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Abstract. In multiple hypothesis testing, oftentimes each hypothesis can be assessed

by several test statistics, resulting in a multivariate p-value. This raises the question as

to how to develop the false discovery rate (FDR) paradigm for multiple testing based

on multivariate p-values. On the other hand, a multiple testing procedure based on

univariate p-values can have very limited capability of controlling the positive FDR

(pFDR) and very low power even when the target FDR control level is moderate. This

raises the question as to how to alleviate or overcome the limitation when multiple

test statistics are available. To address both questions, we propose and investigate two

classes of FDR controlling procedures using multivariate p-values, one incorporating

the components of the p-values sequentially, the other incorporating the components

simultaneously. Theoretical analysis and simulation study demonstrate that the pro-

posed procedures can improve the pFDR control and power substantially and that,

at a given target FDR control level, the improvement depends on the other control

parameters of the procedures.

1Department of Statistics, University of Connecticut, Storrs, CT 06269. Correspondence:

zchi@stat.uconn.edu. Partially supported by NIH Grants MH68028-01 and DC007206-01A1.

2AMS 2000 subject classification. Primary 62G10, 62H15. Secondary 62G20.

3The author thanks Prof. Zhiqiang Tan for helpful suggestions.



1 Introduction

Multiple hypothesis testing in most cases involves multidimensional observations. Some-

times, it suffices to use a single, or “univariate”, statistic per hypothesis for the testing

[3, 4, 8, 11–13, 16, 18, 20–25]. However, it is often the case that one needs to apply

several statistics to each hypothesis in order to get a reasonable result. For instance,

to identify a certain type of sounds from an acoustic signal, it is the norm to examine

multiple features of each segment of the signal in order to determine whether or not it

contains the type of sound [15]. The features can be evaluated by a vector of marginal

or conditional p-values, or a multivariate p-value. A general question is, when multi-

variate p-values are available, how to use them to control the Type I errors for multiple

testing. Under the framework of the FDR control, the article proposes two classes of

procedures to address this question.

There are two important aspects of the FDR control, namely the pFDR and power.

Recall that the FDR is defined as E[ V
R∨1

] [3], and pFDR as E[V
R
|R > 0], where R is the

number of rejected nulls, and V the number of rejected true nulls, or false discoveries.

The two error rates are related by FDR = pFDR×P (R > 0) [21]. The random fraction

V
R∨1

is usually referred to as the false discovery proportion (FDP) [11]. If there are a

total of n nulls and N of them are true, then the (empirical) power is defined as R−V
(n−N)∨1

.

To motivate, consider the following example. Suppose the means of bivariate normal

distributions N(µi, Σi), i = 1, . . . , n, are of interest, with Σi being unknown. For each

i, the null hypothesis is Hi : µi = 0. Suppose it is known that Σi is diagonal when Hi is

true. To test Hi, a sample of ν +1 iid observations (Xij, Yij) ∼ N(µi, Σi) are collected.

Let tX,i and tY,i be the t-statistics of Xi1, . . . , Xi,ν+1 and Yi1, . . . , Yi,ν+1, respectively

and ξi1 and ξi2 their marginal p-values. How to use the bivariate p-values (ξ11, ξ12),

(ξ21, ξ22), . . . , (ξn1, ξn2) to test H1, . . . , Hn in order to attain a desired FDR?
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For this particular problem, the t-statistics are a reasonable choice not only because

of their well established utilities in testing on means but also because of their simplic-

ity. In general, when hypotheses involve relatively complex distributions, it is often

desirable to exploit multiple simple statistics. On the one hand, simple test statistics

are easy to grasp. On the other, when combined appropriately, simple test statistics

can yield satisfactory results for hypothesis testing (cf. [2]).

Continuing the example, suppose it is known that if Hi is false, then both coordi-

nates of µi are positive. Let ξi1 be the upper-tail p-values of tX,i and ξi2 those of tY,i.

Does it suffice to only use ξ11, . . . , ξn1? As is well known [3], the FDR can be controlled

at any desired level by using ξ11, . . . , ξn1 alone. However, this way of testing can cause

quite strong limitation on the pFDR control and power. For instance, suppose that,

unknown to the investigator, every Σi is diag(1, 1) whether or not Hi is true, and when

Hi is false, µi = (.5, .4). Let the procedure of [3], henceforth referred to as the BH

procedure, be applied to ξi1. Suppose ν = 8 and the samples collected for different Hi

are independent. Let the fraction of false nulls among all H1, . . . , Hn be .05. It turns

out that the pFDR is always greater than or equal to β∗ ≈ .289. This is in contrast to

the FDR, which can be controlled at any level. Moreover, whether or not the FDR is

greater than β∗ has a critical influence on the power of the BH procedure. In order for

the procedure to have a fixed positive power when n À 1, the FDR must be strictly

greater than β∗. If the FDR is less than β∗, the power of the BH procedure drops to 0

at rate Op(1/n) and its pFDR converges to β∗ [6]. The limitation on the pFDR control

and power becomes more severe if ξ12, . . . , ξn2 alone are used. In that case, the pFDR

cannot be less than β∗ ≈ .447.

The limitation on the pFDR control and power illustrated in the example is not

unique to the BH procedure. It occurs whenever the p-values have bounded densities
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[6, 7]; see Section 2 for a brief discussion. The limitation affects not only the pFDR

control, but also the control of other types of Type I error rates, such as excessive FDP

[7].

For the example, it is sensible to exploit both ξi1 and ξi2 for the testing. Using

the procedures proposed later, when both p-values are used, the minimum achievable

pFDR is reduced to about .017. Therefore, at least in theory, one can attain (p)FDR

just a little more than .017 while still attaining a fixed positive power. Section 5 will

give more details on multiple hypothesis testing involving t-statistics.

Why should the pFDR be a concern? Oftentimes, follow-up actions ensue only

after some discoveries are made. Imagine that in a study, an investigator applies

a multiple testing procedure that controls the FDR at .05 and he gets some rejected

nulls. Without extra data to repeat the same testing procedure, the investigator cannot

know whether the FDR control level is too low. In evaluating the rejected nulls at hand,

if the investigator is informed that the pFDR cannot be less than, say, .4, his plan for

a follow-up study on these nulls is likely to be different from the plan he would make

if he believes the pFDR is about the same as the FDR.

In summary, the motivation for our study is two-fold, first, to develop FDR con-

trolling procedures that utilize multivariate p-values, and second, to alleviate potential

limitation on multiple hypothesis testing based on univariate p-values. The main focus

of our investigation will be the pFDR control and power. There has been relatively

little work on how to improve the pFDR control. On the other hand, there has been

quite amount of work on how to improve power, with a major finding being that the

BH procedure can be made more powerful by incorporating an estimate of the over-

all fraction of false nulls [3, 4, 20]. The finding has prompted investigations on its

estimation [13, 17, 22].
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The rest of the article is organized as follows. In Section 2, we set up the basic

framework and notations. The investigation is based on a random effects model [9, 13].

Sections 3 and 4 propose two classes of procedures that combine the components of

the multivariate p-values sequentially or simultaneously. For each class, after showing

that it can control the FDR, we will study its pFDR control and power, specifically,

their dependence on the parameters that control how the components of the multi-

variate p-values are combined. In Section 5, we consider multiple testing involving

t-distributions, F -distributions, and Normal distributions and report on a simulation

study. Section 6 concludes with a brief discussion. Proofs of theoretical results are

given in Appendix.

2 Preliminaries

2.1 Notations

Denote by K the fixed dimension of each multivariate p-value. For a generic point

x ∈ R
K , denote its coordinates by x1, . . . , xK . For c ∈ R, denote c = (c, . . . , c) ∈ R

K .

For s, t ∈ R
K , denote s ≤ t if sk ≤ tk for all k and s < t if s ≤ t and s 6= t.

Given null hypotheses H1, . . . , Hn, the multivariate p-value associated with Hi will

be denoted by ξi = (ξi1, . . . , ξiK), with each ξik the p-value under a marginal or condi-

tional distribution of the corresponding null distribution. Denote θi = 1 {Hi is true}

and a the population fraction of false nulls in the tested hypotheses. We assume that

the p-values are generated from the following random effects model [9, 13]:

θi ∼ Bernoulli(a), ξi | θi ∼







Unif(0, 1)⊗K if θi = 0

G with density g if θi = 1

(2.1)
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where ξi | θi = 0 ∼ Unif(0, 1)⊗K means that given θi = 0, ξi1, . . . , ξiK
iid∼ Unif(0, 1).

Under this model, the joint distribution function of ξ is

P (ξ ≤ x) = (1 − a)
K∏

k=1

xk + aG(x) , x ∈ [0, 1]K

with density 1 − a + ag(x).

Some remarks are in order. First, when Hi is false, ξi1, . . . , ξiK need not be indepen-

dent of each other. Multivariate p-values can arise from multidimensional data. For

example, for the null H : X = (X1, . . . , XK) ∼ P, ξk can be the conditional or marginal

p-value of Xk under P. More generally, given measurable functions φ1, . . . , φK , ξk can

be chosen to be the conditional or marginal p-value of φk(X) under P.

Second, the assumption that conditioning on θ = 0, ξ1, . . . , ξK are iid ∼ Unif(0, 1)

can be realized by transformations with conditional distribution functions. For ex-

ample, following the first remark, let P have a joint density. Then the conditional

distributions

Fk(x |x1, . . . , xk−1) = P(Xk ≤ x |Xs = xs, s < k), k = 1, . . . , K

are continuous. If the conditional p-values ξk = Fk(Xk |X1, . . . , Xk−1) are chosen

as the components of the multivariate p-value associated with H, then they are iid

∼ Unif(0, 1) when H true.

Third, notice that Fk(Xk |X1, . . . , Xk−1) are themselves functions on X, such that

their values are independent under H. In general, for measurable functions φ1, . . . , φK ,

if φ1(X), . . . , φK(X) are independent under H, each having a continuous marginal

distribution Fk, then the marginal p-values ξk = Fk(φk(X)) can be chosen as the

components of a multivariate p-value. Again, ξ1, . . . , ξK are iid ∼ Unif(0, 1) when H

is true.
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2.2 The BH procedure and criticality

The BH procedure can be described as follows [22]. Given a target FDR control level

α ∈ (0, 1), for p-values ξ1, . . . , ξn, let R(t) = # {i : ξi ≤ t} and

τ = sup

{

t ∈ [0, 1] :
t

α
≤ R(t) ∨ 1

n

}

.

Then the BH procedure rejects nulls whose ξi are no greater than τ .

Under the random effects model (2.1), the FDR actually realized by the BH proce-

dure is (1 − a)α [5, 10, 22]. On the other hand, the “local FDRs” associated with the

nulls are

P (θi = 1 | ξi) =
1 − a

1 − a + ag(ξi)
≥ β∗ :=

1 − a

1 − a + a sup g
; (2.2)

see [9]. It follows that if sup g < ∞, then, unlike the FDR, pFDR ≥ β∗ > 0 [7].

This results in a “criticality phenomenon” of the BH procedure. Roughly speaking,

if α < α∗ := β∗/(1 − a), then the power of the BH procedure decreases to 0 at rate

Op(1/n); whereas if α > α∗, the power of the BH procedure converges to a positive value

at rate Op(
√

log log n/n) [6, 11]. More generally, for any multiple testing procedure

based on ξ1, . . . , ξn, decreasing the FDR to below β∗ only reduces the power to 0 without

decrease in the pFDR. The lower bound β∗ solely depends on the distribution of the

p-values, rather than on specific testing procedures applied to the p-values [7].

Henceforth, the BH procedure is said to be subcritical (resp. supercritical) if its

target FDR control level α is greater (resp. less) than α∗. Unless a = 1, α∗ is strictly

greater than the minimum attainable pFDR, i.e. β∗. To summarize, we have

Proposition 1 Suppose that under the random effects model for ξ1, . . . , ξn, G is

strictly concave. If the BH procedure is supercritical, then its power is Op(1/n);

whereas if the BH procedure is subcritical, its power is G(u) + Op(
√

log log n/n), with

u the (unique) positive solution to x/α = (1 − a)x + aG(x).
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Likewise, it is not difficult to see that, when using multivariate p-values for multiple

testing, the pFDR may still be bounded away from 0, and therefore the limitation on

the pFDR control and power in general cannot be completely overcome.

Proposition 2 Under the random effects model for multivariate p-values, for any

multiple testing procedure, pFDR ≥ (1 − a)α∗, where α∗ is defined as

α∗ =
1

1 − a + a sup g
. ¤ (2.3)

Nevertheless, Proposition 2 also indicates that by using multivariate p-values, it is

possible to alleviate the limitation. Indeed, because sup g ≥ sup f for any marginal

density f of g, a lower pFDR can be attained by using all the components of the

p-values than by using part of them. This observation is the basis for our proposed

procedures.

3 Sequential combination

3.1 Description and the FDR control

↓
{ξi1, i∈S0}

↓
{ξi2, i∈S1}

↓
{ξiK , i∈SK−1}

S0−→ BH(α1)
S1−→ BH(α2)

S2−→ · · · · · · · · · SK−1−→ BH(αK)
SK−→

Given the target FDR control level α, fix αk ∈ (0, 1), such that α1 · · ·αK = α. Set

S0 = {H1, . . . , Hn}. As the diagram illustrates, at the beginning, all the hypotheses

are treated as being rejected. At step k ≥ 1, only hypotheses rejected by all previous

steps (Sk−1) are tested based on the kth component ξik with the target FDR control

level αk. Only hypotheses rejected by all the steps are output as rejections. More

specifically,
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Sequential procedure

1. For k = 1, . . . , K, denote Rk−1 = #Sk−1. Let

τk = sup

{

t ∈ [0, 1] :
t

αk

≤ # {Hj ∈ Sk−1 : ξjk ≤ t} ∨ 1

Rk−1

}

. (3.1)

Then set Sk = {Hj ∈ Sk−1 : ξjk ≤ τk}.

2. Only the null hypotheses in SK are rejected.

In principle, for each step, the BH procedure can be replaced with some other

multiple testing procedure. The advantage of using the BH procedure is that it allows

the FDR to be computed exactly. We first need to see how the sequential procedure

controls the FDR. The result below shows that the fraction of true nulls among the

rejected ones keeps decreasing as component p-values are incorporated in sequel.

Theorem 1 For k ≥ 1, let Vk be the number of true nulls in those that are rejected by

the first k steps of the sequential procedure, i.e. Vk = # {Hj ∈ Sk : Hj is true null}.

Recall that a is the population fraction of false nulls. Then FDR = (1 − ξ)α. Indeed,

E

[
Vk

Rk ∨ 1

]

= (1 − a)
k∏

s=1

αs, k = 1, . . . , K. ¤

(3.2)

A similar result on E[Vk/(Rk∨1)] holds for the sequential procedure in a frequentist

setting. That is, if there are N true null hypotheses at the beginning, then with

a = 1 − N/n, equation (3.2) still holds.

3.2 Dynamics of the sequential procedure

Roughly speaking, there are two reasons why the sequential procedure can attain better

pFDR control. First, in each step of the procedure, the target FDR control level can

be chosen relatively high to keep the BH procedure in that step subcritical. Second,
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after each step, the fraction of true nulls among all the rejected nulls is decreased.

The reduced fraction of true nulls lowers the critical value for the BH procedure in the

next step, which also helps maintain subcriticality; see more detail below. As long as

each step is subcritical, the entire procedure has a positive power. At the same time,

the overall pFDR can still be low. To see this more clearly, consider the following

measures

(1) Vk/(Rk ∨ 1): the FDP after the kth step, which is also the fraction of true nulls

among the nulls tested by the (k + 1)th step;

(2) Rk/(Rk−1 ∨ 1): the fraction of rejected nulls retained by the kth step;

(3) (Rk − Vk)/(n − V0): the compound empirical power of the first k steps; and

(4) (Rk − Vk)/[(Rk−1 − Vk−1) ∨ 1]: the relative power of the kth step.

Given a target FDR control level α, a fraction of false nulls a, and a distribution

function F on [0, 1], define

τ(α, a, F ) = sup

{

t :
t

α
≤ (1 − a)t + aF (t)

}

(3.3)

We say that G(s) is argument-wise strictly concave, if for each k and fixed values of

sj, j 6= k, G(s) is strictly concave in sk.

Theorem 2 Under the random effects model (2.1), suppose G is argument-wise strictly

concave and has a continuous density. Let a0 = a and for k ≥ 1,

ak = 1 − E

[
Vk

Rk ∨ 1

]

= 1 − (1 − a)
k∏

s=1

αk .

Denote by G1 the marginal distribution of ξ1 under G and suppose that

uk := τ(αk, ak−1, Gk) > 0, k ≥ 1, (3.4)

where Gk is inductively defined as

Gk(x) = G (ξk ≤ x | ξ1 ≤ u1, . . . , ξk−1 ≤ uk−1) , k ≥ 2. (3.5)
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Let R0 = n and V0 be the total number of true nulls. Then as n → ∞, Rk
a.s.−→ ∞, and

Vk

Rk

a.s.−→ 1 − ak = (1 − a)
k∏

s=1

αk,
Rk

Rk−1

a.s.−→ uk

αk

,

Rk − Vk

n − V0

a.s.−→
k∏

s=1

Gs(us) =
u1 · · ·ukak

α1 · · ·αka
, (3.6)

Rk − Vk

Rk−1 − Vk−1

a.s.−→ Gk(uk) =
ukak

αkak−1

.

By dominated convergence, the pFDR of the entire procedure tends to α. ¤

Basically, Theorem 2 says that as long as each step of the sequential procedure is

subcritical, the fraction of true nulls Vk/Rk ≈ 1 − ak will keep dropping step by step,

and the rates of rejections as well as the powers will all stabilize at positive values.

Eq. (3.4) gives the condition for each step being subcritical. Eq. (3.5) characterizes

how the distributions of the component p-values ξk associated with false nulls are

conditioned by the sequential rejections.

To see why reducing the fraction of true nulls Vk/Rk helps maintain subcriti-

cality, suppose that for each false null, the component p-values ξ1, . . . , ξK are in-

dependent. Then each Gk in (3.5) is a concave marginal distribution with density

gk. If the BH procedure is directly applied to the kth component p-values associ-

ated with all the nulls, the critical value for its target FDR control level is α∗ =

{1 + a[gk(0) − 1]}−1. Whereas in the sequential procedure, the corresponding critical

value is α′
∗ = {1 + ak[gk(0) − 1]}−1. Since ξk > ξ and gk(0) > 1, α′

∗ < α∗, and hence

the BH procedure can attain a lower pFDR with a positive power when it is used in

the sequential procedure.

The following corollary will be used to analyze the power of the sequential proce-

dure.
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Corollary 1 For u1, . . . , uK > 0 in (3.4), they consist a solution to

ρ(α)
K∏

k=1

uk = G(u) , with ρ(α) =
1

a

(
1

α
− 1 + a

)

(3.7)

and the asymptotic power of the sequential procedure is ρ(α)
∏K

k=1 uk.

3.3 The pFDR control and power of the sequential procedure

By Proposition 2, the sequential procedure is still constrained by a critical value α∗ for

the target FDR control level α. The questions are (1) when α > α∗, can the sequential

procedure attain pFDR ≤ α; and (2) how to maximize its power at the same time?

For the sequential procedure, the pFDR and power depend on the target FDR

control levels for individual steps, i.e., α1, . . . , αK . Theorem 3 shows that when α > α∗,

it is possible to select appropriate values of α1, . . . , αK to attain pFDR ≤ α with a

positive power. However, the result gives no indication on how to do this.

Theorem 3 Assume the same conditions for G as in Theorem 2. Given α ∈ (α∗, 1),

there are α1, . . . , αK ∈ [0, 1] with α = α1 · · ·αK , such that the sequential procedure

with target FDR control levels αk for individual steps attains pFDR = (1− a)α + o(1)

with a positive power, as n → ∞. ¤

In Theorem 3, it is possible that αk = 1 for some k. For each such k, except for a

o(1) fraction, all the nulls previously rejected are still rejected by the kth step. As a

result, the kth component p-values are virtually useless and hence can be ignored.

What is the maximum power that the sequential procedure can attain at a given

target FDR control level α ∈ (α∗, 1)? Can the maximum power be attained no matter

in what order the component p-values are incorporated? From a computational point

of view, it is desirable to have an affirmative answer to the second question. We have
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Theorem 4 Suppose G is argument-wise strictly concave and has a continuous density

g with g(0) = sup g > 1. Let α ∈ (α∗, 1). If the target FDR control level of the entire

sequential procedure is α, then its power is upper-bounded by

P∗(α) = sup
{

G(u) : u ∈ [0, 1]K is a solution to (3.7)
}

,

which can be attained with appropriate target FDR controls levels α1, . . . , αK for in-

dividual steps. Furthermore, for any permutation j1, . . . , jK of 1, . . . , K, P∗(α) can be

attained if the procedure applies to ξi,j1 , . . . , ξi,jK
in sequel. ¤

3.4 Power of the sequential procedure using p-values with an

unbounded density

By Theorem 3, if the p-values have an unbounded density, then in principle the se-

quential procedure can attain arbitrarily small pFDR. The power of the procedure

nevertheless still depends on the control parameters. This point will be illustrated by

two examples involving bivariate p-values, showing that the maximum power may or

may not be attained by incorporating both components of the p-values. This is in

contrast to a later result (Proposition 8), which shows that under mild conditions, for

multivariate p-values with a bounded density, all their components must be incorpo-

rated in order to attain a low enough pFDR with a positive power.

Example 1 Let Xn = (Xn1, Xn2), n ≥ 1, be independent, such that if Hi is true,

then X i ∼ N(0, I), and otherwise X i − µ ∼ N(0, I), where µk > 0. Let ξi consist of

ξik = 1 − Φ(Xik), k = 1, 2, where Φ(x) is the distribution function of N(0, 1). If Hi is
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false, then for k = 1, 2, the distribution function of ξik is

Gk(u) = P (1 − Φ(Xik) ≤ u) = P (Xik ≥ Φ∗(1 − u))

= 1 − Φ(Φ∗(1 − u) − µk) = Φ(Φ∗(u) + µk) ,

=⇒ G′
k(u) =

Φ′(y + µk)

Φ′(y)
= exp

{
−µky − µ2

k/2
}

, y = Φ∗(u) . (3.8)

Since µk > 0, Gk is strictly concave with G′
k(0) = ∞, so the sequential procedure based

on ξn can attain arbitrarily small pFDR. The next result implies that, at pFDR ¿ 1,

the power is maximized only when both αk < 1, i.e., both ξik are incorporated.

Proposition 3 Denote L(t) = − log(at). Let α̂1 = α̂1(α) be the target FDR control

level for the first step when the sequential procedure attains pFDR = (1 − a)α with

the maximum power. Then as α → 0,

L(α̂1) ∼
L(α)µ2

1

µ2
1 + µ2

2

with the maximal power

P∗(α) ∼ 1√
aα

exp

{

−µ2
1 + µ2

2

8
− L(α)2

2(µ2
1 + µ2

2)

}

. (3.9)

Example 2 Denote by Exp(µ) the exponential distribution with mean µ. Suppose

X1,X2, . . . are iid such that if Hi is true, then X i ∼ Exp(1)⊗2 and otherwise X i ∼

Exp(µ1) ⊗ Exp(µ2), where µk > 1. Let ξik be the marginal upper-tail p-values of Xik.

Then ξik = e−Xik and has distribution function Gk(u) = u1/µk , which is strictly concave

with G′
k(0) = ∞. The next result shows that in general, the maximum power cannot

be attained when both ξi1 and ξi2 are incorporated by the sequential procedure.

Proposition 4 Let µ1, µ2 > 1. Then at the target FDR control level α ∈ (0, 1), the

maximum attainable power is P∗(α) = ρ(α)−1/c, where ρ(α) is defined in (3.7) and
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c = max {µ1, µ2} − 1. If µ1 = µ2, then P∗(α) is attained for any α1, α2 ∈ [0, 1] with

α1α2 = α. If µ1 6= µ2, and µk is the larger one, then P∗(α) is attained only when

αk = α and the other αj is 1.

4 Simultaneous combination

4.1 Description and the FDR control

The simultaneous procedure draws an idea from [22], which treats the end point of the

random rejection interval for the p-values in the BH procedure as a stopping time of

a martingale running backward in time. The generalization to multivariate p-values

is illustrated by Fig. 4.1. The p-values are regarded as points in [0, 1]K . A suitable

martingale can be constructed running backward along a path γ in [0, 1]K . Then all

the p-values dominated under the partial order ≤ by a stopping point t0 = γ(τ) are

rejected.

?
@

@
@I

t0 = γ(τ)

x
α

s

s

s

s

s

s

s

s

s ξi

s

s

s

s

s

s

s ξj

s

ss

s

Figure 4.1. An illustration for the si-

multaneous procedure. The path γ(t)

is defined on [0, 1] and is monotone in

the sense that γ(s) < γ(t) when s < t.

α = γ(1) is the vector of the FDR con-

trol parameters. In generate, γ(0) need

not be 0.

Suppose ξ1, . . . , ξn are the multivariate p-values associated with H1, . . . , Hn. Let α
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be the target FDR control level. For t ∈ [0, 1]K , define

R(t) = # {i = 1, . . . , n : ξi ≤ t} ,

V (t) = # {i = 1, . . . , n : ξi ≤ t, Hi is true} ,
(4.1)

Let f1, . . . , fK be continuous non-decreasing functions on [0, 1] such that

0 ≤ fk(t) ≤ 1, f1(t) · · · fK(t) = t, t ∈ [0, 1]. (4.2)

Fix a vector of FDR control parameters α = (α1, . . . , αK) ∈ [0, 1]K , such that
∏K

k=1 αk =

α. Then define path γ : [0, 1] → [0, 1]K by

γ(t) = (α1f1(t), . . . , αKfK(t)) . (4.3)

The above conditions imply that f1(1) = · · · = fK(1) = 1 and αk ≥ α. They

also allow fk(0) > 0 or αk = 1. Especially, if fk(t) ≡ 1 and αk = 1, then from the

description below, the kth component p-values ξ1k, . . . , ξnk are essentially not used by

the simultaneous procedure.

There are several equivalent descriptions of the procedure. The analysis will be

based on the following one.

Simultaneous procedure. Define

τ = sup

{

s ∈ [0, 1] : s ≤ R(γ(s)) ∨ 1

n

}

(4.4)

Reject Hi if ξi ≤ γ(τ), i = 1, . . . , n. ¤

For K = 1, γ(t) = αt. Then the procedure rejects Hi if ξi ≤ γ(τ) = τ̃ /α, where

τ̃ = sup

{

s ∈ [0, 1] :
s

α
≤ R(s) ∨ 1

n

}

.

Comparing with the description in [22], it can be seen that in this case, the simultaneous

procedure is identical to the BH-procedure.
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Although the procedure allows the functions f1, . . . , fK to be chosen quite freely,

it will be seen that in order to attain the maximum power, it suffices to use power

functions fk(t) = tak with suitable ak ≥ 0 (cf. Theorem 7).

For numerical computation, the next description is more suitable. It follows from

the observation that R(γ(s)) has a jump at s if and only if there is i, such that ξi ≤ γ(s)

but for any t < s, ξi 6≤ γ(t).

Simultaneous procedure, description 2.

1. For each i = 1, . . . , n, compute si = max {k = 1, . . . , K : f ∗
k (ξik/αi)}, where

f ∗
k (x) =







inf {s ∈ [0, 1] : x ≤ fk(s)} if x ≤ 1

∞ otherwise

2. Sort s1, . . . , sn into s(1) ≤ s(2) ≤ · · · ≤ s(n). Define s(0) = 0 and set

l = max

{

k ≥ 0 : s(k) ≤
αk

n

}

(4.5)

3. Reject Hi if si ≤ s(l), i = 1, . . . , n. ¤

The next description does not involve stopping time and is formulated as a more

straightforward multidimensional generalization of the BH-procedure.

Simultaneous procedure, description 3. Define

D =

{

t ∈ [0, 1]K : tk ≤ αkfk

(
R(t) ∨ 1

n

)

, k = 1, . . . , K

}

. (4.6)

Let t0 = sup D in the partial order ≤. Reject Hi if ξi ≤ t0, i = 1, . . . , n. ¤

In general, under the partial order ≤, there is no guarantee that the supremum of

a set is a singleton. However, sup D is indeed a singleton and hence t0 is well-defined.

Proposition 5 The set sup D has only one element t0 = γ(τ) and the three descrip-

tions are equivalent. ¤
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For the procedure in (4.4), the numbers of rejections and false rejections are

R =
n∑

i=1

1 {ξi ≤ γ(τ)} , V =
n∑

i=1

(1 − θi)1 {ξi ≤ γ(τ)} ,

respectively, where τ is defined in (4.4). Then we have

Theorem 5 For the FDR control of the simultaneous procedure, E
[

V
R∨1

]
= (1− a)α.

4.2 Criticality and power for the simultaneous procedure

In this section, suppose g(0) = sup g > 1. By Proposition 2, the pFDR is lower

bounded by (1 − a)α∗, where α∗ = 1/(1 − a + ag(0)). The value of g(0) can be ∞.

Assume that g as a function taking values in [0,∞] is continuous on [0, 1]K .

The pFDR control and power of the simultaneous procedure can be understood by

utilizing the random variable τ in (4.4). The main result on τ is that it asymptotically

has a fixed point similar to the one characterized by [6, 11]. Define

h(s) = (1 − a)αs + aG(γ(s)) . (4.7)

Then h(s) is continuous with h(0) = 0 and h(1) = (1 − a)α < 1. As a result, the set

{s ∈ [0, 1] : s = h(s)} 6= ∅. Additionally, all solutions to s = h(s) are strictly less than

1.

Proposition 6 Suppose g(0) = sup g > 1. If

s∗ = sup {s ∈ [0, 1] : s = h(s)} > 0 , (4.8)

then as n → ∞, τ
a.s.−→ s∗. In particular, (4.8) holds if

lim
x→0

g(x) = g(0);

fk(0) = 0, k = 1, . . . , K; and

f1, . . . , fK are strictly increasing around 0.

(4.9)
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Theorem 6 Given α ∈ (α∗, 1), if (4.8) is satisfied, then as n → ∞, R
a.s.−→ ∞, and







V

R

a.s.−→ (1 − a)α

R − V

n − V0

a.s.−→ G(γ(s∗)) =
s∗

a
[1 − (1 − a)α] .

(4.10)

By dominated convergence, the pFDR of the simultaneous procedure tends to α.

In particular, under condition (4.9), (4.8) holds and so the above conclusions hold.

¤

Theorem 6 implies that if the target FDR control level α is strictly greater than

α∗, then, comparing with the sequential procedure, it is easier for the simultaneous

procedure to attain pFDR = (1− a)α + o(1) with a positive power. First, it is easy to

find f1, . . . , fK satisfying the conditions in (4.9), and hence ensure (4.8). For example,

we can choose fk(x) = xqk , with qk ∈ (0, 1),
∑K

k=1 qk = 1. Then (4.10) holds for

any α ∈ [0, 1]K with
∏K

k=1 αk = α, yielding pFDR = (1 − a)α + o(1) and power

> 0. Whereas for the sequential procedure, in each step, one needs to carefully ensure

subcriticality in order for the entire procedure to attain pFDR ≈ (1 − a)α with a

positive power.

Let u = γ(s∗). Then 0 < uk ≤ αk ≤ 1 and u1 · · ·uK = s∗α. The next corollary to

(4.10) provides a useful expression of the power of the simultaneous procedure.

Corollary 2 Under the same condition as in Theorem 6, as n → ∞, the empirical

power (R − V )/(n − V0)
a.s.−→ G(u), with u a solution to

ρ(α)
K∏

k=1

uk = G(u) , with ρ(α) =
1

a

(
1

α
− 1 + a

)

. ¤ (4.11)

The next result gives the maximum power that can be attained by the simultaneous

procedure. It is similar to the one for the sequential procedure but requires weaker

assumptions on G; cf. Theorem 4.
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Theorem 7 Let α ∈ (α∗, 1). Then the power of the simultaneous procedure is upper-

bounded by 0 < P∗(α) = sup {G(u) : u ∈ D} < 1, where

D =
{
u ∈ [0, 1]K : u is a solution to (4.11)

}
.

The upper-bound can be attained with appropriate selections of α and f1, . . . , fK .

Furthermore, it suffices to choose from functions fk(t) = tqk , k = 1, . . . , K with qk ≥ 0

and q1 + · · · + qK = 1. ¤

It is possible that in the selections of α and f1, . . . , fK that yield the maximum

power P∗(α), αk = 1 and fk(t) ≡ 1 for some of the k’s. For each such k, the components

ξ1k, . . . , ξnk of the p-values are essentially not used by the procedure.

4.3 When using multivariate p-values is better than using uni-

variate p-values?

Section 3.4 gives an example showing that when the nulls are on the means of bivari-

ate exponential distributions, it yields the maximum power to only use the p-values

associated with the variate that has the larger mean. The example raises the general

question as to when using multivariate p-values may increase the power. The next

result gives a criteria on when multivariate p-values cannot improve the power.

Proposition 7 Let G have a continuous density g with g(0) = sup g. Suppose

G(x) < max {G1(|x|), . . . , GK(|x|)} , if xk < 1 for at least two k, (4.12)

where |x| =
∏K

k=1 xk and Gk is the kth marginal distribution function of G. Then for

any α ∈ (α∗, 1), there is k and a BH procedure testing on ξ1k, . . . , ξnk with the target

FDR control level α, such that it has a higher power than both the sequential and the

simultaneous procedures testing on ξ1, . . . , ξn with the target FDR control level α. ¤
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For the example in Section 3.4, by Gk(x) = xak , k = 1, 2, with ak = 1/µk, it is seen

that G1(x1)G2(x2) < (x1x2)
min{a1,a2} = max {G1(|x|), G2(|x|)}. Therefore, the exam-

ple is a special case of Proposition 7. From (4.12), G(t, . . . , t)/tK ≤ maxk

{
Gk(t

K)/tK
}
.

Let t → 0 to get g(0) ≤ max {gk(0)}, with gk the marginal density of the kth com-

ponent of the multivariate p-value. By g(0) = sup g, either g(0) = ∞ or 0 is not

the unique maximum point of g. On the other hand, when g(x) < g(0) < ∞ for

all x 6= 0, the next result implies that for any sequential or simultaneous procedure

which attains pFDR ≈ (1 − a)α∗ with a positive power, a null is rejected only when

all the components of its p-value are small enough. Thus, all the components have to

be incorporated.

Proposition 8 Suppose g(x) < g(0) < ∞ for any x 6= 0. Then, as α → α∗, for any

sequence of solutions u to ρ(α)
∏K

k=1 uk = G(u), the limit is 0.

5 Numerical results

This section reports a simulation study on the procedures proposed in previous sections.

Throughout, the multivariate p-values are of K = 2 dimensions. In each simulation,

the distributions under true nulls and those under false nulls are of the same type but

have different parameter values. The distributions involved in the simulations are t-,

F -, or Normal distributions. The nulls are sampled under the random effects model

with the fraction of false nulls a = .02 or .05.

Each simulation has a single target FDR control level α and consists of 1500 runs.

In each run, a set of n = 10, 000 bivariate p-values are sampled and then tested with

procedures with different control parameters. The pFDR and the power are computed

as Monte Carlo averages from all the runs and then examined as functions of the control
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parameters. For the sequential procedure, the target FDR control level α1 ∈ [α, 1] for

the first step is taken as the free parameter. In the simultaneous procedure, f1(x) = xq

and f2(x) = x1−q with q ∈ [0, 1]. For each fixed q = s/5, s = 0, 1, . . . , 5, the pFDR and

the power are examined as functions of α1. All the simulations are conducted using R

language [19].

The following fact is used to evaluate the minimum attainable pFDR. Suppose the

null is H : X ∼ F0. Then the upper-tail p-value 1 − F0(X) of X ∼ F has distribution

function G(u) = F (F−1
0 (1 − u)) and therefore has density

G′(u) =
F ′(φ(u))

F ′
0(φ(u))

, with φ(u) = F−1
0 (1 − u). (5.1)

5.1 Multiple testing involving t-distributions

Introduction gives an example of multiple testing on t-statistics and asserts that the

pFDR has a positive lower bound. To verify the claim, recall the density of the non-

central t-distribution with ν degrees of freedom (df) and noncentrality parameter δ

is

tν,δ(x) =
νν/2

√
π Γ(ν/2)

e−δ2/2

(ν + x2)(ν+1)/2

∞∑

k=0

Γ

(
ν + k + 1

2

)
(δx)k

k!

(
2

ν + x2

)k/2

.

Denote tν(x) = tν,0(x). Then

tν,δ(x)

tν(x)
= e−δ2/2

∞∑

k=0

Γ

(
ν + k + 1

2

)
(δx)k

k!

(
2

ν + x2

)k/2 /

Γ

(
ν + 1

2

)

. (5.2)

Let δ > 0. Then tν,δ(x)/tν(x) is strictly increasing on (0,∞) and

lim
x→∞

tν,δ(x)

tν(x)
= e−δ2/2

∞∑

k=0

Γ

(
ν + k + 1

2

)
(
√

2 δ)k

k!

/

Γ

(
ν + 1

2

)

< ∞. (5.3)

Under the setting of the example in Introduction, suppose that if Hi is true, then

µi = 0 and Σi = Σ0 is diagonal, and otherwise µi = (c1, c2) and Σi = Σa = (σjk), where
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ci > 0. Then for false Hi, tX,i ∼ tν,δ with δ =
√

ν + 1c1/σ11, and by (5.1)–(5.3), the

distribution function G1 of ξi1 is strictly concave on [0, 1
2
], with G′

1(u) > G′
1(1 − u) for

u ≤ 1
2

and sup G′
1(x) = G′

1(0) < ∞. By Proposition 1, the minimum pFDR attainable

by using ξ11, . . . , ξn1 alone is β∗ = (1 − a)/(1 − a + aG′
1(0)). Now, as in the example,

let a = .05, ν = 8, (c1, c2) = (.5, .4), and Σ0 = Σa = diag(1, 1). Then G′
1(0) ≈ 46.81

and β∗ ≈ .289. Likewise, let G2 be the distribution function of ξi2 when Hi is false.

Then G′
2(0) ≈ 23.47 and the corresponding β∗ ≈ 0.447. On the other hand, the joint

density of ξi when Hi is false is G′
1(x)G′

2(y). The minimum attainable pFDR by using

both ξi1 and ξi2 is (1− a)/(1− a + aG′
1(0)G′

2(0)) ≈ .017. The claims of the example is

thus verified.

In the numerical study, Σ0 ≡ diag(1, 1), (c1, c2) ≡ (.75, .7), and µ ≡ 6. We conduct

six simulations, one for each combination of a ∈ {.05, .02} and Σa ∈
{
I, AAT , BBT

}
,

where I is the identify matrix and

A =






1 .2

.3 1




 , B =






1 −.2

−.3 1




 .

The target FDR control levels α in the simulations are collected in Table 5.1. Also

collected are α
(k)
∗ = 1/(1− a + aG′

k(0)), the critical values of the FDR control level for

the BH procedure using ξi1 or ξi2 alone. The target FDR control level α are set equal

to α̂1α̂2 for some α̂k > α
(k)
∗ . Note α < α

(k)
∗ in all the simulations.

The top panel of Fig. 5.1 displays the power as a function of α1. Although the

plots are not directly comparable as they are associated with different α, they have

similar shapes. The maximum powers and corresponding values of α1 are reported as

(P
(SE)
∗ , α̂1) in Table 5.1. The bottom panel of Fig. 5.1 shows how the FDR and the

pFDR depend on α1. In all the plots, the α1-FDR curve is basically flat, showing that

the sequential procedure can control the FDR at level (1 − a)α no matter the value
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of α1 ∈ [α, 1]. In contrast, when α1 is close to α or to 1, the pFDR is substantially

greater than the FDR, indicating the sequential procedure becomes supercritical. The

substantial increase in pFDR is accompanied with the substantial decrease in power.

The power of the simultaneous procedure is also strongly affected by the control

parameters. The top panel of Fig. 5.2 displays the power as a function of α1 for different

f1(x) = xq, with (a, Σa) ≡ (.05, AAT ). The maximum powers and corresponding values

of α1 are collected in Table 5.1. The bottom panel of Fig. 5.2 plots the (p)FDR as

functions of α1. For q near .5 (q = .4, .6), the two functions are identical on α1 ∈ [α, 1].

This is observed for all the combinations of a and Σa in Table 5.1. The result is

consistent with Theorem 6, which implies that the simultaneous procedure is subcritical

as long as q 6= 0, 1. However, when q is near 0 or 1 (q = .2, .8), the pFDR exhibits

some difference from the FDR, indicating that the number of p-values (n = 10, 000) is

not yet large enough for the asymptotic result of Theorem 6 to fully take effect. The

difference between the pFDR and the FDR is greater for a = .02 (results not shown).

In the extreme case q = 0, f1(x) ≡ 1 and f2(x) = x. When α1 = 1, ξi1 essentially are

not incorporated and the simultaneous procedure is equivalent to the BH procedure

applied to ξi2 alone with target FDR control level α. As a result, the simultaneous

procedure is supercritical, yielding a large gap between the pFDR and the FDR. As α1

decreases to α, the gap decreases. In Fig. 5.2, the gap vanishes when α1 = α. However,

in general, the gap can stay positive for all α1 ≥ α. Similar comments apply to the

case q = 1 as well.

From Table 5.1, it is seen that a simultaneous procedure can attain approximately

the same maximum power as the sequential procedure, provided that f1(x) = xq is

selected appropriately. For a = .05, q can be chosen in a wider range (.2 ≤ q ≤ .8)

to attain a maximum power comparable to that of the sequential procedure. When
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Table 5.1: Simulation results involving t-distributions. (P
(SE)
∗ , α̂1) is the maximum

power of the sequential procedure and the corresponding value of α1. (P
(SI)
∗,q , α̂1) is the

maximum power of the simultaneous procedure with power functions f1(x) = xq and

f2(x) = x1−q, and the corresponding value of α1. Σ1 = AAT , Σ2 = BBT

(.05, I) (.02, I) (.05, Σ1) (.02, Σ1) (.05, Σ2) (.02, Σ2)

α .0756 .24 .1 .2912 .1 .2912

α
(1)
∗ .2387 .4395 .2639 .4727 .2639 .4727

α
(2)
∗ .2837 .4976 .3437 .5669 .3437 .5669

(P
(SE)
∗ , α̂1) (.112, .54) (.184, .78) (.247, .62) (.308, .82) (.049, .52) (.112, .78)

(P
(SI)
∗, 0 , α̂1) (.052, .076) (.033, .24) (.114, .1) (.040, .291) (.018, .1) (.022, .291)

(P
(SI)
∗, 0.2, α̂1) (.109, .076) (.141, .24) (.242, .1) (.225, .291) (.044, .1) (.075, .291)

(P
(SI)
∗, 0.4, α̂1) (.114, .14) (.192, .26) (.25, .18) (.325, .291) (.051, .14) (.115, .291)

(P
(SI)
∗, 0.6, α̂1) (.114, .4) (.193, .72) (.25, .42) (.325, .72) (.051, .42) (.116, .84)

(P
(SI)
∗, 0.8, α̂1) (.113, 1) (.161, 1) (.250, .98) (.273, 1) (.049, .98) (.097, 1)

(P
(SI)
∗, 1 , α̂1) (.069, 1) (.050, 1) (.17, 1) (.07, 1) (.026, 1) (.035, 1)

a = .02, only the maximum powers associated with q ∈ {.4, .6} are about the same as

that of the sequential procedure. The fraction of false nulls a also affects how sensitive

the power of the simultaneous procedure is to α1. In Fig. 5.3, with q = .6, the α1-power

curve is plotted for the six combinations of a and Σa. The plots in the top row are

associated with a = .05, while those in the bottom row with a = .02. The latter ones

are much flatter and only exhibit weak modalities, but have higher maximum values.
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5.2 Multiple testing involving F -distributions

Recall that for p, q = 1, 2, . . . and d ≥ 0, the distribution of

∑p
i=1(Zi + µi)

2/p
∑q

j=1 Z̃2
j /q

is called noncentral F -distribution with (p, q) df and noncentrality parameter d and

denoted by Fp,q,d, where Z1, . . . , Zp, Z̃1, . . . , Z̃q
iid∼ N(0, 1) and µ2

1 + · · · + µ2
p = d. Let

ρ = p/q. The density of Fp,q,d is

fp,q,δ(x) = e−δ/2ρp/2xq/2−1(1 + ρx)(p+q)/2

∞∑

k=0

(δ/2)k

k! B
(p

2
+ k,

q

2

)

(
ρx

1 + ρx

)k

, x ≥ 0.

Denote by fp,q(x) the density of Fp,q,d when d = 0. Then

fp,q,δ(x)

fp,q(x)
= e−δ/2B

(p

2
,

q

2

) ∞∑

k=0

(δ/2)k

k! B
(p

2
+ k,

q

2

)

(
ρx

1 + ρx

)k

, (5.4)

which is strictly increasing. Furthermore

lim
x→∞

fp,q,δ(x)

fp,q(x)
= e−δ/2B

(p

2
,

q

2

) ∞∑

k=0

(δ/2)k

k! B
(p

2
+ k,

q

2

) < ∞. (5.5)

In our simulations involving F -distributions, the bivariate p-values are sampled as

follows. For each i = 1, . . . , n, a pair of independent random variables Xi ∼ Fp1,q1,di

and Yi ∼ Fp2,q2,d2
are drawn. If Hi is true, then d1 = d2 = 0; otherwise, d1 = δ1 > 0

and d2 = δ2 > 0, where δk are fixed. The corresponding bivariate p-value is ξi =

(ξi1, ξi2), where ξi1 and ξi2 are the marginal p-values of Xi and Yi under Fp1,q1
and

Fp2,q2
, respectively. By (5.1), (5.4), and (5.5), for k = 1, 2, the distribution function

Gk of ξik is strictly concave and

sup G′
k(x) = G′

k(0) = lim
x→∞

fpk,qk,δk
(x)

fpk,qk
(x)

< ∞.

We conduct two simulations. In both simulations, we set (p1, q1, δ1) = (5, 5, 10),

(p2, q2, δ2) = (7, 6, 10). The values of a and α in the two simulations are given in
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Table 5.2: Simulation results involving F -distributions. The meanings of the entries

are similar to those in Table 5.1.

a = .05 a = .02

α .2475 .5184

α
(1)
∗ .4239 .6478

α
(2)
∗ .5298 .7381

(P
(SE)
∗ , α̂1) (.083, .72) (.128, .88)

(P
(SI)
∗, 0 , α̂1) (.014, .2475) (.018, .5184)

(P
(SI)
∗, 0.2, α̂1) (.060, .2475) (.078, .5184)

(P
(SI)
∗, 0.4, α̂1) (.087, .2475) (.135, .52)

(P
(SI)
∗, 0.6, α̂1) (.087, .62) (.141, 1)

(P
(SI)
∗, 0.8, α̂1) (.077, 1) (.103, 1)

(P
(SI)
∗, 1 , α̂1) (.027, 1) (.029, 1)

Table 5.2. The values of α
(k)
∗ = 1/(1−a+aG′

k(0)) are also listed, which are the critical

values for the target FDR control level of the BH procedure testing on ξik alone. The

target FDR control level α are set equal to α̂1α̂2 for some α̂k > α
(k)
∗ . Similar to the

results for t-distributions, for the sequential procedures, the plots of power vs α1 are

unimodal, and the plots of FDR vs α1 and those of pFDR vs α1 are different when

the power is low (Fig. 5.4). For the simultaneous procedure, the plots of power vs α1

exhibit no or very week modality, even though for appropriately selected f1(x) = xq,

the procedure is subcritical for all α1 ∈ [α, 1]; see the plots for q = .4, and .6 in Fig. 5.5.
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5.3 Multiple testing involving Normal distributions

Following (3.8), it can be shown that for η ∼ N(µ, σ2), the upper-tail p-value under

H : η ∼ N(0, 1) has density

exp

{

− 1

2σ2

(
(1 − σ2)y2 + µy + µ2

)
}

, y = Φ∗(u). (5.6)

Therefore, if σ = 1 and µ > 0, then the distribution function of the p-value is strictly

concave with g(0) = ∞; whereas if σ < 1, then the distribution function is strictly

convex in a neighborhood of 0 with g(0) = 0.

In our simulations involving Normal distributions, the bivariate p-values are sam-

pled as follows. For each i = 1, . . . , n, (Xi, Yi) ∼ N(µ, Σ) is drawn. If Hi is true, then

µ = 0, Σ = I; otherwise µk = dk > 0, k = 1, 2, and Σ = (σij) with σ11 = σ22 = 1

and σ12 = σ21 = ρ ∈ (−1, 1). Clearly, ρ is the correlation coefficient of Xi and Yi. The

corresponding bivariate p-value ξi consists of the marginal upper-tail p-values of Xi

and Yi under N(0, 1), i.e., ξi1 = 1 − Φ(Xi), ξi2 = 1 − Φ(Yi).

If Hi is false, then from (5.6), the distribution of ξi1 is strictly concave with density

∞ at 0. On the other hand, conditioning on Xi = x, Yi ∼ N(µ2 + ρ(x − µ1), 1 − ρ2).

By (5.6), unless ρ = 0, the conditional distribution of ξi2 given ξi1 is not concave.

Furthermore, if ρ < 0, then for x − µ1 large, E(Yi |Xi = x) < 0. Consequently,

for ξi1 ¿ 1, the conditional distribution of ξi2 is strictly convex. Because the BH

procedure only rejects nulls with small p-values and has 0 power asymptotically when

the distribution function of the p-values is convex, it follows that by incorporating both

ξi1 and ξi2, the sequential procedure may become less capable of rejecting false nulls.

To numerically examine the effect of ρ, in the simulations, µ = (1.5, 1.5), ρ ∈

{0,±.5,±.9}, and a ∈ {.02, .05}. The target FDR control level is fixed at .15. We only

show the results for a = .05. The results for a = .02 are qualitatively similar.
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For the sequential procedure, when ρ = 0, both steps of the procedure are subcrit-

ical, so it is not surprising that the pFDR and the FDR are close to each other for all

the values of α1; see Fig. 5.6, bottom (1). The α1-power curve exhibits a similar shape

as the curves from the simulations involving t- or F -distributions; see Fig. 5.6, top (1).

It is worth noticing that the curve is asymmetric on the log-scale of α1; see plot (1′).

This shows that in order to increase the power at the desired pFDR level, the first

step of the sequential procedure should be quite “generous” by setting the target FDR

control level relatively high, and let the second step further reduce the fraction of false

rejections.

When ρ > 0, in spite of the fact that the conditional distribution of ξi2 given

ξi1 is not concave around 0, for α = .15, which is moderately small, the sequential

procedure behaves similarly as in the case ρ = 0; see plots (2)–(3). On the other hand,

when ρ < 0, the sequential procedure behaves significantly differently. For moderate

negative correlation (ρ = −.5), the power decreases moderately when both ξi1 and ξi2

are incorporated. The pFDR also deviates from FDR moderately. However, when there

is a strong negative correlation (ρ = −.9), ξi1 and ξi2 can be described as completely

working against each other. When both are incorporated, the power drops to 0 and

pFDR becomes 1, and so the procedure completely loses the capability of detecting

false nulls.

For the simultaneous procedures, similar results are obtained. Briefly, for ρ ≥ 0,

by incorporating both ξi1 and ξi2, the power is increased and the pFDR is controlled.

Whereas for ρ < 0, the power is decreased when both ξi1 and ξi2 are incorporated.

When ρ = −.9, incorporating both ξi1 and ξi2 causes the power to drop to 0 and the

pFDR to increase to 1. For brevity, plots for the results are omitted.
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6 Discussion

Scientific or engineering exploratory studies often involve multiple testing. In many

problems, such as pattern detection for images or acoustic signals, multiple test statis-

tics are often used to assess each individual hypothesis, yielding a multivariate p-value.

This is especially the case when the data exhibits multiple facets, each containing some

unique information that can be exploited for the identification of subtle but important

patterns from noisy background.

The current FDR paradigm for multiple testing has been focused on the case where

each individual hypothesis is evaluated with a single, or univariate, p-value. As shown

here and elsewhere [6, 7], multiple testing procedures based on univariate p-values can

suffer some severe limitation on their power and capability of controlling the pFDR.

As a result, they cannot achieve a satisfactory trade-off between the Type I error rate

and the power, as characterized by the so-called “ROC curve”. The limitation is in

contrast to the extraordinary ROC performance of biological visual systems, which

are capable of incorporating multiple levels of features extracted from inputs [14]. In

order to broaden the applicability of the FDR paradigm, it is therefore necessary to

explore how to utilize multivariate statistics for multiple testing, when such statistics

are available.

In this work, we propose and investigate two classes of FDR controlling procedures

that combine multivariate p-values. The sequential procedure acts like a series of BH

procedures which “filter” out true nulls step by step. The simultaneous procedure

transforms each multivariate p-value into one number, and then, in the same fashion

as the BH procedure, identifies interesting nulls based on the derived numbers.

Our theoretical and numerical studies demonstrate that under certain conditions,

the power and the pFDR control can be improved by incorporating multivariate p-
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values. The improvement relies on the control parameters. To illustrate this point,

we use Monte Carlo simulations and exhaustive search to identify values of the control

parameters that maximize the power. In the presence of a large number of tests, it

can be shown that the maximization is about the same as maximizing the number of

rejected nulls [6]. In practice, one only has a single set of p-values. Exhaustive search

to maximize the number of rejections may potentially lead to an incorrect selection of

parameter values in a fashion similar to overfitting. How to choose parameter values

appropriately based on a single data set needs to be addressed in the future.

Our study also shows another aspect of multiple testing using multivariate p-values.

That is, in not chosen appropriately, the component p-values associated with different

test statistics can interact to negatively impact the power and the pFDR control. How

to select appropriate test statistics in order to effectively separate false nulls from true

nulls is a problem of “feature selection”, which has been a challenging issue [1]. On the

other hand, when the test statistics are already selected, there may still be some ways

to avoid the situation as in the example in Section 5.3, where two negatively correlated

test statistics completely rid the sequential procedure of power. Part of the problem

is due to the nature of the BH procedure, which only rejects nulls with p-values less

than a threshold. One may instead reject nulls with p-values within certain random

intervals, as suggested in [6]. Another possibility is to derive new test statistics based

on the available ones. For the example in Section 5.3, under a false null, 1√
2
(Xi + Yi)

and 1√
2
(−Xi + Yi)) has mean values 1.5

√
2 and 0, respectively. The marginal p-values

of these derived random variables have less negative interaction with each other and

so may serve better for the sequential procedure. In general, the transformation of

available test statistics into more useful ones is a challenging problem as well.
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Appendix: Proofs of theoretical results

A.1 Technical details for the sequential procedure

Proof of Theorem 1. For k ≥ 1, if Vk−1 = 0, then it is clear that

E

[
Vk

Rk ∨ 1

∣
∣
∣
∣
Vk−1, Rk−1

]

= 0 =
αkVk−1

Rk−1 ∨ 1
.

Now suppose Vk−1 > 0. Then Rk−1 > 0. By assumption, when a null is true, the

components of its p-value are iid ∼ Unif(0, 1). Therefore, conditioning on that a true

null Hi has been rejected by the first k − 1 steps, ξik ∼ Unif(0, 1) and is independent

of ξjk associated with the other nulls rejected by the first k − 1 steps. Notice that the

independence may not hold if Hi is a false null. Based on the observation, by [22],

E

[
Vk

Rk ∨ 1

∣
∣
∣
∣

Vk−1, Rk−1

]

=
αkVk−1

Rk−1

.

As a result, no matter whether Vk−1 is zero,

E

[
Vk

Rk ∨ 1

∣
∣
∣
∣

Vk−1, Rk−1

]

=
αkVk−1

Rk−1 ∨ 1
.

Taking expectation with respect to (Vk−1, Rk−1) yields

E

[
Vk

Rk ∨ 1

]

= αkE

[
Vk−1

Rk−1 ∨ 1

]

.

By induction and noticing R0 = n and EV0 = (1 − a)n,

E

[
Vk

Rk ∨ 1

]

= α1 . . . αkE

[
V0

R0

]

= α1 . . . αk(1 − a) .

The proof is thus complete. ¤

To prove Theorem 2, it is necessary to take into account that if a null is false, then

the components of its p-value may be dependent. The following way to think about

the sequential procedure is helpful. To start with, draw an iid sample θ1, . . . , θn from
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Bernoulli(a) and fix it throughout the sequential procedure. For each i, if θi = 0, then

draw ξi1 ∼ Unif(0, 1), otherwise, draw ξi1 ∼ G1, where G1 is the marginal distribution

on ξ1 under the joint distribution G on (ξ1, . . . , ξK). Apply the BH procedure to all ξi1

and collect the rejected nulls. This finishes the first step. At step k + 1, for each Hi

rejected by all the first k steps, if θi = 0, then draw ξi,k+1 ∼ Unif(0, 1), otherwise, draw

ξi,k+1 from the conditional distribution of ξk+1 given ξ1 = ξi1, . . . , ξk−1 = ξik. Then

apply the BH procedure to the sampled ξi,k+1 and collect the rejected nulls to finish

the step.

Given random variables ηi and nonrandom numbers xi > 0, denote ηi = op(xi) if

ηi/xi
a.s.−→ 0 as k → ∞.

Proof of Theorem 2. We show the asymptotics by induction based on the above

description. Recall the definition of Sk in (3.1) and uk in (3.4). For k = 1, it is not

hard to modify the in-probability result of [11] to get S1 = {Hi : ξi1 ≤ u1}4A1 with

|A1| = op(n). By ξi1
iid∼∼ h(x) = (1 − a)x + aG1(x) and the Law of Large Numbers

(LLN),

R1

R0

=
R1

n

a.s.−→ h(u1) =
u1

α1

.

On the other hand, |R1 − V1| = |{Hi : θi = 1, ξi1 ≤ u1}| + op(n). So by the LLN,

R1 − V1

R0 − V0

=
R1 − V1

n − V0

a.s.−→ G1(u1) .

From [22], V1/R1 → (1 − a)α1. Since V0/R0
a.s.−→ a, it follows that

R1 − V1

R1

a.s.−→ 1 − (1 − a)α1 = a1 =⇒ V1

R1

a.s.−→ 1 − (1 − a)α1.

It is easy to check that the above convergences imply (3.6). For the induction, we need

to justify (3.5) for k = 2. The (random) marginal distribution of ξi2 associated with
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Hi ∈ S1 is

Ĝ2(u) =
1

R1 − V1

n∑

i=1

1 {ξi2 ≤ u}1 {θi = 1 and Hi ∈ S1}

=
1

(R1 − V1)/n
× 1

n

n∑

i=1

1 {ξi2 ≤ u}1 {θi = 1, ξi1 ≤ u1} + op(1).

By the LLN and u1 > 0, it follows that

Ĝ2(u)
a.s.−→ P (ξ2 ≤ u, θ = 1, ξ1 ≤ u1)

P (θ = 1, ξ1 ≤ u1)
= P (ξ2 ≤ u | ξ1 ≤ u1, θ = 1) = G2(u).

Suppose we have shown that for 1 ≤ k < K, as n → ∞,

Sk = {Hi : ξis ≤ us, s = 1, . . . , k} 4Ak, with |Ak| = op(n) (A.1)

and

Rk

Rk−1

a.s.−→ uk

αk

,
Rk − Vk

Rk−1 − Vk−1

a.s.−→ Gk(uk) ,
Vk

Rk

a.s.−→ ak ,

Ĝk+1(u) :=
1

Rk − Vk

n∑

i=1

1 {ξi,k+1 ≤ u, θi = 1, Hi ∈ Sk} a.s.−→ Gk+1(u) , ∀u.

(A.2)

Since G is continuous and argument-wise strictly concave, Gk+1 is continuous and

strictly concave, which implies limε→0 τ(αk+1, ak + ε, Gk+1) = uk+1. Then by (A.2), it

is not hard to see τ(αk+1, Vk/Rk, Ĝk)
a.s.−→ uk+1. By a modified argument in [11], it

follows that

Sk+1 = {Hi ∈ Sk : ξi,k+1 ≤ uk+1} 4Bk+1

= {Hi : ξis ≤ us, s = 1, . . . , k + 1} 4Ak+1

where |Bk+1| = op(n) and Ak+1 = Ak ∪ Bk+1. By the assumption of the induction,

|Ak+1| = op(n) and hence (A.1) holds for Sk+1. Based on this, by the same argument

for k = 1, it is not hard to show (A.2) for k + 1. Therefore, by induction, (A.1) and

(A.2) are true for all k. The convergences in (4.10) then follow from (A.2). ¤
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Proof of Corollary 1 By Theorem 2, as n → ∞,

VK

V0

a.s.−→
K∏

k=1

uk,
RK − VK

n − V0

a.s.−→
K∏

k=1

Gk(uk),
VK

RK

a.s.−→ (1 − a)α . (A.3)

By the first two limits and V0/n
a.s.−→ 1 − a,

VK

RK

→ (1 − a)
∏K

k=1 uk

(1 − a)
∏K

k=1 uk + a
∏K

k=1 Gk(uk)
.

From G1(u1) · · ·GK(uK) = G(u1, . . . , uK), (3.7) follows by comparing the third limit

in (A.3) and the above one. ¤

Proof of Theorem 3. Because (1 − a + ag(0))−1 = α∗ < α < 1, by the median

value theorem, there is u = (u1, . . . , uK) ∈ (0, 1)K , such that

u1 · · ·uK

(1 − a)u1 · · ·uK + aG(u)
= α.

Let a0 = a. For k ≥ 1, define Gk by (3.5) and ak = 1 − (1 − ak−1)αk. Then let

αk =
uk

(1 − ak−1)uk + ak−1Gk(uk)
.

By some algebra, it can be shown that α = α1 · · ·αK . Because each Gk is strictly

concave, αk < 1. By the selection of αk, it is clear that τ(αk, ak−1, Gk) > 0. Therefore,

by Theorem 2, as n → ∞, RK
a.s.−→ ∞ and VK/RK

a.s.−→ (1 − a)α. By dominated

convergence, E[VK/RK |RK > 0] = (1 − a)α + o(1). ¤

Proof of Theorem 4. Given α ∈ (α∗, 1), by Theorem 3, one can assign target FDR

control levels α1, . . . , αK to individual steps so that the sequential procedure attains

pFDR = (1 − a)α + o(1) with a positive power. By Corollary 1, the power is upper

bounded by P∗(α). This proves the first half of the theorem. Because G is continuous,

there is u ∈ [0, 1] which is a solution to (3.7), such that G(u) = P∗(α). Now the same
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construction of α1, . . . , αK as in the proof of Theorem 3 can be applied, showing that

P∗(α) is attainable.

It is easy to see that the above argument applies to any permutation of 1, . . . , K

as well, and hence P∗(α) is attainable for any given order in which the components of

the p-values are incorporated. ¤

To prove Propositions 3 and 4, let Gk be the marginal distributions of G. In each

example, for α1, α2 ∈ (0, 1), with α1α2 = α, the power of the sequential procedure is

R2 − V2

n − V0

→ G1(u1) G2(u2) =
1

a

(
1

α
− 1 + a

)

u1 u2 ,

where uk > 0 satisfy

1

a

(
1

α1

− 1 + a

)

u1 = G1(u1) ,
1

a1

(
1

α2

− 1 + a1

)

u2 = G2(u2) . (A.4)

with a1 = 1 − (1 − a)α1. We need the following lemma to show Proposition 3.

Lemma 1 The following statements are true.

(1) As α1 → 0,

G1(u1) = exp

{

−1

2

(
L(α1)

µ1

− µ1

2

)2
}

(1 + o(1)) . (A.5)

(2) Fix ε > 0. Then there is r(α2) → 0 as α2 → 0, such that

G2(u2) ≤ exp

{

−1

2

(
L(α) − δ

µ2

− µ2

2

)2
}

(1 + r(α2)) , ∀α1 ∈ [ε, 1], (A.6)

where

δ = δ(α1) = log

[
1

a

(
1

α1

− 1 + a

)]

.

(3) As (α1, α2) → (0, 0), the power is

G1(u1) G2(u2) =
1√
aα

exp

{

−µ2
1 + µ2

2

8

}

× exp

{

−1

2

[
L(α1)

2

µ2
1

+
(L(α) − L(α1))

2

µ2
2

]}

(1 + o(1)) . (A.7)
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Proof of Proposition 3. Assume the Lemma is true. If α2 6→ 0 as α → 0, then

L(α1) = L(α) + O(1) and by (A.5), the power is

G1(u1)G2(u2) = O(G1(u1)) = O

(

exp

{

−L(α)2

2µ2
1

})

= o(P∗(α)).

Likewise, if α1 6→ 0, then again the power is asymptotically o(P∗(α)). Therefore, it

all remains to show that as (α1, α2) → (0, 0), the optimal power ∼ P∗(α) and the

corresponding FDR control levels are α̂1 as stated. However, this easily follows from

maximizing the quadratic function of L(α1) in (A.7). ¤

Proof of Lemma 1. We shall apply the following standard asymptotic results

Φ(x) =
(1 + o(1))e−x2/2

√
2π|x|

, as x → −∞

Φ∗(u) = −
√

2 log(1/u) − log log(1/u) − log(4π) + o(1)
︸ ︷︷ ︸

H(u)

, as u → 0 .

Then, as u → 0, by H(u) =
√

2 log(1/u) + o(1), for k = 1, 2,

Gk(u) = Φ(Φ∗(u) + µk) =
e−

1

2
(H(u)−µk)2

√
2π(H(u) − µk)

(1 + o(1))

= exp

{

− log
1

u
+

1

2
log log

1

u
+

1

2
log(4π) + µk

√

2 log
1

u
− 1

2
µ2

k

}

1 + o(1)
√

4π log(1/u)

= u exp

{

µk

√

2 log(1/u) − 1

2
µ2

k

}

(1 + o(1))

By (A.4), eδu1 = G1(u1) and e∆−δu2 = G2(u2), where

∆ = log

[
1

a

(
1

α
− 1 + a

)]

=⇒ ∆ − δ = log

[
1

a1

(
1

α2

− 1 + a1

)]

.

(1) Let α1 → 0. Then u1 = e−δG1(u1) → 0 and hence by the asymptotics of G1(u),

eδu1 = G1(u1) = u1 exp

{

µ1

√

2 log
1

u1

− 1

2
µ2

1

}

(1 + o(1))

=⇒ u1 = exp

{

−1

2

(
δ

µ1

+
µ1

2

)2

+ o(1)

}

= exp

{

−1

2

(
δ

µ1

+
µ1

2

)2
}

(1 + o(1)).
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By eδu1 = G1(u1) again,

G1(u1) = exp

{

−1

2

(
δ

µ1

− µ1

2

)2
}

(1 + o(1))

Notice that when α1 → 0, δ = L(α1) + o(1). Then (A.5) follows.

(2) Fix ε > 0. As α2 → 0, u2 = e−∆+δG2(u2) → 0 uniformly for all α1 ≥ ε. Then

G2(u2) = exp

{

−1

2

(
∆ − δ

µ2

− µ2

2

)2
}

(1 + r) ,

where r = r(α1, α2) with supα1≥ε |r| → 0 as α2 → 0. By ∆ = L(α)+o(1), (A.6) follows.

(3) Finally, as (α1, α2) → (0, 0), a1 → 1, δ → ∞, and ∆− δ → ∞. As a result, uk → 0

for k = 1, 2, and so from the above asymptotics,

G1(u1)G2(u2) = exp

{

−1

2

[
δ2

µ2
1

+
(∆ − δ)2

µ2
2

− ∆ +
µ2

1 + µ2
2

4

]

+ o(1)

}

Note that δ = L(α1) + o(1) and ∆ = L(α) + o(1). The proof is then complete. ¤

Proof of Proposition 4. Let νk > 1 be the conjugates of µk, i.e., 1/µk + 1/νk =

1. Then Gk(u) = u1−1/νk . Let m = 1
a
( 1

α1

− 1 + a). Then by (A.4), the power is

asymptotically equal to ρ(α)u1u2, where uk solve the equations mu1 = u
1/µ1

1 , and

[ρ(α)/m]u2 = u
1/µ2

2 . Therefore, by Corollary 1, the power asymptotically is equal to

ρ(α)u1u2 = ρ(α)m−ν1 [ρ(α)/m]−ν2 = ρ(α)1−ν2mν2−ν1 .

If µ1 = µ2, then ν1 = ν2 and hence for any α1, α2, the power is asymptotically

equal to ρ(α)1−ν2 = ρ(α)−1/(µ2−1) = ρ(α)−1/c. If µ1 > µ2, then ν1 < ν2. Because

ρ(α) ≥ m > 1, mν2−ν1 ≤ ρ(α)ν2−ν1 , with “=” iff (α1, α2) = (α, 1) and the maximum

power is ρ(α)1−ν1 = ρ(α)−1/(µ1−1) = ρ(α)−1/c. When µ1 < µ2, then ν1 > ν2 and

hence mν2−ν1 ≤ 1 with “=” iff (α1, α2) = (1, α). In this case, the maximum power is

ρ(α)1−ν2 = ρ(α)−1/c. ¤
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A.2 Technical details for the simultaneous procedure

Proof of Proposition 5. First, it is not difficult to see that the function

φk(t) := fk

(
R(t) ∨ 1

n

)

, k = 1, . . . , K

are right-continuous, i.e., as s → t+, φk(s) → φk(t). Suppose t ∈ sup D. Then for any

t′ > t, t′k ≥ αkφk(t
′). Letting t′ → t yields tk ≥ αkφk(t). On the other hand, there is a

sequence t̂n < t and t̂n → t, such that t̂n,k ≤ αkφk(t̂) ≤ αkφk(t). Letting n → ∞ gives

tk ≤ αkφk(t). Therefore,

tk = αkφk(t), k = 1, . . . , K (A.8)

Suppose sup D contains two points s 6= t. Without loss of generality, assume

t1 < s1. Then by (A.8), φ1(t) < φ1(s). Because f1 is nondecreasing, by its definition,

R(t) < R(s). As a result, tk = φk(t) ≤ φk(s) = sk for all k. Since t1 < s1, then t < s,

which contradicts the definition of supD. Therefore, sup D has only one element

t0 = (t1, . . . , tK).

To show that the procedures in (4.4) and (4.6) are equivalent, let τ ′ = (R(t0)∨1)/n.

Then τ ′ ∈ [0, 1] and by (A.8), tk = αkfk(τ
′). Then t0 = γ(τ ′) and τ ′ = (R(γ(τ ′))∨1)/n.

Clearly, τ ′ ∈ S := {s ∈ [0, 1] : s ≤ (R(γ(s)) ∨ 1)/n}. On the other hand, for any s ∈ S,

γ(s) ∈ D. Therefore, γ(s) ≤ t0 = γ(τ ′), i.e., fk(s) ≤ fk(τ
′). Take product over k. By

f1(t) · · · fK(t) = t, s ≤ τ ′. As a result, τ ′ = τ = sup S. This proves the equivalence

of the two procedures. It is easy to see that the procedures in (4.4) and (4.5) are

equivalent. For brevity, the detail of proof is omitted. ¤

The proof gives the following result, which will be used in the proof for Theorem 5,

τ =
R(γ(τ)) ∨ 1

n
(A.9)
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Proof of Theorem 5. The proof is based on Proposition 5 as well as the following

Lemma, which obtains certain martingale structure from the p-values.

Lemma 2 Let V (s) be the total number of true nulls Hi with p-values ξi ≤ s. Then

the process

X(t) :=
V (γ(t))

t
, t ∈ [0, 1] ,

is a martingale running backward in time with respect to Ft = σ(1
{
ξj ≤ γ(s)

}
, t ≤

s ≤ 1, j = 1, . . . , n) and τ is a stopping time with respect to Ft.

Proof of Theorem 5. Assume the lemma is true for now. By V = V (t0) and

t0 = γ(τ), we have V = V (γ(τ)). Then by Lemma 2 and the optional stopping

theorem,

E

[
V

nτ

]

= E

[
V (γ(τ))

nτ

]

=
1

n
E[V (γ(1))] =

1

n
E[V (α)] = (1 − a)

K∏

k=1

αk = (1 − a)α.

On the other hand, R = R(t0) = R(γ(τ)). By (A.9), nτ = R(γ(τ)) ∨ 1 = R ∨ 1. This

combined with the above equation then proves the statement. ¤

Proof of Lemma 2. Since the p-values of true nulls are iid ∼ Unif(0, 1)⊗K , by

f1(t) · · · fK(t) = t, for any s < t, E[V (γ(s)) |V (γ(t))] = s
t
V (γ(t)). Therefore, X(t) is

a martingale running backward in time. ¤

Proof of Proposition 6. By the LLN, for every s ∈ [0, 1],

R(γ(s)) ∨ 1

n

a.s.−→ (1 − a)
K∏

k=1

(αkfk(s)) + a G(γ(s)) , as n → ∞.

Since f1(s) · · · fK(s) = s, the right hand side is h(s). On the other hand, by Proposi-

tion 5,

τ = sup

{

s ∈ [0, 1] : s ≤ R(γ(s)) ∨ 1

n

}
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Following [11], it then can be shown that τ → s∗ in probability. The argument can

be modified to show that τ → s∗ with probability 1 [cf. 6]. For brevity, the detail is

omitted.

Suppose the conditions in (4.9) are satisfied. Then

h(s)

s
= (1 − a)α +

a G(γ(s))
∏K

k=1 fk(s)

Since fk(s) > 0 for all s > 0 and g is continuous, f1(s) . . . fK(s) = s,

G(γ(s))

s
=

G(α1f1(s), . . . , αKfK(s))
∏K

k=1 fk(s)
→ g(0)

K∏

k=1

αk = αg(0) , s → 0 + .

Therefore, h(s)/s → α (1 − a + ag(0)) > 1. As a result, h(s) > s for all s > 0 small

enough. Since h(1) < 1 and h is continuous, h(s) = s has a positive solution in (0, 1).

¤

The proof of Theorem 6 follows from Proposition 6 and the LLN. Since it is similar

to the one for Theorem 2, the detail is omitted for brevity.

Proof of Theorem 7. By Proposition 5 and Theorem 6, D 6= ∅ and P∗(α) > 0.

From Corollary 2, P∗(α) is an upper bound for the power of the simultaneous procedure

with the target FDR control level α. Since α < 1, by (4.11), for each u ∈ D,
∏K

k=1 uk =

G(u)/ρ(α) < 1, yielding u < 1. It is easy to see that D is compact. Let v ∈ D such

that P∗(α) = G(v). Note that each vk > 0 and it is possible that vk = 1 for some but

not all k. If P∗(α) = 1, then by (4.11), ρ(α)
∏K

k=1 vk = 1. Since vk ≤ 1, it can be seen

α = 1, which is a contradiction. Therefore, P∗(α) ∈ (0, 1).

To show the second part of the result, from ρ(α)
∏K

k=1 vk < 1,

v1 · · · vK <
αa

1 − α + αa
< α .

Therefore, there are 0 < α1, . . . , αK ≤ 1 such that (1) α = α1 · · ·αK , (2) for vk < 1,

αk ∈ (vk, 1) and (3) for vk = 1, αk = 1. Let s∗ = v1 · · · vK/α. Then s∗ ∈ (0, 1).
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Now for each k with vk = 1, define fk(t) = tqk , with qk = log(vk/αk)/ log s∗.

It is easy to see q1 + · · · + qK = 1. For vk = 1, qk = 0; and for vk < 1, since

vk < αk, qk > 0. Consider the simultaneous procedure based on αk and fk. Define h(s)

according to (4.7). Because ρ(α)
∏K

k=1 vk = G(v) and αkfk(s
∗) = vk, s∗ is a solution

to s = h(s). Therefore, by Theorem 6, the power of procedure has limit equal to

αρ(α)s∗ = ρ(α)v1 · · · vK = G(v) = P∗(α). The proof is thus complete. ¤

Proof of Proposition 7. By Theorems 4 and 7, the maximum power of a sequential

or simultaneous procedure with the target FDR control level α is G(u) for some u ∈

[0, 1]K that solves ρ(α)
∏K

k=1 uk = G(u). If there are more than one uk < 1, then by

(4.12), there is k such that G(u) < Gk(u1 · · ·uK). Then the equation ρ(α)u = Gk(u)

has a solution v > u1 · · ·uK . As a result, the BH procedure using ξ1k, . . . , ξnk alone

has power Gk(v) = ρ(α)v > ρu1 · · ·uK = G(u). ¤

Proof of Proposition 8. Assume that the statement is not true and, without loss

of generality, as α → α∗, (u1, . . . , uj) → 0 but uk → u∗
k > 0 for k > j, where j < K.

From ρ(α) = G(u)/
∏K

k=1 uk and ρ(α) → g(0), it follows

g(0) =
1

uj · · ·uK

∫

ξk≤u∗

k
, k>j

g(0, . . . , 0, ξj+1, . . . , ξK) dξj+1 · · · dξK .

which is impossible because g(x) < g(0) for all x 6= 0.
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Figure 5.1: Sequential procedure involving t-distributions: power vs α1 (top) and

(p)FDR vs α1 (bottom), where α1 is the target FDR control level of the first step.

Each plot corresponds to a combination of a, Σa, and α displayed in Table 5.1.
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Figure 5.2: Simultaneous procedure involving t-distributions. Each plot is associated

with a different f1(x) = xq. For all the plots, a = .5, Σa = AAT . The procedure is

applied to the same randomly sampled p-values as the sequential procedure in plots (3)

of Fig. 5.1.
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Figure 5.3: Simultaneous procedure involving t-distributions: power vs α1 associated

with f1(x) = x0.6, but with different combinations of a, Σa, and α as in Table 5.1.
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Figure 5.4: Sequential procedure involving F -distributions: power vs α1 (top) and

(p)FDR vs α1 (bottom), where α1 is the target FDR control level of the first step.

Each column of plots correspond to a pair (a, α) displayed in Table 5.2.
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Figure 5.5: Simultaneous procedure involving F -distributions: power vs α1 (top) and

(p)FDR vs α1 associated with different f1(x) = xq. The procedure is applied to the

same randomly sampled p-values as the sequential procedure in plots (1) of Fig. 5.4.

The plots correspond to the column a = .05 in Table 5.2.
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Figure 5.6: Sequential procedure involving Normal distributions: power vs α1 (top,

plots 1–5) and (p)FDR vs α1 (bottom). In each panel, plots (1)–(5) correspond to

ρ = 0, .5, .9,−.5 and −.9. For all the plots, a = .05. Plot (1′) in the top panel is the

same as plot (1), except that the x-axis corresponds to log(α1).
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