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Motivated by multiple statistical hypothesis testing, we obtain

the limit of likelihood ratio of large deviations for self-normalized

random variables, specifically, the ratio of P (
√

n(X̄ + d/n) ≥ xnV )

to P (
√

nX̄ ≥ xnV ), as n → ∞, where X̄ and V are the sample mean

and standard deviation of iid X1, . . . , Xn, respectively, d > 0 is a

constant and xn → ∞. We show that the limit can have a simple

form ed/z0 , where z0 is the unique maximizer of zf(x) with f the

density of Xi. The result is applied to derive the minimum sample

size per test in order to control the error rate of multiple testing at

a target level, when real signals are different from noise signals only

by a small shift.

1. Introduction.

1.1. Background. Suppose X1, X2, . . . are iid random variables with den-

sity f , such that P (X1 > 0) > 0. For n ≥ 1, let Sn = X1 + · · · + Xn. We

shall consider the biased t statistic

Tn =

√
nX̄

V
, with X̄ =

Sn

n
, V =

[

1

n

n∑

i=1

(Xi − X̄)2
]1/2

.

The choice for Tn is only for simplicity of notation. All the results obtained

for Tn in the paper hold for the standard t statistic
√

n − 1X̄/V as well.

The aim here is to find the limit of the ratio of tail probabilities for Tn,

specifically, the limit of

P
(√

n(X̄ + d/n) ≥ xnV
)

P
(√

nX̄ ≥ xnV
) , as n → ∞,

where d > 0 is a constant and xn → ∞ in a suitable rate. The problem

pertains to large deviations for self-normalized random variables [5, 9]. On
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2 Z. CHI

the other hand, it is directly related to statistical multiple hypothesis testing,

in particular, the False Discovery Rate (FDR) control [1], which in recent

years has generated intensive research due to its applications in microarray

data analysis, medical imagery, etc, where a very large number of signals

(“null hypotheses”) have to be sorted through in order to identify signals of

interest (“false nulls”) from the other, noise signals (“true nulls”) [6, 7, 8, 10].

A measure of performance for multiple testing is the fraction of falsely

identified noise signals (“false discoveries”) among the identified ones. Given

that at least one signal is identified, the fraction is a well-defined random

variable and its conditional expectation is called positive FDR, or pFDR.

For a testing procedure, it is desirable that, given a target control level α,

the procedure attains pFDR ≤ α. However, whether or not this is possible

depends on the property of the data distributions as well as how much data

is available to assess the hypotheses. We consider a typical multiple testing

problem, where the data distributions are shifted and scaled versions of each

other.

Suppose the data distributions are Fi(x) = F (six − ui), where F is a

fixed distribution, and si > 0 and ui are unknown. In order to identify from

Fi those with ui 6= 0, we test null (hypotheses) Hi : ui = 0 to see which

one can be rejected. To this end, let n iid observations be sampled from Fi,

which can be written as Yi1 = (Xi1 + ui)/si, . . . , Yin = (Xin + ui)/si, with

Xij ∼ F . Suppose the nulls are tested independently of each other, so that

Xij are iid for i ≥ 1, j = 1, . . . , n. Typically, Hi is rejected if and only if the

t statistic of Yi1, . . . , Yin is larger than a cut-off value xn. Suppose that false

nulls occur randomly in the population of nulls, such that each Hi can be

false with probability p ∈ (0, 1) independently of the others, and ui = u > 0

when Hi is false. By definition, a falsely rejected null is a true null, i.e.,

ui = 0. It is then not hard to see

P (Hi is falsely rejected |Hi is rejected) =
1 − p

1 − p + pRn
,(1.1)

where Rn is the ratio of tail probabilities

Rn(u) =
P (

√
n(X̄ + u) ≥ xnV )

P (
√

nX̄ ≥ xnV )
.

It follows that the minimum attainable pFDR is equal to the right hand

side of (1.1) as well [4]. Consequently, if real signals are weak in the sense

that u ≈ 0, then Rn can be close to 1, implying that when a nonempty set
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of nulls are rejected by whatever multiple testing procedure, it is likely that

most or almost all of them are falsely rejected.

For the t test, the only way to address the above limitation on the error

rate control is to increase n, the number of observations for each null. From

(1.1), in order to attain pFDR ≤ α, n must satisfy

Rn(u) ≥ (1/p − 1)(1/α − 1).(1.2)

An important question is, as u ≈ 0, what would be the minimum n in order

for (1.2) to hold.

The issue of sample size for pFDR control was previously studied in [3].

However, in that work the t statistic was defined in a different way, with X̄

and V derived from two independent samples instead of from the same sam-

ple. Although that definition allows an easier treatment, it is not commonly

used in practice. Furthermore, the asymptotic result in [3] is different from

the one reported here for the more commonly used t statistic.

1.2. Main results. We need to be more specific about the cut-off value

xn. Usually, as n increases, one can afford to look at more extreme tails to

get stronger evidence against nulls. This suggests there should be xn → ∞
as n → ∞. If EX > 0 and EX2 < ∞ for X ∼ F , then xn should be at

least of the same order as
√

n, otherwise inf pFDR → 1, where the infimum is

taken over all possible multiple testing procedures that are solely based on Ti.

Furthermore, for F = N(0, 1), it is known that there should be xn/
√

n → ∞
in order to attain inf pFDR [3]. Based on the considerations, for the general

case, we will impose xn = an
√

n with an → ∞ as the cut-off value.

Theorem 1.1. Suppose the density f satisfies the following conditions.

1) f is bounded and continuous on R and there is γ > 0, such that

lim
x→∞x1+γf(x) < ∞.

2) zf(z) has a unique maximizer z0 > 0.

3) h := log f is three times differentiable on R, such that sup |h′′| < ∞
and sup |h′′′| < ∞.

Let an → ∞, such that a4
n = o(n/ log n). Then for any dn → d ∈ (0,∞),

P
(
X̄ + dn/n ≥ anV

)

P
(
X̄ ≥ anV

) → ed/z0 , as n → ∞.

Note that for different n, X̄ and V are different random variables.



4 Z. CHI

Let k∗ = k∗(u) be the minimum n in order for (1.2) to hold. The asymp-

totic of k∗ as u → 0 is a consequence of Theorem 1.1.

Corollary 1.1. Suppose f and an satisfy the conditions in Theorem

1.1. Let p ∈ (0, 1) and α ∈ (0, 1) be fixed in (1.2). Then

k∗(u) ∼ (z0/u) ln[(1/p − 1)(1/α − 1)], as u → 0 + .

Many probability densities satisfy conditions 1)–3) of Theorem 1.1, for ex-

ample, Gaussian density f1(x; µ, σ) = e−(x−µ)2/2σ2
/
√

2πσ and Cauchy den-

sity f2(x; µ, σ) = σπ−1[σ2+(x−µ)2]−1. In particular, when µ = 0 and σ = 1,

both have z0 = 1. Therefore, even though all the moments of f1 are finite

whereas all those of f2 are infinite, in terms of the amount of data needed

to control the pFDR, these two are asymptotically the same. On the other

hand, Theorem 1.1 is not applicable to densities with zeros on R. Since the

conclusion of Theorem 1.1 has nothing to do with the continuity of h = log f

over R, it is desirable to remove condition 3) altogether.

In the rest of the paper, Section 2 proves Theorem 1.1 and Corollary 1.1.

Sections 3 and 4 contain proofs of lemmas for the main results.

2. Proof of main results. A key to the proof is the fact that the

analysis can be localized at z0, which is revealed by a representation of the

event {Tn ≥ √
nan} given by Shao [9]. It is easily seen that for t > 0,

{Tn ≥ t} =

{

Sn

Qn
≥ t

(
n

n + t2

)1/2
}

,

where Qn =
√

X2
1 + · · · + X2

n ,

(cf. [9]). If t =
√

nan, then, letting r = 1 − (1 + a−2
n )−1/2 and following [9],

{
Tn ≥

√
nan

}
=

{
Sn

Qn
√

n
≥ 1 − r

}

=

{

sup
b>0

n∑

i=1

[

bXi −
(1 − r)

2
(X2

i + b2)

]

≥ 0

}

=

{

sup
b>0

n∑

i=1

[

b2r(2 − r)

2(1 − r)
− 1 − r

2

(

Xi −
b

1 − r

)2
]

≥ 0

}

=

{

sup
b>0

n∑

i=1

[

b2r(2 − r)

(1 − r)2
−

(

Xi −
b

1 − r

)2
]

≥ 0

}

.

Let z = b/(1 − r) and σn =
√

r(2 − r). Then

{
Tn ≥

√
nan

}
=

{

σ2
n ≥ inf

z>0

1

n

n∑

i=1

(
Xi

z
− 1

)2
}

.(2.1)
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Under the assumption of Theorem 1.1, r = 1 − (1 + a−2
n )−1/2 = a−2

n /2 +

o(a−2
n ), and hence σ2

n ∼ 2r = a−2
n + o(a−2

n ), yielding

σn → 0, nσ4
n/ log n ∼ n/(a4

n log n) → ∞.(2.2)

Equations (2.1) and (2.2) are the starting point of the proof.

Lemma 2.1. Suppose f satisfies condition 1) and 2) in Theorem 1.1. Let

σn → 0 such that nσ4
n/ log n → ∞. Then, given r > 0, there is δ = δ(r) > 0,

such that

lim
n→∞ sup

|d|≤δ

P

{

σ2
n ≥ inf

z>0

1

n

n∑

i=1

(
Xi + d

z
− 1

)2
}

P

{

σ2
n ≥ inf

|z−z0|≤r

1

n

n∑

i=1

(
Xi + d

z
− 1

)2
} = 1.

The lemma will be proved later. The following heuristic explains why

the analysis can be localized at z0. Let d = 0. For σ2
n ¿ 1, if the event

Ez = {σ2
n ≥ (1/n)

∑n
i=1(Xi/z − 1)2} occurs, then most of Xi must fall

between (1 − σn)z and (1 + σn)z, implying

log P (Ez) ≈ n log P (|X − z| ≤ σnz) ≈ n log(2σnzf(z)).

As a result, given that at least one Ez occurs, the most likely value of z

should be the maximizer of zf(z), i.e., z0.

The following fact will be used in the proof of Theorem 1.1. If X1, . . . , Xn

are iid with density f and n ≥ 3, then the joint density of X̄ and V is

h(t, s) = (
√

n)nsn−2
∫ n∏

i=1

f(t +
√

nsωi)µn(dω)(2.3)

where µn is the uniform distribution on a (n − 2) dimensional unit sphere

perpendicular to (1, 1, . . . , 1) in R
n, i.e.,

Un :=

{

ω ∈ R
n :

n∑

i=1

ω2
i = 1,

n∑

i=1

ωi = 0

}

.

For completeness, a sketch of the proof of (2.3) is given in the Appendix.

Finally, recall that for any a ∈ R and random variables ξ1, . . . , ξn,

1

n

n∑

i=1

(ξi − a)2 = (ξ̄ − a)2 + V 2
ξ ,

where ξ̄ is the sample mean of ξi, and Vξ = n−1/2
√

∑n
i=1(ξi − ξ̄)2 is the

biased sample standard deviation.
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Proof of Theorem 1.1. Fix dn ≥ 0 such that dn → d < ∞. Given

r > 0, for n À 1, |dn/n| ≤ δ, where δ = δ(r) > 0 is as in Lemma 2.1. It

therefore suffices to consider the limit of

Ln :=

P

{

σ2
n ≥ inf

|z−z0|≤r

1

n

n∑

i=1

(
Xi,n

z
− 1

)2
}

P

{

σ2
n ≥ inf

|z−z0|≤r

1

n

n∑

i=1

(
Xi

z
− 1

)2
}

where Xi,n := Xi + dn/n has density f(x − dn/n). Let

Γn =

{

(t, s) ∈ (−∞,∞) × [0,∞) : σ2
n ≥ inf

|z−z0|≤r

(t − z)2 + s2

z2

}

.

Then for any random variables ξ1, . . . , ξn,
{

σ2
n ≥ inf

|z−z0|≤r

1

n

n∑

i=1

(
ξi

z
− 1

)2
}

=
{
(ξ̄, Vξ) ∈ Γn

}
.

Apply the above formula to Xi,n and Xi respectively. By (2.1) and (2.3),

Ln =

∫

(t,s,ω)∈Γn×Un

sn−2
n∏

i=1

f(t − dn/n +
√

nsωi)µn(dω) dt ds

∫

(t,s,ω)∈Γn×Un

sn−2
n∏

i=1

f(t +
√

nsωi)µn(dω) dt ds

=

∫

(t,s,ω)∈Γn×Un

ρ(t, s, ω)ν(dt, ds, dω),

where ν(dt, ds, dω) is the probability measure on Γn × Un proportional to

sn−2 ∏n
i=1 f(t +

√
nsωi)µn(dω) dt ds, and

ρ(t, s, ω) =

∏n
i=1 f(t − dn/n +

√
nsωi)

∏n
i=1 f(t +

√
nsωi)

.

For each (t, s, ω) ∈ Γn × Un, by Taylor expansion,

ρ(t, s, ω) = exp

{
n∑

i=1

[
h(t +

√
nsωi − dn/n) − h(t +

√
nsωi)

]

}

= exp

{

−dn

n

n∑

i=1

h′(t +
√

nsωi) + en

}

where sup(t,s,ω) |en| = O(d2
n/n) = O(1/n) due to supx |h′′(x)| < ∞. By

Taylor expansion and ω1 + · · · + ωn = 0,

1

n

n∑

i=1

h′(t +
√

nsωi) = h′(t) +
1

n

n∑

i=1

h′′′(t + θ
√

nsωi)(
√

nsωi)
2
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for some θ ∈ (0, 1). Because ω2
i add up to 1 and (t, s) ∈ Γn,

∣
∣
∣
∣
∣

1

n

n∑

i=1

h′(t +
√

nsωi) − h′(t)

∣
∣
∣
∣
∣
≤ sup

x
|h′′′(x)|s2 ≤ Aσ2

n,

where A = (z0 + r)2 supx |h′′′(x)| < ∞. For (t, s) ∈ Γn, as |t − z| ≤ σnz for

some z ∈ [z0 − r, z0 + r], |t− z0| ≤ r +σn(z0 + r) < 2r for n À 1. Combining

the above bounds,

e−dn∆(2r)−Aσ2
n−sup |en| ≤ ρ(t, s, ω)

e−dnh′(z0)
≤ edn∆(2r)+Aσ2

n+sup |en|,

with ∆(c) = sup|z−z0|≤c |h′(z)−h′(z0)|. Since r is arbitrary and h′ is contin-

uous, from the expression of Ln and dn → d, it is seen that Ln ∼ e−dh′(z0)

as n → ∞. Finally, since z0 maximizes log z + h(z), h′(z0) = −1/z0. So

Ln ∼ ed/z0 .

Proof of Corollary 1.1. First, it is necessary to show that as u →
0+, k∗(u) → ∞. To this end, it suffices to show that, when n and c > 0 are

fixed, then

`(u) :=
P (X̄ + u ≥ cV )

P (X̄ ≥ cV )
→ 1, as u → 0+,

where X̄ and V are defined in terms of X1, . . . , Xn. The limit follows from

a corollary to Fatou’s lemma, which states that if ln(x) ≤ fn(x) ≤ un(x),

ln(x) → l(x), fn(x) → f(x) and un(x) → u(x) pointwise as n → ∞, and
∫

ln →
∫

l and
∫

un →
∫

u, then
∫

fn →
∫

f . Specifically, let

A(r) =

{

(x1, . . . , xn) : r2 ≥ inf
z>0

1

n

n∑

i=1

(
xi

z
− 1

)2
}

, for r > 0.

Then by (2.1), there is σ ∈ (0, 1), such that

P (X̄ + u ≥ cV ) =

∫

1 {x ∈ A(σ)}
n∏

i=1

f(xi − u) dx1 · · · dxn

P (X̄ ≥ cV ) =

∫

1 {x ∈ A(σ)}
n∏

i=1

f(xi) dx1 · · · dxn.

Apparently, 0 ≤ 1 {x ∈ A(σ)}∏n
i=1 f(xi − u) ≤ ∏n

i=1 f(xi − u), with the

right hand side having the same integral as
∏n

i=1 f(xi). Since f(x − u) →
f(x) pointwise as u → 0, the above corollary to Fatou’s lemma implies

P (X̄ + u ≥ cV ) → P (X̄ ≥ cV ) > 0. Then `(u) → 1.
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Next, we show that uk∗(u) is bounded from ∞ as u → 0+. Suppose that

there is a sequence ui such that uik∗(ui) → ∞. Clearly, ni := k∗(ui) → ∞.

Then, given any M , uini ≥ M for i À 1 and hence by Theorem 1.1,

P (X̄ + ui ≥ aniV )

P (X̄ ≥ aniV )
≥ P (X̄ + M/ni ≥ aniV )

P (X̄ ≥ aniV )

→ eM/z0 À (1/p − 1)(1/α − 1),

which contradicts the definition of k∗(ui).

It only remains to show that uk∗(u) → d0 := z0 ln[(1/p − 1)(1/α − 1)]

as u → 0. It suffices to show that for any sequence ui → 0 with convergent

uik∗(ui), the limit of uik∗(ui) is d0. Indeed, let the limit be d. Then, following

the above argument, ed/z0 = (1/p − 1)(1/α − 1), giving d = d0.

3. Proof of Lemma 2.1.

Lemma 3.1. Let σ ∈ (0, 1), η > 0 and s > 0. Then
{

inf
s≤z≤(1+ησ)s

1

n

n∑

i=1

(
Xi

z
− 1

)2

≤ σ2

}

⊂
{

1

n

n∑

i=1

(
Xi

s
− 1

)2

≤ (1 + ησ)2(1 + η)2σ2

}

.

Proof. Suppose (1/n)
∑n

i=1(Xi/z − 1)2 ≤ σ2 for some z ∈ [s, (1 + ησ)s].

Then |X̄/z − 1| ≤ σ. By 0 ≤ 1 − s/z ≤ ησ and z2/s2 ≤ (1 + ησ)2,

1

n

n∑

i=1

(
Xi

s
− 1

)2

=
1

ns2

n∑

i=1

(Xi − X̄)2 +

(

X̄

s
− 1

)2

=
z2

s2




1

nz2

n∑

i=1

(Xi − X̄)2 +

(

X̄

z
− s

z

)2




≤ z2

s2

[

1

n

n∑

i=1

(
Xi

z
− 1

)2

+ 2

∣
∣
∣
∣
∣

X̄

z
− 1

∣
∣
∣
∣
∣

(

1 − s

z

)

+

(
s

z
− 1

)2
]

,

with the last expression no greater than (1 + ησ)2(1 + η)2σ2.

In the next, let X1, X2, . . . be iid random variables with density f .

Lemma 3.2. Suppose limx→∞ x1+γf(x) < ∞ for some γ > 0. Let σn → 0

such that limn nσn > 0. Then, given T > 0 and δ > 0, there is a = a(T, δ) >

0, such that for n À 1,

sup
|d|≤δ

1

n
log P

{

σ2
n ≥ inf

z≥a

1

n

n∑

i=1

(
Xi + d

z
− 1

)2
}

≤ log σn − T.
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Proof. We first show that there is a = a(T ) > 0, such that

1

n
log P

{

σ2
n ≥ inf

z≥a

1

n

n∑

i=1

(
Xi

z
− 1

)2
}

≤ log σn − T.(3.1)

Fix η ∈ (0, 1) with η > (1 + η/8)2(1 + η/4)2 − 1. Let αn = 1 + ησn/4. For

n ≥ 1 with σn < 1/2, αn < 1 + η/8, so by Lemma 3.1, for any a > 0,

P

{

σ2
n ≥ inf

z≥a

1

n

n∑

i=1

(
Xi

z
− 1

)2
}

≤
∞∑

j=0

P

{

σ2
n ≥ inf

aαj
n≤z≤aαj+1

n

1

n

n∑

i=1

(
Xi

z
− 1

)2
}

≤
∞∑

j=0

P

{

(1 + η)σ2
n ≥ 1

n

n∑

i=1

(
Xi

aαj
n

− 1

)2
}

.(3.2)

Let s = (1 + η)σ2
n. By Chernoff’s inequality, for z > 0 and t > 0,

P

{

s ≥ 1

n

n∑

i=1

(
Xi

z
− 1

)2
}

≤
[

z

∫

ets−tu2
f(z + zu) du

]n

.(3.3)

Fix A > limx→∞ x1+γf(x). Let M(z) = (γ/2) log z and t = M(z)/s. Then

z

∫

ets−tu2
f(z + zu) du ≤ A

zγ(1 − η)1+γ

∫ η

−η
eM(z)−M(z)u2/s du

+ z

∫

|u|≥η
eM(z)−M(z)η2/sf(zu + u) du

≤ AeM(z)

zγ(1 − η)1+γ

√

πs

M(z)
︸ ︷︷ ︸

I1

+ eM(z)−M(z)η2/s
︸ ︷︷ ︸

I2

.

Since eM(z) = zγ/2 and
√

s =
√

(1 + η)σn, for z À 1, I1 ≤ Az−γ/2σn/2.

On the other hand, z À 1 and σn ¿ 1, the following (in)equalities hold

I2 = zγ(1−η2/s)/2 ≤ z−γ/2z
− η2

3(1+η)σ2
n ≤ Az−γ/2σn/2,

so I1 + I2 ≤ Az−γ/2σn. Then by (3.2)and (3.3),

P

{

σ2
n ≥ inf

z≥a

1

n

n∑

i=1

(
Xi

z
− 1

)2
}

≤
∞∑

j=0

[

A(aαj
n)−γ/2σn

]n

=
(Aa−γ/2σn)n

1 − (1 + ησn/4)−γn/2
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Since σn → 0 and limn nσn > 0, there is K > 0 such that for all n À 1,

1 − (1 + ησn/4)−γn/2 ≥ 1 − e−ηγnσn/9 > 1/K. Thus

1

n
log P

{

σ2
n ≥ inf

z≥a

1

n

n∑

i=1

(
Xi

z
− 1

)2
}

≤ log σn + log(Aa−γ/2) +
log K

n
.

Since A and K are fixed independently of a, by choosing a = a(T ) large

enough, (3.1) is proved.

Finally, for d ∈ [−δ, δ] and z ≥ a,

(
Xi + d

z
− 1

)2

=
(z − d)2

z2

(
Xi

z − d
− 1

)2

≥ (a − δ)2

a2

(
Xi

z − d
− 1

)2

,

Therefore,

sup
|d|≤δ

1

n
log P

{

σ2
n ≥ inf

z≥a

1

n

n∑

i=1

(
Xi + d

z
− 1

)2
}

≤ 1

n
log P

{

a2σ2
n

(a − δ)2
≥ inf

z≥a−δ

1

n

n∑

i=1

(
Xi

z
− 1

)2
}

.

Then the lemma follows from (3.1).

Lemma 3.3. Suppose f is bounded. Let σn → 0 such that limn nσn > 0.

Then, given T > 0, there is b = b(T ) > 0, such that for n À 1,

sup
d∈R

1

n
log P

{

σ2
n ≥ inf

0<z≤b

1

n

n∑

i=1

(
Xi + d

z
− 1

)2
}

≤ log σn − T.

Proof. Given η > 0 such that η > (1+ η/8)2(1+ η/4)2 − 1, by the same

argument for (3.2), for b > 0, d ∈ R and n ≥ 1 with σn < 1/2, letting

αn = 1 + ησn/4,

P

{

σ2
n ≥ inf

z≤b

1

n

n∑

i=1

(
Xi + d

z
− 1

)2
}

≤
∞∑

j=0

P

{

σ2
n ≥ inf

bα−j−1
n ≤z≤bα−j

n

1

n

n∑

i=1

(
Xi + d

z
− 1

)2
}

≤
∞∑

j=0

P






(1 + η)σ2

n ≥ 1

n

n∑

i=1

(

αj
n(Xi + d)

b
− 1

)2





.

Denote A = sup f . For any s > 0, z > 0 and d ∈ R,

∫

e−(x/z−1)2/sf(x − d) dx ≤ A

∫

e−(x/z−1)2/s dx = Az
√

πs.
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Since the density of Xi + d is f(x − d), by Chernoff’s inequality,

P

{

σ2
n ≥ inf

z≤b

1

n

n∑

i=1

(
Xi + d

z
− 1

)2
}

≤
∞∑

j=0

(Abα−j
n

√

π(1 + η)σn)n

=
(Ab

√

π(1 + η)σn)n

1 − (1 + ησn/4)−n
.

By the same argument for Lemma 3.2, the lemma is then proved.

Lemma 3.4. Let 0 < b < a < ∞ and suppose f is continuous and

nonzero in a neighborhood of [b, a]. If σn → 0, then, given η > 0, for n À 1,

1

n
log P

{

σ2
n ≥ 1

n

n∑

i=1

(
Xi

z
− 1

)2
}

< log σn + log[
√

2πe zf(z)] + η,

holds for all z ∈ [b, a].

Proof. Fix c > 0 such that 2 log(1+c) < η. Because f is continuous and

positive in a neighborhood of [b, a], there is s > 0, such that for all z ∈ [b, a]

and u ∈ [−s, s], f(z + uz) < (1 + c)f(z). Then

I(z) :=

∫

exp

{

1

2
− 1

2σ2
n

(
x

z
− 1

)2
}

f(x) dx

= z
√

e

∫

e−u2/(2σ2
n)f(z + uz) du

≤ z
√

e(1 + c)f(z)

∫ s

−s
e−u2/(2σ2

n) du + ze(1−s2/σ2
n)/2

∫

|u|≥s
f(z + uz) du

≤
√

2πeσn(1 + c)zf(z) + e(1−s2/σ2
n)/2.

By infz∈[b,a] zf(z) > 0 and σn → 0, it follows that for n À 1, I(z) <√
2πeσn(1 + c)2zf(z) <

√
2πeσneηzf(z). Together with Chernoff’s inequal-

ity, this implies the inequality in the lemma.

To demonstrate Lemma 2.1, we need the following application of the uni-

form exact LDP of [2]. The result will be proved in the next section.

Proposition 3.1. Suppose f is bounded on R. Let z > 0 such that f

is continuous and nonzero at z. Define

h(t) = log

[

z

∫

e−tu2
f(z + uz) du

]

, t ≥ 0.(3.4)
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Let σn → 0 such that nσ4
n/ log n → ∞. Then, for each n, there is a unique

tn > 0, such that h′(tn) = −σ2
n, and moreover, as n → ∞,

tn ∼ 1

2σ2
n

,(3.5)

h(tn) = log σn + log[
√

2π zf(z)] + o(1)(3.6)

P

{

σ2
n ≥ 1

n

n∑

i=1

(
Xi

z
− 1

)2
}

∼ exp
{
n(σ2

ntn + h(tn))
}

√
πn

.(3.7)

Proof of Lemma 2.1. It suffices to show that there is δ = δ(r) > 0,

such that

lim
n→∞ sup

|d|≤δ

P

{

σ2
n ≥ inf

z>0, |z−z0|>r

1

n

n∑

i=1

(
Xi + d

z
− 1

)2
}

P

{

σ2
n ≥ inf

|z−z0|≤r

1

n

n∑

i=1

(
Xi + d

z
− 1

)2
} = 0.

Denote the denominator by B(r, d). Given 0 < η ¿ 1, when |d| ¿ min(r, z0),

B(r, d) = P

{

σ2
n ≥ inf

|z−z0|≤r

1

n

(
z − d

z

)2 n∑

i=1

(
Xi

z − d
− 1

)2
}

≥ P

{

(1 − η)σ2
n ≥ inf

|z−z0|≤r−d

1

n

n∑

i=1

(
Xi

z
− 1

)2
}

≥ P

{

(1 − η)σ2
n ≥ 1

n

n∑

i=1

(
Xi

z0
− 1

)2
}

.

Therefore, it is enough to show that there is δ > 0, such that

lim
n→∞

sup
|d|≤δ

P

{

σ2
n ≥ inf

z>0, |z−z0|>r

1

n

n∑

i=1

(
Xi + d

z
− 1

)2
}

P

{

(1 − η)σ2
n ≥ 1

n

n∑

i=1

(
Xi

z0
− 1

)2
} = 0.(3.8)

By the assumption of the lemma,

D := log[z0f(z0)] − sup
z>0, |z−z0|≥r/2

log[zf(z)] > 0.

By Proposition 3.1, as long as η > 0 is small enough, as n → 0,

1

n
log P

{

(1 − η)σ2
n ≥ 1

n

n∑

i=1

(
Xi

z0
− 1

)2
}

= (1 − η)σ2
ntn + log(

√

1 − η σn) + log[
√

2π zf(z)] + o(1)

≥ Mn := log σn + log[
√

2πez0f(z0)] − D/4.(3.9)
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Since σn → 0 and nσ4
n/ log n → ∞, nσn → ∞ as well. By Lemmas 3.2 –

3.3, there are b ∈ (0, z0 − r), a ∈ (z0 + r,∞) and δ0 > 0, such that

sup
|d|≤δ0

1

n
log P

{

σ2
n ≥ inf

z 6∈[b,a]

1

n

n∑

i=1

(
Xi + d

z
− 1

)2
}

≤ Mn − D/2,(3.10)

Fix 0 < δ ≤ δ0 such that δ < min(r/2, b/2, a) and z2 < (1+ η)(z − δ)2 for

all z ∈ [b, a]. Then

sup
|d|≤δ

P

{

σ2
n ≥ inf

b≤z≤a, |z−z0|>r

1

n

n∑

i=1

(
Xi + d

z
− 1

)2
}

= sup
|d|≤δ

P

{

σ2
n ≥ inf

b≤z≤a, |z−z0|>r

1

n

(
z − d

z

)2 n∑

i=1

(
Xi

z − d
− 1

)2
}

≤ P

{

sup
b≤z≤a, |d|≤δ

(
z

z − d

)2

σ2
n ≥ inf

b−δ≤z≤a+δ, |z−z0|≥r/2

1

n

n∑

i=1

(
Xi

z
− 1

)2
}

≤ P

{

(1 + η)σ2
n ≥ inf

z∈J

1

n

n∑

i=1

(
Xi

z
− 1

)2
}

,

where J = [b/2, z0 − r/2] ∪ [z0 + r/2, 2a]. By Lemma 3.4 and the definition

of D, as long as η is chosen small enough, for all n À 1,

sup
z∈J

1

n
log P

{

(1 + η)4σ2
n ≥ 1

n

n∑

i=1

(
Xi

z
− 1

)2
}

≤ Mn − D/2.

Let αn = 1 + ησn and N(n) = dlog(4a/b)/ log αne. It is not hard to see

that J can be covered by the union of at most N(n) intervals of the form

Ik = [xk, αnxk]. By Lemma 3.1 and the above inequality, for n À 1,

P

{

(1 + η)σ2
n ≥ inf

z∈J

1

n

n∑

i=1

(
Xi

z
− 1

)2
}

≤
∑

k

P

{

(1 + η)σ2
n ≥ inf

z∈Ik

1

n

n∑

i=1

(
Xi

z
− 1

)2
}

≤ N(n)max
k

P

{

(1 + η)4σ2
n ≥ 1

n

n∑

i=1

(
Xi

αnxk
− 1

)2
}

and hence

sup
|d|≤δ

1

n
log P

{

σ2
n ≥ inf

b≤z≤a, |z−z0|>r

1

n

n∑

i=1

(
Xi + d

z
− 1

)2
}

≤ Mn − D

2
+

log N(n)

n
.(3.11)

As n → ∞, N(n) ∼ log(4a/b)/(ησn) = O(σ−1
n ). Since nσ4

n/ log n → ∞,

log N(n)/n → 0. By combining (3.9) – (3.11), (3.8) is thus proved.



14 Z. CHI

4. Proof of Proposition 3.1. Given z > 0, the log-moment generating

function of −(X/z − 1)2 is h(t), which is defined in (3.4). It is not hard to

see that for t ≥ 0, h(t) < ∞ and

h′(t) = −
∫

u2e−tu2
f(z + uz) du

∫
e−tu2f(z + uz) du

< 0,(4.1)

h′′(t) =

∫
u4e−tu2

f(z + uz) du
∫

e−tu2f(z + uz) du
− [h′(t)]2 > 0.(4.2)

Lemma 4.1. Fix z > 0. Suppose f is continuous and nonzero at z. Also

suppose sup f < ∞. Then for p > −1,

∫

|u|pe−tu2
f(z + uz) du ∼ f(z)Γ(p′)t−p′ , as t → ∞,

with p′ = (p + 1)/2.

Proof. Given c > 1, there is η > 0, such that f(z)/c < f(z+uz) < cf(z)

for all u ∈ [−η, η]. Write

∫

|u|pe−tu2
f(z + uz) du =

∫ η

−η
+

∫

|u|>η
= I1 + I2.

By the selection of c,

f(z)

c

∫ η

−η
|u|pe−tu2

du < I1 < cf(z)

∫ η

−η
|u|pe−tu2

du.

As t → ∞,

∫ η

−η
|u|pe−tu2

du ∼
∫

|u|pe−tu2
du = Γ(p′)t−p′ ,

I2 ≤ sup f

∫

|u|>η
|u|pe−tu2

du = o(t−p′).

Since c > 1 is arbitrary, the lemma is proved.

Proof of Proposition 3.1. Because h′′ > 0 on (0,∞), h′ is strictly

increasing on (0,∞). By Lemma 4.1, h′(t) ∼ −(2t)−1 as t → ∞. Thus, by

σn → 0, for n À 1, there is a unique tn → ∞ with σ2
n = −h′(tn) ∼ (2tn)−1.

This proves (3.5). By Lemma 4.1,

h(tn) = log

[

z

∫

e−tnu2
f(z + uz) du

]

= log[ (1 + o(1))zf(z)
√

π/tn ].

Together with (3.5), this implies (3.6).
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It remains to show (3.7). For large n, tn is well-defined. Because σ2
nt+h(t)

is strictly convex, tn = arg inft>0[σ
2
nt + h(t)]. Let

fn(x) = e−tn(x/z−1)2−h(tn)f(x).

It is seen that fn is a probability density. Let ξnk = −(ζnk/z − 1)2, where

ζnk are iid with density fn. Then by (4.1)

E(ξnk) = −
∫

(x/z − 1)2fn(x) = −z

∫

u2e−tnu2−h(tn)f(z + zu) du = h′(tn)

and likewise by (4.2), Var(ξnk) = h′′(tn). Define







Yn =
ξn1 + . . . + ξnn − nh′(tn)

√

nh′′(tn)
,

Tn = −
n∑

i=1

(
Xi

z
− 1

)2

, Gn(t) = E[etTn ], t > 0

(4.3)

and Λn(t) = log Gn(t). By checking the characteristic function of ξn1 + . . .+

ξnn, it can be seen that Yn also has the representation

Yn ∼ T̃n − Λ′
n(tn)

√

Λ′′
n(tn)

, with P (T̃n ∈ dx) = etnx−Λn(tn)P (Tn ∈ dx),(4.4)

and hence characteristic function

E[eitYn ] = exp

{

− itΛ′
n(tn)

√

Λ′′
n(tn)

}

Gn

(

tn +
it

√

Λ′′
n(tn)

) /

Gn(tn).(4.5)

Since Λn(t) = nh(t), then Λ′
n(tn) = −nσ2

n and, by Lemma 4.1 and (3.5),

Λ′′
n(tn) = nh′′

n(tn) ∼ n/(2t2n) ∼ 2nσ4
n, as n → ∞.(4.6)

By standard exponential tilting,

P

{

σ2
n ≥ 1

n

n∑

i=1

(
Xi

z
− 1

)2
}

= P
{

Tn ≥ −nσ2
n

}

= enσ2
ntn+Λn(tn)E

[

1 {Yn ≥ 0} e−tn
√

Λ′′

n(tn)Yn

]

Therefore, in order to show (3.7), it suffices to show

E

{

1 {Yn ≥ 0} e−tn
√

Λ′′

n(tn)Yn

}

∼ 1

tn
√

2πΛ′′
n(tn)

.(4.7)

The proof is based on the next lemma, which is essentially established in [2].
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Lemma 4.2. For each n, let Tn be a random variable such that Gn(t) =

E[etTn ] < ∞ in a neighborhood of tn ∈ R. Let Λn(t) = log Gn(t) and Yn be

defined as in (4.4). Suppose that, as n → ∞,

Λ′′
n(tn) → ∞, t2nΛ′′

n(tn) → ∞,(4.8)

Yn
d→ N(0, 1),(4.9)

and there is δ > 0 and n0 ≥ 1, such that

f∗(t) := sup
n≥n0

∣
∣
∣E[eitYn ]1

{

|t| ≤ δ
√

Λ′′
n(tn)

}∣
∣
∣ ∈ L1,(4.10)

sup
δ<|y|≤λtn

∣
∣
∣
∣

Gn(tn + iy)

Gn(tn)

∣
∣
∣
∣ = o

(

1

tn
√

Λ′′
n(tn)

)

,∀λ > 0.(4.11)

Then (4.7) holds.

Proof. Let βn = δ
√

Λ′′
n(tn) and bn = tn

√

Λ′′
n(tn). Then by (4.5), the

characteristic function of Yn satisfies conditions (2.7) and (2.8) of Theorem

2.3 in [2], and hence (2.9) and (2.10) there. Then by Yn → N(0, 1) and

Theorem 2.7 in [2], (4.7) follows.

Continuing the proof of Proposition 3.1, it suffices to verify (4.8) – (4.11)

for Tn defined in (4.3). By (4.6) and the assumption that nσ4
n/ log n → ∞,

(4.8) is clear. To show (4.9), consider the representation in (4.3). Because

EYn = 0 and Var(Yn) = 1, we only need to check the Lindeberg condition,

i.e., for any a > 0,

nE





(

ξn − h′(tn)
√

nh′′(tn)

)2

1

{∣
∣
∣
∣
∣

ξn − h′(tn)
√

nh′′(tn)

∣
∣
∣
∣
∣
≥ a

}

 → 0, with ξn ∼ ξnk.

Since h′(tn) = σ2
n and h′′(tn) ∼ 2σ4

n, for n À 1, |ξn − σ2
n| ≥ a

√

nh′′(tn)

implies |ξn| ≥ a
√

nσ2
n and |ξn − σ2

n| ≤ 2|ξn|. It thus suffices to show

E
[

ξ2
n1

{

|ξn| ≥ a
√

nσ2
n

}]

= o(σ4
n).(4.12)

By the definition of fn, the expectation on the left hand side is equal to

e−h(tn)
∫

(x/z−1)2≥a
√

nσ2
n

(
x

z
− 1

)4

e−tn(x/z−1)2f(x) dx

= ze−h(tn)
∫

u2≥a
√

nσ2
n

u4e−tnu2
f(z + zu) du ≤ (z sup f)e−h(tn)In,
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where, by change of variable u = x/
√

tn and σ2
ntn ∼ 1/2,

In :=

∫

u2≥a
√

nσ2
n

u4e−tnu2
du ≤ t−5/2

n

∫

x2≥b
√

n
x4e−x2

dx, for n À 1,

with b ∈ (0, a/2) a constant. Since

∫

x2≥b
√

n
x4e−x2

dx =

∫ ∞

b
√

n
y3/2e−y dy ∼ (b

√
n)3/2e−b

√
n = o(1),

In = o(t
−5/2
n ) = o(σ5

n). On the other hand, by Lemma 4.1, e−h(tn) ∼
1/(zf(z)

√
2πσn) = O(σ−1

n ). As a result, e−h(tn)In = o(σ4
n), yielding (4.12).

To show (4.10) and (4.11), notice that

∣
∣
∣
∣

Gn(tn + iy)

Gn(tn)

∣
∣
∣
∣ = |φn(y)|n

where φn(y) = ze−h(tn)
∫

e−tnu2−iyu2
f(z + zu) du.

Fix 0 < c ¿ 1. Since f is continuous and nonzero at z, there is r ∈ (0, 1/2)

such that f(z)/(1 + c) ≤ f(z + uz) and 1 − u2 ≤ cos u ≤ 1 − u2/(2 + c) for

u ∈ [−r, r]. Write

φn(y) = ze−h(tn)
∫

|u|≤
√

r/y
+ze−h(tn)

∫

|u|>
√

r/y
= In(y) + Jn(y).

Then for n À 1 and y ∈ R,

|Re In(y)| = ze−h(tn)
∫
√

r/y

−
√

r/y
cos(yu2)e−tnu2

f(z + zu) du

≤ 1 − ze−h(tn)

2 + c

∫
√

r/y

−
√

r/y
y2u4e−tnu2

f(z + zu) du

≤ 1 − ze−h(tn)y2

2 + c

∫
√

r/(y∨1)

−
√

r/(y∨1)
u4e−tnu2

f(z + zu) du

≤ 1 − ze−h(tn)y2f(z)

(1 + c)(2 + c)

∫
√

r/(y∨1)

−
√

r/(y∨1)
u4e−tnu2

du

≤ 1 − y2σ4
n

2(1 + 2c)

1√
2π

∫
√

2tnr/(y∨1)

−
√

2tnr/(y∨1)
u4e−u2/2 du,

where the last inequality is due to change of variable, (3.5) and (3.6). Since

tn → ∞, by choosing M À 1/r, for n À 1 and |y| ≤ (r/M)tn,

|Re In(y)| ≤ 1 − 3y2σ4
n

2(1 + 3c)
.
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On the other hand, by Lemma 4.1, (3.5) and (3.6), for n À 1 and y ∈ R,

|Im In(y)| ≤ ze−h(tn)
∫
√

r/y

−
√

r/y
| sin(yu2)|e−tnu2

f(z + zu) du

≤ |y|ze−h(tn)
∫

u2e−tnu2
f(z + zu) du

≤
√

1 + c |y|σ2
n .

As a result, for n À 1 and |y| ≤ (r/M)tn,

|In(y)| ≤
√

[

1 − 3y2σ4
n

2(1 + 3c)

]2

+ (1 + c)y2σ4
n ≤ 1 − y2σ4

n

1 + c
,(4.13)

On the other hand, for n À 1,

|Jn(y)| ≤ ze−h(tn) sup f

∫

|u|≥
√

r/y
e−tnu2

du

≤ (1 + c)AP (|Z| ≥
√

2tnr/y),

where Z ∼ N(0, 1) and A = sup f/f(z) < ∞. Recall that P (|Z| ≥ x) ∼
√

2/πx−1e−x2/2 as x → ∞. Therefore, for M À 1/r and |y| ≤ (r/M)tn,

|Jn(y)| ≤ e−tnr/y ≤ (y/tn)2/20 ≤ y2σ4
n/4.

Combining the bounds for In(y) and Jn(y),

|φn(y)| ≤ 1 −
(

1

1 + c
− 1

4

)

y2σ4
n ≤ e−y2σ4

n/2, |y| ≤ (r/M)tn.(4.14)

To verify (4.10) holds for any δ > 0 and n0 = n0(δ) À 1, by (4.4),

∣
∣
∣E[eitYn ]

∣
∣
∣ =

∣
∣
∣
∣
∣

Gn(tn + it/
√

Λ′′
n(tn))

Gn(tn)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
φn

(

t
√

Λ′′
n(tn)

)∣
∣
∣
∣
∣

n

.

Then, letting y = t/
√

Λ′′
n(tn), by (4.14), for n À 1 such that (r/M)tn ≥ δ,

∣
∣
∣E[eitYn ]1

{

|t| ≤ δ
√

Λ′′
n(tn)

}∣
∣
∣ = |φn(y)|n 1 {|y| ≤ δ} ≤ e−ny2σ4

n/2.

By (4.6), the right hand side is no greater than e−t2/9, which proves (4.10).

To verify (4.11), fix δ > 0 and first let λ ≤ r/M . Then by (4.14),

sup
δ≤|y|≤λtn

∣
∣
∣
∣

Gn(tn + iy)

Gn(tn)

∣
∣
∣
∣ = sup

δ≤|y|≤λtn

|φn(y)|n ≤ e−δ2nσ4
n/2.

Since nσ4
n/ log n → ∞, the right hand side is o(1/

√
n). On the other hand,

by (4.6), tn
√

Λ′′
n(tn) ∼

√

n/2. Thus (4.11) holds.
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Finally, let λ > η := r/M . From the above proof, it suffices to bound

sup
ηtn≤|y|≤λtn

∣
∣
∣
∣

Gn(tn + iy)

Gn(tn)

∣
∣
∣
∣ = sup

ηtn≤|y|≤λtn

∣
∣
∣
∣
∣

∫
e−(tn+iy)u2

f(z + zu) du
∫

e−tnu2f(z + zu) du

∣
∣
∣
∣
∣

n

.

By change of variable u = x/
√

2tn and letting θ = y/tn,

∫
e−(tn+iy)u2

f(z + zu) du
∫

e−tnu2f(z + zu) du
=

∫

e−iθx2/2gn(x) dx,

where gn(x) =
e−x2/2f(z + zx/

√
2tn)

∫

e−x2/2f(z + zx/
√

2tn) dx
.

For y ∈ R with |y| ≤ λtn, θ ∈ [−λ/2, λ/2]. By the continuity of f at z and

f(z) > 0, gn(x) → e−x2/2/
√

2π pointwise. So by dominated convergence

∫

e−iθx2/2gn(x) dx → 1√
1 + iθ

uniformly for θ ∈ [−λ/2, λ/2]. Given c > 1, for all n À 1,
∣
∣
∣
∣

∫

e−iθx2/2gn(x) dx

∣
∣
∣
∣ ≤

c

|
√

1 + iθ|
=

c

(1 + θ2)1/4
.

It follows that

sup
ηtn≤|y|≤λtn

∣
∣
∣
∣

Gn(tn + iy)

Gn(tn)

∣
∣
∣
∣ ≤ cn

(

1 +
η2

4

)−n/4

.

By choosing c ≈ 1, the right hand side is αn for some α ∈ (0, 1), and hence

is o(1/(tn
√

Λ′′
n(tn))). The entire (4.11) is thus verified.

Appendix. To prove (2.3), let e1, . . . , en be the standard basis of R
n.

Let u0 = (1/
√

n)
∑n

i=1 ei, u1, . . . , un−1 ∈ R
n be an orthonormal basis. Under

{ui}, the coordinates of
∑n

i=1 Xiei are Y0, Y1, . . . , Yn−1, with Y0 =
√

nX̄.

Then X̄ and Y = (Y1, . . . , Yn−1) have joint density

g(t, y) =
√

n
n∏

i=1

f(xi), with
n∑

i=1

xiei =
√

ntu0 +
n−1∑

i=1

yiui, y ∈ R
n−1.

On the other hand, V ∼ |Y |/√n and ξ := Y/|Y | ∈ Bn−1 = {x ∈ R
n−1 :

|x| = 1} almost surely, where |·| stands for the L2-norm. Let ν be the uniform

measure on Bn−1. By Y =
√

nV ξ, g(t, y) and the joint density k(t, s, z) of

(X̄, V, ξ) with respect to dt ds ν(dz) are related via

g(t, y) =
k(t, s, z)

(
√

n)n−1sn−2
, with y =

√
nsz.
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Since φ : z → ω =
∑n−1

i=1 ziui is an isometric mapping from Bn−1 to Un,

φ∗ν is the uniform measure on Un. Eq. (2.3) then follows from

h(t, s) =

∫

k(t, s, z) ν(dz)

= (
√

n)n−1sn−2
∫

g(t,
√

nsz) ν(dz)

= (
√

n)nsn−2
∫

Bn−1

n∏

i=1

f(t +
√

nsωi) ν(dz)

= (
√

n)nsn−2
∫

Un

n∏

i=1

f(t +
√

nsωi) (φ∗ν)(dω).
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