m zf(z)] + o(1)

s 1 & Xi _exp {n(aitn + h(tn))}
(3.7) {H>E§( 1) } g .

PROOF OF LEMMA [2.1. It suffices to show that there is § = d(r) > 0,

such that
1 n
P {U?L > i — < ) }
z2>0, |z z0|> n =

lim sup =0

n—00 1 Xi+d 2
|d|<é P{O’%Z inf —Z( 1)}

|z—z0|<r n

Denote the denominator by B(r,d). Given 0 < n < 1, when |d| < min(r, zp),

B(T,d):P{ng inf 1(z;d>2i(£ _1>2}

|z—z0|<r n
1 N (X 2
>P{(1—n)o2> inf = —Z—1>
o {( n)an - |z—zlor|l§r—d n ; ( z }

P{(l—n)az %Zz: (f—; —1)2}.

Therefore, it is enough to show that there is § > 0, such that

1\ (X; 2
SupP{ng inf Z( +d—1)}
z

dl<s 2>0,|z—z0|>r T %
(3.8) lim 9% =l —0

n—oco P{(l_ iZ;Z:(_l)Q}

By the assumption of the lemma,

Y
v

Di=loglaof ()l = swp  loglz(2)] > 0

By Proposition as long as n > 0 is small enough, as n — 0,

%logp{(l —n)op = 1% (& - 1>2}

iz N0

= (1 =)oty +log(v/T = n o) +log[V2m 2f(2)] + o(1)
(3.9) > M, :=log o, + log[v2mezo f(20)] — D/4.
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Since o, — 0 and not/logn — oo, no, — oo as well. By Lemmas -

3.3, there are b € (0,29 — ), a € (20 + 7,00) and Jg > 0, such that

2
(3.10)  sup —logP{ inf —Z(X +d 1) }SMn—D/Z

|d|<do T  zglbal NI z

Fix 0 < § < dg such that 6 < min(r/2,b/2,a) and 2% < (1+n)(z — §)? for
all z € [b,a]. Then

Z”: <X +d )2}
=1

o YR
= Su g 1n —

y n= b<z<a,|z—z0|>T z z—d
2 1 n X, 2

<P sup ( i ) 022 inf — <Z—1>

b<z<a,|d|<6 \Z — d b—6<z<a+d,|z—z0|>r/2 T Pt z

gP{(l—i—n)a >;2§EZ<£_1>2}7

1 z

. 1

sup P{ o2 > inf —
b<z<a,|z—zo|>r 1

1

n

where J = [b/2, 20 — /2] U [20 + r/2,2a]. By Lemma 3.4/ and the definition
of D, as long as 7 is chosen small enough, for all n > 1,

1 1 (X, 2
sup — log P {(1 +n)ion > =>" (—’ — 1) } <M, —D/2.

zeJ n i=1 z

v

Let a, = 1 + no, and N(n) = [log(4a/b)/log av,|. It is not hard to see
that J can be covered by the union of at most N(n) intervals of the form

I, = [xg, anxy]. By Lemma(3.1 and the above inequality, for n > 1,

1N /X, 2
P{(1 2> inf = B |
et =3 (5] )

, z
=1
9 1 /X 2
< PJ(1 > inf — 2t
ofosmew )
< N(n)max P{ (1+7)* 2>1§n3( Xi 1)2
n) max o - —
N 7 T Nany,
and hence
1 1 & (Xi+d 2
sup —log P{ o2 > inf — ( it —1)
|d|<s T b<z<a,|z=z0[>r N = z
D logN
a1y <ap, -2y e
n

As n — oo, N(n) ~ log(4a/b)/(no,) = O(o,;t). Since not/logn — oo,
log N(n)/n — 0. By combining (3.9) — (3.11), (3.8) is thus proved. O
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4. Proof of Proposition(3.1. Given z > 0, the log-moment generating
function of —(X/z — 1)? is h(t), which is defined in (3.4). It is not hard to
see that for t > 0, h(t) < oo and

[u2e ™" f(z 4+ uz) du
e f(z 4 uz) du ’
_ [ute ™ f(z + uz) du
 [e " f(z 4 uz)du a

(4.1) R (t) =

(4.2) R (t) (W (1)]* > 0.

LEMMA 4.1. Fix z > 0. Suppose f is continuous and nonzero at z. Also

suppose sup f < oo. Then for p > —1,
/ |u|pe_t“2f(z +uz)du~ f(2) DY, as t — oo,
with p’ = (p+1)/2.

PROOF. Given ¢ > 1, thereis n > 0, such that f(z)/c < f(z+uz) < cf(2)
for all u € [—n,n]. Write

U
/\u]pe_t“2f(z+uz) du:/ + =11 + I>.
- Jul>n

By the selection of ¢,

1 U
M/ ]u\pe—tuz’ du < I < cf(z)/ ]u]pe—tu2 du.

¢ Jn -
Ast — oo,
K —tu? —tu? Nyg—p'
/ |u|Pe du ~/|u\pe du =T(p) ™7,
-n
I, < supf/ |u|pe_m2 du = o(t™7).
[ul>n
Since ¢ > 1 is arbitrary, the lemma is proved. ]

PROOF OF PROPOSITION [3.1l Because h” > 0 on (0,00), A’ is strictly
increasing on (0,00). By Lemma [4.1, h/(t) ~ —(2t)~! as t — oo. Thus, by
on — 0, for n > 1, there is a unique t,, — oo with 02 = —h/(t,) ~ (2t,)7L.
This proves (3.5). By Lemma 4.1,

h(t,) = log {z/e_tnuzf(z +uz)du| =log[ (14 0o(1))zf(2)V/7/tn ]

Together with (3.5), this implies (3.6).
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It remains to show (3.7). For large n, t, is well-defined. Because o2t + h(t)
is strictly convex, t, = arginfs~g[o2t + h(t)]. Let

folz) = e—tn(w/z—l)Q—h(tn)f(x)_

It is seen that f, is a probability density. Let &, = —(Cur/2z — 1)%, where
Cni are iid with density f,,. Then by (4.1)

E(6u) = — / ()2 — 12 fu(z) = —2 / w2e =) £ 4 o) du = B (1)

and likewise by (4.2), Var(&,,) = h”(t,). Define

&t & — il (t)
B nh' (ty) ’
n ) 2
To=-) <£ — 1) . Gu(t)=E[e™], t>0

i=1 N 7

Yy,

(4.3)

and A, (t) = log G, (t). By checking the characteristic function of &,; +...+

&nn, it can be seen that Y, also has the representation

T, — N (tn -
A, with P(T), € dz) = e"® M) (T, € da),
A7 (tn)

and hence characteristic function

(44) Y, ~

tA) (t)

Y 1t
(45) E[e £y, ] = exp{ m} Gn (tn + W) /Gn(tn)

Since A, (t) = nh(t), then A/ (t,) = —no?2 and, by Lemma (4.1 and (3.5),
(4.6) A (ty) = nhl(t,) ~n/(2t2) ~ 2not, as n — oc.

By standard exponential tilting,

p{gg > %zn: <X7 —1)2} = P{T, > —no}}

i=1

— enaitn‘FAn(tn)E |:]_ {Yn > 0} e—tn\/ A%(tn)Yn:|
Therefore, in order to show (3.7), it suffices to show

1 1
4.7 E{1{Y, >0 tnvAn(Wn}N—.
4.7) { n 2 03¢ tor 27 A ()

The proof is based on the next lemma, which is essentially established in [2].



16 Z. CHI

LEMMA 4.2. For each n, let T}, be a random variable such that G, (t) =
E[e!T] < oo in a neighborhood of t,, € R. Let A, (t) = log G,,(t) and Y;, be
defined as in (4.4). Suppose that, as n — oo,

(4.8) A (tp) — oo, t2A"(t,) — oo,
(4.9) Y, % N(0,1),

and there is 6 > 0 and ng > 1, such that

(4.10) F*(t) = sup | Bl )1 {|t] < 6/A(Ea) }| € LY,
Gn(tn +iy) 1
. NI LS 2) 'y R S— ) )
(4 11) 6<|§/|£>\tn Gn(tn) ' (tn\/ A%@n)) ’ >0

Then holds.

PROOF. Let 3, = §\/A.(t,) and b, = t,\/N.(t,). Then by (4.5), the
characteristic function of Y, satisfies conditions (2.7) and (2.8) of Theorem
2.3 in [2], and hence (2.9) and (2.10) there. Then by Y, — N(0,1) and
Theorem 2.7 in [2], follows. O

Continuing the proof of Proposition [3.1, it suffices to verify (4.8) — (4.11)
for T, defined in (4.3). By and the assumption that no?/logn — oo,
(4.8) is clear. To show (4.9), consider the representation in (4.3). Because
EY,, = 0 and Var(Y,,) = 1, we only need to check the Lindeberg condition,

i.e., for any a > 0,

fn - h,(tn) 2 1
nh” (t,)
Since K (t,) = o2 and h'(t,) ~ 202, for n > 1, |£, — 02| > a/nh"(t,)
implies |£,| > ay/no? and |€, — 02| < 2|&,|. It thus suffices to show

fn - h/(tn)

F
" R ()

> a}] — 0, with &, ~ &uk-

(4.12) E[g1{l&] = avino }] = o(oh).

By the definition of f,,, the expectation on the left hand side is equal to

4
et | (E - 1) et/ f ()
(z/2—1)2>ay/no2 \ 2

= ze hltn) / u4e*t”“2f(z + zu)du < (zsup fle ML,
u2>av/no2



LIKELIHOOD RATIO OF SELF-NORMALIZED LDP 17

where, by change of variable u = z/\/f, and o2t, ~ 1/2,

I, := / ute v dy < t;5/2/ zhe dx, forn>1,
u2>a/no? z2>by/n
with b € (0,a/2) a constant. Since

/ gle ™ do = y32eY dy ~ (by/n)?2e V" = o(1),
z2>by/n by/n

I, = of E5/2) = 0(c2). On the other hand, by Lemma 4.1, e ") ~
1/(zf(2)V2m0,) = O(0;1). As a result, e ) [, = o(o2), yielding (4.12).
To show (4.10) and (4.11), notice that

where ¢ (y) = ze ) /e*t"“Liy“zf(z + zu) du.

Fix 0 < ¢ < 1. Since f is continuous and nonzero at z, there is r € (0,1/2)
such that f(2)/(1+¢) < f(z+wuz) and 1 —u? < cosu <1 —u?/(2+¢) for
u € [—r,r]. Write

gbn(?/) = ze~hltn) In(y) + Jn(y)

4 aehitn) / -
[ul<+/T/y lul>+/r/y
Then for n > 1 and y € R,

Vrly
Re L(y)] = ¢~

cos(yuQ)e*t"UQf(z + zu) du
—Vr/y

—h(tn) p+/r/y
<1-= / y2u4e*t””2f(z + zu) du
2+c J-\fr]y
—h(tn)g2  pa/r/(yVv1)
R u4e*t”"2f(z + zu) du

<
B 24c S/l
—h(tn),,2 /(1)
L2y (z) uhe—tnt® gy,

=T 0T oe+o Ly

2 4 2tnr/(yV1)
<1- -2 =

=17 20+ 20) Var Sy

where the last inequality is due to change of variable, and (3.6). Since
t, — 00, by choosing M > 1/r, for n > 1 and |y| < (r/M)t,,

2
ute /2 qy

)

3y°on

Rel,(y) <1— —Y%n
[Re In(y)] < 2(1 + 3¢)
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On the other hand, by Lemma 4.1, and (3.6), for n > 1 and y € R,
Vrly
[Tm I, (y)| < ze ") / | sin(yu2)\e_t"u2f(z + zu) du
-Vr/y

< |y|ze~hitn) /u2e*t"“2f(z + zu) du

< \/l—i—c\ylag.

As a result, for n > 1 and |y| < (r/M)ty,

3y204 2 A y2o
4.13 L) < |1 = 24 _ 1 <1-2%
@13) )| <1 gass] et <1 Y

On the other hand, for n > 1,

)| < 2 supf [ et
[ul>+/T/y

< (1+e)AP(|Z| > \/2t,1]y),

where Z ~ N(0,1) and A = sup f/f(z) < oo. Recall that P(|Z| > z) ~
V2/mxte /2 as & — oo. Therefore, for M > 1/r and |y| < (r/M)ty,
[n(y)| < e < (y/1a)?/20 < yop /4.

Combining the bounds for I,,(y) and J,(y),

(4.14) r¢n<y>\31—( ! —1)y2aiSe—y2“%/2, Iyl < (r/M)t

14+c 4
To verify (4.10) holds for any 6 > 0 and ng = no(d) > 1, by (4.4)),

aviyl | Gnltn +it/ /AL | ¢
B[ _‘ XOh '— o (—AZ(%))

G
Then, letting y = t//A”(t,), by (4.14), for n > 1 such that (r/M)t,, > ¢,

(Bl {1 < 6V/ATE }| = [on(w)]" 1{ly| < 6} < e /2,

By (4.6), the right hand side is no greater than e‘t2/9, which proves (4.10).
To verify (4.11), fix § > 0 and first let A\ < r/M. Then by (4.14),

n

_ 52 4
sup ‘d)n( )’n 19 nan/Q'
5§|y‘§/\tn

Gh(tn +1y) ‘:
Gn(tn)

sup
0<]y| <At

Since no/logn — oo, the right hand side is o(1/y/n). On the other hand,
by (4.6)), tn\/A”(ty) ~ v/n/2. Thus (4.11) holds.
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Finally, let A > n :=r/M. From the above proof, it suffices to bound

[e=tntw)e® £ 4 20 du|”
[ e v f(z + zu) du

sup
Ntn <|y|<Atp

sup

Gn(tn +y) ‘ _
ntng‘ylgAtn

Gr(tn)

By change of variable u = x/+/2t,, and letting 6 = y/t,,

—(tn+iy)u? .
fe ' f(z+ zu) du _ /671912/2971(1:) d.
[ et f(z 4 zu) du

e 2 f (2 + z2a/\/20)
/6_932/2]“(2 + zx/\/2ty,) dx

For y € R with |y| < M, 0 € [-A/2,\/2]. By the continuity of f at z and
f(z) >0, gn(z) — e_“2/2/\/ 27 pointwise. So by dominated convergence

it 1
/e 0 2/2gn(£€) dr — N

uniformly for 6 € [-)\/2,A/2]. Given ¢ > 1, for all n > 1,
‘/e—i9x2/2gn(w) dx

It follows that

where g, (z) =

C C
< = .
T WIHi0 (1+ 6214

sup
Ntn <|y|<Atn

. —n/4
Gn(tn+zy)‘<cn< n2> !

]_ L
G (6) T

By choosing ¢ ~ 1, the right hand side is o™ for some « € (0,1), and hence
is o(1/(tn\/A"(ty))). The entire (4.11) is thus verified. O

Appendix. To prove (2.3), let eq,...,e, be the standard basis of R™.
Let ug = (1/4/n) Y1) €i, U1, . .., up—1 € R™ be an orthonormal basis. Under
{u;}, the coordinates of " | X;e; are Yp,Y1,...,Y, 1, with Yy = /nX.
Then X and Y = (Y1,...,Y,_1) have joint density

n—1

n n
g(t,y) = \/HH f(x;), with inei = /ntug + Z yiug, y € R"L,
i=1 i=1 i=1

On the other hand, V ~ |Y|/y/n and ¢ .= Y/|Y| € B,,_1 = {x € R*!:
|z| = 1} almost surely, where |-| stands for the L2-norm. Let v be the uniform
measure on B,_1. By Y = /nV¢, g(t,y) and the joint density k(t, s, z) of
(X, V,€) with respect to dt dsv(dz) are related via

k(t, s, 2)

0.0) = i Vith ¥ = Vs
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Since ¢ : z > w = ?;11 zZ;u; 18 an isometric mapping from B,_1 to U,

¢*v is the uniform measure on U,. Eq. (2.3) then follows from

h(t,s) = /k(t, s, 2) v(dz)
= (Va2 [ glt, Vmsz) v(d2)

= (vVn)"s" 2 /B ﬁ f(t+ Vnsw;) v(dz)

n-1 =1

— (s 2 [ T A+ vrsws) (6°0)(dw).

Un ;=4
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