Suppose we have *n* observations x_1, \ldots, x_n , and *L* null distributions F_1, \ldots, F_L . For x_i we want to test the composite null

$$
H_i: x_i \sim \text{ one of } F_s,
$$

with no information on the alternatives or the mixture of the distributions.

For simplicity, assume the p-value of x_i under F_s is $p_{i,s} = F_s(x_i)$ and the observations are already sorted in increasing order, so that $p_{1,s} \leq p_{2,s} \leq \ldots \leq p_{n,s}$. Constrained p-values to test the composite nulls in the above setup can be constructed in many ways via maximization under linear constraints, for example,

$$
p_{i, \text{glb}} = \sup \left\{ \sum_{s=1}^{L} c_s p_{i,s} \middle| C \le \sum_{s=1}^{L} c_s \le 1, \ c_s \ge 0, \ \sum_{s=1}^{L} c_s p_{j,s} \le u_j \text{ for } j \ge 1, \right. \n\mathbb{F}(t_2) - \mathbb{F}(t_1) + \epsilon_n \ge \sum_{s=1}^{L} c_s [F_s(t_2) - F_s(t_1)], \text{ for all } t_1, t_2 \in T \n\text{with } t_1 < t_2 \right\},
$$
\n(1)

$$
p_{i,\text{seq}} = \sup \left\{ \sum_{s=1}^{L} c_s p_{i,s} \middle| C \le \sum_{s=1}^{L} c_s \le 1, \ c_s \ge 0, \ \sum_{s=1}^{L} c_s p_{j,s} \le u_j \ \text{for} \ j \ge i, \right. \n\mathbb{F}(t_2) - \mathbb{F}(t_1) + \epsilon_n \ge \sum_{s=1}^{L} c_s [F_s(t_2) - F_s(t_1)], \ \text{for all} \ t_1, t_2 \in T \n\text{with } x_i \le t_1 < t_2 \right\}.
$$
\n(2)

In the above formulas,

- $C \geq 0$ is a lower bound on the total population fraction of true nulls;
- u_j is defined as

$$
u_i = \begin{cases} \bar{\Gamma}^* \left(\frac{1}{n}; i \right) / (\beta n), & \text{if } i \le m_n, \\ i/n + \epsilon_n & \text{otherwise,} \end{cases} \tag{3}
$$

where $\bar{\Gamma}^*(1/n;i)$ is the 100(1 – 1/n)-th quantile of Gamma(i, 1), $\beta \in (0,1)$ a constant, and $m_n \ll n$;

- F is the empirical distribution $\mathbb{F}(t) = \#\{i \mid x_i \leq t\}/n;$
- ϵ_n is a margin of error; and
- \bullet T is a set of values sorted in increasing order, or "check points", that are different from $x_1, \ldots, x_n;$

The constrained p-values of x_1, \ldots, x_n in (1) can be computed by

p=lp.global.pval(n.obs, n.mix, obs.pvals, grid.pvals=c(), grid.cumcnt=c(), subset=seq(1,n.obs), coeff.sum.lbd=0.0)

and those in (2) by

```
p=lp.sequen.pval(n.obs, n.mix, obs.pvals,
     grid.pvals=c(), grid.cumcnt=c(),
     subset=seq(1,n.obs), coeff.sum.lbd=0.0)
```
where

- n.obs stores n , n.mix stores L ;
- obs.pvals is an $n \times L$ matrix storing $p_{i,s}$, $i = 1, \ldots, n$, $s = 1, \ldots, L$;
- if T contains k values $t_1 < t_2 < \ldots < t_k$, then grid.pvals is a $k \times L$ matrix storing $F_s(t_i)$, $i = 1, \ldots, k$, $s = 1, \ldots, L$, and grid.cument is a vector storing # $\{j \mid x_j \leq t_i\}$ for $i = 1, \ldots, k;$
- coeff.sum.lbd stores the lower bound C on $\sum c_s$ in (1) and (2);
- subset specifies the indices of x_i for which the constrained p-values are to be computed; and
- the output **p** has two objects:
	- 1p. pval returns the constrained p-values of x_1, \ldots, x_n ; and
	- coefficients returns the primal coefficients obtained from the linear programming.

Note. 1. For both routines, the observations and check points should be sorted in increasing order beforehand. On the other hand, once obs.pvals, grid.pvals and grid.cumcnt are computed, there is no direct need for the values of observations or check points.

2. ϵ_n and u_i , $i = 1, \ldots, n$ in formula (3) are evaluated by

```
slack(n.obs)
```
and

cdf.upper.bound(i, n.obs).

They are called within lp.global.pval and lp.sequen.pval.