
Chapter 7

Scale Invariance of Natural Images

7.1 Introduction

Scale invariance refers to the phenomenon that the marginal distributions of many statistics
of natural images are unchanged after the images get scaled. From the information point of
view, scale invariance implies that even though individual natural images do change after
being scaled, the information from the population of all the scaled natural images is no
different than from the population of the original ones. As we shall see, scale invariance
is a very robust property of natural images, and despite its simple form, we will argue
that it is a non-trivial characteristic of natural images, and therefore an interesting natural
phenomenon in its own right.

Scale invariance of natural images is of great interest in vision. It is widely believed that
the statistical properties of natural images determine the basic aspects of the visual system.
Scale invariance is among the most prominent statistical characteristics of natural images
people have ever found. In Knill et al. [1], it was demonstrated that human visual system,
when discriminating fractal images, is most sensitive to those which are approximately scale
invariant. Because of the fractal nature of many texture images, this result suggests the role
of scale invariance in texture discrimination by the visual system. Scale invariance is also
an important ingredient in various theories on sensory coding. In Field [3], it was proposed
that the visual system adopts a sparse coding scheme. One of the reasons that sparse
representation is effective, the author argued, is that natural scenes are scale invariant.

Scale invariance has a lot of applications in computer science, especially in computer vision
and image compression, and the reasons for this are very much the same as in vision.

This article is concerned with scale invariance of natural images itself rather than its im-
portance to other areas of science. We will consider the following fundamental problem
about scale invariance: Why are natural images scale invariant? To pursue an answer to
this problem not only helps better understanding scale invariance, but also gives insight
into statistical characterization of natural images. In the next sections, efforts are devoted
to establishing a model on the origin of scale invariance of natural images.

A remark follows. Natural images are always presumed to be translation invariant, or
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stationary. Stationarity means that over the ensemble of natural images, the statistics at
one location are the same as any other location. This is a reasonable assumption because,
intuitively speaking, we can not observe “special” locations in images where the statistics
tend to be peculiar. It implies that over the ensemble of natural images, all features have
the same probability of occuring in one location versus another. From now on, when we
say scale invariance of natural images, we always mean scale and translation invariance of
these images.

There have been only a few models on the origin of scale invariance of natural images. One
recent example is given in Rudderman [3]. According to this model, images are generated
randomly by superimposing “objects” at random locations on a plane. Objects are planar
patches with independent random shapes and sizes. Each object is also independently
painted by a single random color. It was argued that if sizes of objects are distributed by
a power-law, then images of the plane, when the plane is fully covered by the objects, have
some scale invariant statistics.

Another model is presented in Mumford [4]. As the model in [3], images are made up of
independent objects. Unlike that model, however, objects are patches of patterns, shadows,
textons, etc., which means that within each object, the color is not a constant, but a function
of location inside the object. The formation of images is by superimposing independent
randomly scaled objects on a plane at random locations. The biggest difference between
these two models lies in their explanations of the cause of scale invariance. In [3], it is the
occlusion that is the main reason for scale invariance. On the other hand, in [4], only when
occlusion is ignored, can images obtained in the above way be considered as scale invariant.
The first model can get scale invariance only for some statistics, while the second one, when
ignoring occlusion, guarantees scale invariance of all statistics.

Different as they are, both models consider objects as patches distributed on a plane. Such
objects can only be considered as intermediate because they do not have clear physical
meaning. After all, natural images are perspective projections of the real world, which
is three dimensional, onto a planar surface. With high order approximation, it can be
assumed that the projection is through an ideal camera in which the effects of diffraction,
aberrations, and discrete sampling are absent. Because the world can be broken up into
physical objects, it is therefore reasonable to presume that images consist of perspective
projections, or 2D views, of the objects. A Poisson law is proposed as the law of distribution
of objects in the three dimensional world. It is argued that the Poisson law of distribution
of objects and the perspective projection of objects onto the camera image plane lead to
approximate scale invariance of natural scenes. As in [4], only when the effects of occlusion
are neglectable, can this argument be correct.

A by-product of our model is the representation of natural scenes as sums of wavelets. This
representation was also proposed in [4]. As said earlier, the model proposed in this article
gives wavelets a natural explanation. Another representation of natural scenes by sums of
wavelets was given in [3]. However, it lacks the randomness which characterizes the wavelet
representation derived from the Poisson model.

The article proceeds as follows. Section 7.2 discusses some evidence of scale invariance of
natural images. We will argue that scale invariance is a very special property which separates
natural images from other visual signals. Then we will formulate scale (and translation)
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invariance mathematically. In order to establish a model on the origin of scale invariance,
we will first study some simple properties of scale invariant images. Section 7.3 gives one of
such properties, which is the law of size of object in scale and translation invariant images.
We will motivate the law by two arguments. Section 7.4 gives details of our model and
section 7.5 concludes by showing the numerical results.

7.2 Evidence of Scale Invariance of Natural Images

This section presents evidence of scale invariance of natural images. But we will start by
making clear what scaling for images is.

7.2.1 Scaling of Images

A (digitized) image I on an M ×N lattice is simply a matrix with M rows and N columns.
We adopt the convention of C language, so that the elements of I are represented by I(i, j),
where i is the row number running from 0 to M − 1, and j is the column number running
from 0 to N − 1.

Scaling is achieved in the following way. To scale down an M ×N image I by factor k, we
take the disjoint k×k blocks Bij = [ik, (i+1)k−1]× [jk, (j+1)k−1] in I and compute the
average intensity value of each block. The average intensity of the block Bij is taken as the
intensity value at (i, j) in the down-scaled image. In mathematical terms, if I (k) denotes
the down-scaled image, then it is a bM/kc×bN/kc matrix such that for 0 ≤ i ≤ bM/kc− 1
and 0 ≤ j ≤ bN/kc − 1,

I(k)(i, j) =
1

k2

k−1
∑

n=0

k−1
∑

m=0

I(ik + n, jk +m). (7.1)

Why is scaling defined in this way? Naturally, we can imagine that every finite image is
part of an infinite image, still denoted I, which is defined on the whole integer grid. Assume
for each infinite image I, there is an underlying function φ(x, y) defined on R2, such that
the value of I(i, j) is the average of φ(x, y) over the square Sij = [id, (i+1)d]× [jd, (j+1)d],
where d > 0 is a constant, i.e.

I(i, j) =
1

d2

∫

Sij

φ(x, y)dxdy. (7.2)

In other words, I is a digitized version of φ at “sampling rate” 1/d. In order that the
average of φ over Sij makes sense, we assume φ is “regular”, e.g., measurable. This is
an ideal model, because in real images, pixel intensity values are responses of complicated
filters to the visual signal. The filters may not be distributed on a square lattice, and their
supports can overlap with each other.

Under the ideal model given by (7.2), for each k ≥ 1, define an infinite image I (k) by (7.1),
with i, j running through all integers. Then

I(k)(i, j) =
1

k2

k−1
∑

n=0

k−1
∑

m=0

I(ik + n, jk +m)
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=
1

k2d2

k−1
∑

n=0

k−1
∑

m=0

∫

Sik+n,jk+m

φ(x, y)dxdy

=
1

k2d2

∫

[ikd,(i+1)kd]×[jkd,(j+1)kd]
φ(x, y)dxdy

=
1

d2

∫

Sij

φ(k)(x, y)dxdy,

where

φ(k)(x, y) = φ(kx, ky),

which demonstrates that I(k)(i, j) is the average of φ(k) on Sij . By the definition of scaling
for functions defined on continuum, φ(k) is the down-scaled by factor k version of f . It is
therefore natural to define I (k) as the down-scaled by factor k version of the image I.

Scaling simulates two situations. Firstly, suppose a natural scene produces a (continuous)
image φ(x, y) on a camera’s image plane. Usually the distance between a natural scene
and the camera is much larger than the focal distance of the camera, and therefore the
camera image plane is almost located right at the focus. As the focal distance of the
camera changes while the camera itself stands still, in order to get focused images of the
same scene, the camera image plane needs to move closer or farther away from the camera
lens, depending on whether the focal distance decreases or increases. In this case, in first
order approximation, images produced on the image plane are scaled versions of each other.
If the focal distance is k times smaller or k times larger, then the images are down-scaled
or up-scaled by factor k, respectively. The error of the approximation lies in the fact that a
natural scene is composed of objects with different distances from the camera. Only objects
at a specific distance can produce truly focused images on the camera image plane. All
other objects only produce blurred images. However, since both the diameter of the camera
lens and the focal distance are much smaller than the distances of the objects from the
camera, the blurring can be ignored. The second situation is called aperture imaging and
is less familiar. The apparatus for aperture imaging is almost identical to a camera except
that there is a tiny hole instead of a convex lens in the front of the apparatus to let light
in. As the apparatus stands still while its image plane moves forward and backward, the
images generated on the image plane, instead of being approximately scaled, as in the first
situation, are truly scaled versions of each other.

One may think that if a natural scene is viewed from different distances, the images that
it produces on the observer’s retina or the camera’s image plane will be scaled versions of
each other. This is however incorrect. Because of perspective effects, as the observer or the
camera gets closer to the scene, the nearer objects get larger faster than the farther objects.
On the other hand, when the observer or the camera moves away from the scene, the nearer
objects get smaller faster than the farther objects. Mathematically, if an object is originally
at distance d, then as the observer or the camera moves farther away by distance x, the
image of the object is down-scaled by factor d/(d+ x) which is a variable in d instead of a
constant. This implies that images of objects are not scaled by a common factor, and hence
the whole images are not scaled versions of each other.
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7.2.2 Experiments

The images that we use are collected from the Internet. All the images are 256 × 256
matrices with integer intensity values between 1 and 256. Figure 6 shows six pictures in
the collection.

It was reported in Zhu et al. [5] that the marginal distributions of x and y-derivatives of
natural images are scale invariant. We conduct an experiment on our images and confirm
the result. For digitized images, derivatives at a pixel are approximated by differences
between the intensity values of the pixel and its neighboring pixels. For instance, at a pixel
with location (i, j) in an image I, ∇x and ∇y are computed by

∇xI(i, j) = I(i, j + 1)− I(i, j)
∇yI(i, j) = I(i+ 1, j)− I(i, j),

Notice that i corresponds to the y coordinate while j corresponds to the x coordinate.

In order to get the empirical marginal distribution of derivatives, we first compute the
histogram of derivatives for each image. Each histogram has 101 bins evenly dividing the
interval [−255, 255] and is normalized so that the sum of the histogram is 1. The average
normalized histogram over all the images is then the empirical marginal distribution.

The results are presented in Figure 7.2. To demonstrate that the marginal distributions are
really close to each other after images are scaled, we plot the logarithms of the marginal
distributions. Figures 7.2a and b plot those of ∇xI

(k), for k = 2 to 5, against ∇xI. Figures
7.2c and d plot those of ∇yI

(k), for k = 2 to 5, against ∇yI.

From Figure 7.2, we can clearly see that the marginal distributions are almost unchanged
to scaling. Notice the symmetry of the marginal distribution of ∇xI. The symmetry can
be explained as the nature lacks obvious preference of the left over the right or vice versa.
There is, however, no such apparent reason for the symmetry of the marginal distribution
of ∇yI.

It is also noticeable that even many individual images have scale invariant marginal dis-
tribution. Figure 7.3 shows logarithms of normalized histograms of ∇xI for the images in
Figure 7.1. As can be seen, some of the histograms have strong scale invariance.

To see if the scale invariance we have observed is approximately independent of calibration,
we generate, for each image I, a new image J by the following formula

J(i, j) = log I(i, j).

Then we compute the marginal distributions of ∇xJ . The results are given in Figure 7.4.
Still, we observe strong scale invariance.

Not only differentiations, but also many other linear filterings produce responses that have
scale invariant marginal distributions. We have tested two other kinds of linear filters. The
first one is the isotropic center-surround filters, i.e., the Laplacian of Gaussian filters,

LG(x, y, s) = C · (x2 + y2 − s2) exp
(

−x
2 + y2

s2

)

,
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Figure 7.1: 6 out of the 30 collected images
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Figure 7.2: Logarithms of marginal distributions of derivatives, solid curves are for un-
scaled images a. ∇xI

(k), k = 2 (dashed), k = 3 (dash-dotted); b. ∇xI
(k), k = 4 (dashed),

k = 5 (dash-dotted); c. ∇yI
(k), k = 2 (dashed), k = 3 (dash-dotted); d. ∇yI

(k), k = 4
(dashed), k = 5 (dash-dotted).
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Figure 7.3: Logarithms of normalized histograms of ∇xI
(k) for images in Figure 7.1, k = 1

(solid), k = 2 (dashed), and k = 4 (dash-dotted)
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Figure 7.4: Logarithms of marginal distributions of ∇xJ
(k), J = log I. a. ∇xI

(k), k = 2
(dashed), k = 3 (dash-dotted); b. ∇xI

(k), k = 4 (dashed), k = 5 (dash-dotted);

where C is a constant and s stands for the scale of the filter. We denote these filters by
LG(s). The second one is Gabor filters, which is defined as

G(x, y, s, θ) = C · exp
(

−4z2 + w2

2s2

)

exp

(

−i2πz
s

)

,

where

(

z
w

)

=

(

cos θ − sin θ
sin θ cos θ

)(

x
y

)

.

The real and image parts of the filters are denoted by Gcos(s, θ) and Gsin(s, θ), respectively.

In Figure 7.5, we plot logarithms of marginal distributions of responses to these two kinds
of filters with different parameters, and again we observe scale invariance of the marginal
distributions.

7.2.3 Discussion

That natural images have rich structures and scale invariant distributions makes them
distinguished from noise signals. Firstly, Cauchy noise images do scale. Indeed, for a
Cauchy noise image I, I(i, j) are i.i.d. random variables with density function,

f(x) =
1

π

1

1 + x2
, −∞ < x <∞,

and characteristic function ψ(u) = e−|u|. For each k ≥ 1, I(k)(i, j) is the average of k2

independent random variables from f . It is then seen that the characteristic function of
I(k)(i, j) is still e−|u|, implying I(k) and I have the same distribution, and therefore Cauchy
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Figure 7.5: Logarithms of marginal distributions of F ∗ I (k), k = 1 (solid), k = 2 (dashed),
k = 4 (dash-dotted). a. F = LG(2.5), b. F = Gsin(4, 0), c. F = Gcos(4, π/2), d.
F = Gcos(3, π/4)
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noise images are scale invariant. However, it is very easy to distinguish natural images from
Cauchy noise images because the former ones always contain much richer structures.

Secondly, the marginal distribution of derivatives in white noise images is not scale invariant.
Indeed, if I(i, j) are i.i.d. ∼ N (0, 1), then for each k ≥ 1, the marginal density function of
∇xI

(k) is N (0, σ2k) with σk =
√
2/k. Having decreasing variance, the normalized histogram

of I(k) becomes “narrower” as k increases. To see this, first note that the values of ∇xI are
not independent, because for each (i, j), ∇xI(i, j) = I(i, j +1)− I(i, j) and ∇xI(i, j +1) =
I(i, j+2)− I(i, j+1) have dependency. However, ∇xI(i, 1), ∇xI(i, 3), . . .∇xI(i, 1+2s), . . .
are independent to each other. By the law of large numbers, the normalized histogram of
{∇xI(i, 1 + 2s)} converges to the marginal distribution of ∇xI(i, j) as the size of I goes
to infinity. Similarly, the normalized histogram of {∇xI(i, 2s)} converges to the marginal
distribution of ∇xI(i, j) as the size of I goes to infinity. The normalized histogram of ∇xI
is the average of the two histograms and therefore tends to the marginal distribution of
∇x(i, j). Since the marginal distribution is N (0, σ2k) with σk =

√
2/k, then the normalized

histogram is increasingly concentrated around 0 as k increases.

One may point out that the numerical results we have shown do not directly involve intensity
values of images and there might be some distribution µ, such that if I(i, j) are i.i.d. ∼ µ,
then I’s are perceptually similar to natural images, and, even though I’s themselves are
not scale invariant, we still can get the same numerical results. However, we argue that
this is unlikely to be true. We observed that the normalized histogram of ∇xI is scale
invariant, which, by an argument similar to last paragraph, implies the marginal distribution
of ∇xI(i, j) is scale invariant. Since

∇xI(i, j)
D
= ∇xI

(k)(i, j),

rewriting both sides in terms of differences between pixel values, there is

I(i, j + 1)− I(i, j) D= 1

k2

k−1
∑

n=0

k−1
∑

m=0

[I(ik + n, (j + 1)k +m)− I(ik + n, jk +m)].

Because I(ik+n, (j+1)k+m)−I(ik+n, jk+m), 0 ≤ n,m ≤ k−1 are independent to each
other and have the same distribution as ∇xI(i, j) = I(i, j + 1)− I(i, j), the distribution of
∇xI(i, j) is not only infinitely divisible but also a Cauchy distribution. We then get that
the sub-image {∇xI(i, 1 + 2j)} is a Cauchy noise image. However, this is not the case for
natural images. Because even in the subsample {∇xI(i, 1+2j)} of a natural image, we can
observe a lot of structures.

All the experiments we have conducted are on images defined on finite lattice. However, we
have seen it is convenient and natural to consider images as defined on R2. From now on,
we use φ(x, y) to represent an image defined on R2 and I(i, j) a digitized image defined on
a finite or infinite integer lattice.

For digitized images I(i, j), only down-scaling by an integer factor is appropriate. Up-
scaling and scaling by a non-integer factor are not well defined. However, because across the
ensemble of digitized natural images, we observe scale invariance of many filter responses,
no matter how high the image sampling rate is, it makes sense to think that the underlying
continuous images have marginal distributions invariant to scaling.
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We formulate scale invariance of natural images as follows. Recall we always implicitly
require stationarity of images.

Definition. Let E be a space of functions defined on R2 (think of E as the ensemble of
natural images), such that for any φ ∈ E , any λ > 0 and any (a, b) ∈ R2, φ(λx+a, λy+b) ∈ E .
A probability distribution on E is scale and translation invariant if for any λ > 0 and
(a, b) ∈ R2,

φ(λx+ a, λy + b)
D
= φ(x, y).

We need to fill a gap between the observation and our claim. We have observed that many
filterings produce responses that have scale invariant marginal distributions. It is natural
then to speculate that all filterings produce responses which have scale invariant marginal
distributions 1. But why does this imply that the distribution of natural images itself is
scale invariant? Indeed, if φ is an image and F is a linear filter, than the filter response of
φ to F is the convolution F ∗ φ on R2,

F ∗ φ(x, y) =
∫

φ(u, v)F (x− u, y − v)du dv.

Assuming ergodicity of the distribution of natural images, with probability one, the his-
togram of F ∗ φ is the distribution of F ∗ φ(0, 0), in the sense that, for any a < b, as
M →∞,

1

4M2m({(x, y) ∈ [−M,M ]2 : F ∗ φ(x, y) ∈ [a, b)})→ Prob(〈φ, F̄ 〉 ∈ [a, b)),

where m(·) is the Lebesgue measure. But F ∗ φ(0, 0) = 〈φ, F̄ 〉, where F̄ (x, y) = F (−x,−y).
Since the histogram of F ∗ φ is scale invariant, the distribution of 〈φ, F̄ 〉 is scale invariant.
Together with the always implicitly assumed stationarity, this leads to

E(ei〈φ(x,y),F̄ (x,y)〉) = E(ei〈φ(λx+a,λy+b),F̄ (x,y)〉).

If this is true for all filters, then the characteristic functional of the probability distribution
on images is scale and translation invariant. Since a probability distribution on images is
uniquely determined by its characteristic functional, the distribution is scale and translation
invariant.

In section 7.2.2 we mentioned that scale invariance of marginal distribution of derivatives
be approximately independent of calibration. Indeed, if the sampling rate of a digitized
image I is high, for each (i, j), the underlying continuous image φ is about constant over
the square Sij = [id, (i + 1)d] × [jd, (j + 1)d], where d is the inverse of the sampling rate.
Thus, for any smooth calibration κ,

κ(I(i, j)) = κ

(

1

d2

∫

Sij

φ(x, y)dx dy

)

≈ 1

d2

∫

Sij

κ ◦ φ(x, y)dx dy.

1Strictly speaking, the “raw intensity” of images is not expected to be scale invariant.
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If φ(x, y)
D
= φ(λx, λy), then κ ◦ φ(x, y) D= κ ◦ φ(λx, λy). Letting J = κ(I), from the above

approximation, we get

{

J (k)(i, j)
}

≈
{

1

d2

∫

Sij

κ ◦ φ(kx, ky)dx dy
}

D
=

{

1

d2

∫

Sij

κ ◦ φ(x, y)dx dy
}

≈ {J(i, j)} .

Therefore, the distribution of J is approximately scale invariant, verifying our suggestion
that the scale invariance of marginal distributions is approximately independent of calibra-
tion.

Finally, we establish a connection between the version of scale invariance given in the above
definition and a result on scale invariance in the literature. It is well known that natural
images have power spectrum of the form [3]

S(k) =
A

k2−η
,

where k is the spatial frequency, A is a constant, and η is close to 0. S(k) is defined as

S(k) =
1

2π

∫ 2π

0
dθ

∫

R2

〈φ(x)φ(x+ y)〉e−ikv(θ)·yd2y,

where for fixed y, 〈φ(x)φ(x + y)〉 is the average of φ(x)φ(x + y) over all x and all φ, and
v(θ) = (cos θ, sin θ). The ideal case is that η = 0. To see the reason for this, note that
under the assumption of ergodicity of the distribution of images,

〈φ(x)φ(x+ y)〉 = E(φ(0)φ(y))

where E is over all φ. Therefore, by scale invariance,

S(k) =
1

2π

∫ 2π

0
dθ

∫

R2

E(φ(0)φ(y))e−ikv(θ)·yd2y (z = ky)

=
1

k2
1

2π

∫ 2π

0
dθ

∫

R2

E(φ(0)φ(k−1z))e−iv(θ)·zd2z (φ(k−1z) ∼ φ(z))

=
1

k2
1

2π

∫ 2π

0
dθ

∫

R2

E(φ(0)φ(z))e−iv(θ)·zd2z

=
S(1)

k2
.

7.3 The
1

r3
Law of Size of Object

Our goal is to build a model on the origin of scale (and translation) invariance of natural
images. As a first step to this goal, we consider the distribution of sizes of objects in images.
Let r be the one dimension size of object, such as diameter and periphery. As a first order
approximation, the density function of r is Cr−3, where C is a constant. There are several
arguments to get this the result. We will demonstrate two of them. A third argument, which
is based on compositional rules, can be found in Geman [6]. We start from Mumford’s line
segment argument.
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7.3.1 Poisson Line Segment Argument

We consider images composed only of straight line segments with finite lengths. A random
image is generated in the following way. First, we produce a sample {(xi, yi)} from a
homogeneous Poisson point process on R2. With probability 1, the sample is countable.
For each (xi, yi), we independently sample an r from a distribution with density function
f(r) and an angle θ uniformly from [0, π]. We then put a line segment with length r and
orientation (cos θ, sin θ) at (xi, yi), with (xi, yi) being its middle point. All the random line
segments then compose an image I.

Now suppose I produced by the above random procedure are distributed by a scale and
translation invariant law. We want to know the form of f(r), which is the law of size of
object in this case.

In order to get f(r), define a function N(a, b;R) such that for any 0 < a < b, N(a, b;R)
is the expected number of line segments of I with midpoints falling into the square SR =
[0, R] × [0, R] and lengths between a and b. Define N2(a, b;R) similarly for I(2). Since
I ∼ I(2), we get

N(a, b;R) = N2(a, b;R).

Because I(2) is a down-scaled by factor 2 version of I, any line segment of I (2) contained in
SR is a down-scaled by factor 2 version of a line segment of I in the square S2R, and the
latter line segment has length twice larger than the first one. We get

N2(a, b;R) = N(2a, 2b; 2R).

The square S2R consists of four disjoint squares, each being identical to SR. Because the
random processes involved to generate the images are homogeneous, we get

N(2a, 2b; 2R) = 4N(2a, 2b;R)⇒ N(a, b;R) = 4N(2a, 2b;R).

On the other hand, we have

N(a, b;R) ∝
∫ b

a
f(r)dr, a < b.

Therefore,

∫ b

a
f(r)dr = 4

∫ 2b

2a
f(r)dr.

More generally, we can replace 2 by any positive number s to get

∫ b

a
f(r)dr = s2

∫ sb

sa
f(r)dr.

Differentiating with respect to b, we finally get

f(r) = s3f(sr)⇒ f(r) =
C

r3
.
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It is obvious that 1/r3 can not be a density function because it is singular at 0. The
problem comes from the assumption that the images can be up-scaled by any factor. This
assumption implies that the density of the Poisson point process must be infinity which is
impossible. On way to fix the problem is to require that the line segments have lengths
larger than a threshold, say, ε and only down-scaling of images be allowed. When an image
is down-scaled, all line segments with lengths less than ε are thrown away. Then with the
same argument, we still can get the 1/r3 law, except that r should be larger then ε.

7.3.2 Coding Theory Argument

Still, we consider images composed of line segments and assume that the images are scale
and translation invariant. Our first step is to discretize the images so that end points
of digitized line segments are on the lattice {(ndN ,mdN )}n,m∈Z, where dN = 1/N is the
resolution.

We want to compare the probability of a digitized line segment l and the probability of its
down-scaled by factor k version l(k). To this end we code digitized line segments by a k-ary
code. A k-ary code is of the form an−1 . . . a1a0, where ai ∈ {0, . . . , k−1} and an−1 > 0. For
each line segment l, let c(l; k) be its k-ary code. If the coding is optimal, then by Shannon’s
theorem,

Prob(l) =
1

k|c(l;k)|
,

where |c(l; k)| is the length of the code c(l; k).

Suppose the end points of l(k) are (m1dN , n1dN ) and (m2dN , n2dN ). Then each of the k4

line segments with end points ((km1+i1)dN , (kn1+j1)dN ) and ((km2+i2)dN , (kn2+j2)dN ),
i1, i2, j1, j2 = 0, . . . , k − 1, has l(k) as its down-scaled by factor k version. As N is large
enough, dN = 1/N is small and all the k4 line segments are spatially close to each other. By
continuity, the information about these k4 line segments is evenly distributed. Therefore,
given the k-ary code of l(k), in order to get the whole information about l, we need logk k

4 = 4
extra bits. This implies

|c(l; k)| ≈ 4 + |c(l(k); k)| ⇒ Prob(l) ≈ 1

k4
Prop(l(k)).

For any line segment ` on R2, let lN be its digitized version at resolution dN . Then `(k) is

digitized as l
(k)
N at resolution 1/dN . We then have

lim
N→∞

Prob(lN )

Prob(l
(k)
N )

=
p(`)

p(`(k))
⇒ p(`)

p(`(k))
=

1

k4
,

where p(`) is the density of `. The above relation holds for any line segment and any
positive integer scaling factor. By continuity, it holds for an arbitrary positive scaling
factor. Because orientations of line segments are uniformly distributed and the distribution
of images is translation invariant, for any line segments lr and lsr with lengths r and sr,
respectively,

p(lr) = s4p(lsr)⇒ p(lr) =
C

r4
.
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In order to get the marginal distribution of r, we integrate the density function over all line
segments with length r and with one end point at the origin. The other end points of these
line segments are on a circle with radius r. Therefore the marginal distribution of r is

f(r) = 2πr · C
r4

=
C ′

r3
.

7.4 The Poisson Model

In this section we build a Poisson model on the origin of scale and translation invariance of
natural images. The model has two components (1) distribution of objects in the 3D world,
and (2) surface processes that describe intensity distributions inside 2D views of objects.
We start by modeling objects of 3D world and after establishing the Poisson model, we will
discuss implications and limitations of the model.

7.4.1 Modeling Objects

As discussed in section 7.1, natural images are perspective projections of the 3 dimensional
world on an image plane. World breaks up into physical objects with different shapes,
surface colors and sizes and so natural images also break up into the viewed surfaces of
objects. Thus the first problem that comes up is how to model physical objects.

As a coarse approximation, objects in our model are independent rigid planar templates
parallel to the image plane. Each template has a reference point. The position of an object
is the spatial location of its reference point.

Several correlated important aspects of real objects are ignored in our model.

(1) Occlusion and orientation of object. The surface of a 3D object always has several
different aspects. Because of occlusion by the other aspects of the same surface, an aspect
which is visible when the object is at one place can become invisible when the object moves
to another place. Even when objects are modeled as planar templates, if an object is not
parallel to the camera image plane, then because of perspective effect, when the object moves
on a plane parallel to the camera image plane, the farther away it moves from the camera
laterally, the larger its 2D view becomes. This effect is not accounted for by our argument.
In real situation, since the angle of view of a camera is usually small, the effects incurred
by occlusion and orientation are small. In our model, however, we allow an arbitrary large,
but fixed angle of view. In order to avoid complications, we require templates be parallel
to the image plane.

(2) Dependence between objects. It often happens that in a large region of the world, objects
have long range dependence. For example, each window on a building can be considered
as an object. The position of a window is obviously not independent to the positions of
the other windows on the same building. A solution to this is to define two objects as two
parts of a larger object whenever they have dependence. But this can also cause problem.
For instance, houses built by a street stand approximately along a straight line. If all the
houses are put together as a single object, then the perspective effect on the 2D view of the
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object, as mentioned in (1), can not be ignored. Another example is a long river flowing on
a plain. It is even hard to model it as a template parallel to the image plane.

(3) Volume of object. Because a real object has a certain volume, when it occurs at a
location in the space, other objects can not occupy space arbitrarily close to it. On the
other hand, since a template is a planar shape with zero volume, other templates can get
arbitrarily close to it.

Let us describe the 3D world by a Euclidean coordinate system. Every point in the world
is represented by (x, y, z). Assume that the camera lens is at the origin of the coordinate
system. The direction of view of the camera is along the positive x-axis. Suppose the
distance between the camera image plane and the lens is 1. Then the image plane is the
plane {(−1, y, z) : y, z ∈ R}. We also need a coordinate system for the image plane. Let
every point on the image plane be represented by (u, v), and let the origin of the image
plane coordinate system be the intersection point of the x-axis and the image plane, which
is the space point (−1, 0, 0). Because the perspective projection of an object is upside down
and left and right reversed, we define the direction of the u-axis as the opposite direction
of the y-axis, and the direction of the v-axis as the opposite direction of the z-axis. Then
the projection of a spatial point (x, y, z), x > 0 is (y/x, z/x) on the image plane.

7.4.2 Distribution of Objects

Under the set-ups of section 7.4.1, we make the following assumption on the distribution of
objects in the world.

Assumption 1. Objects are distributed by a homogeneous Poisson law.

We must decide the support of the Poisson law, i.e., the region in which an object can be
any where with positive probability. Let us show that the support can not be the whole
3D space. For simplicity of discussion, for now we assume all the objects are identical, i.e.,
they share the same template. Refer to Figure 7.6. By our set-ups, D in the figure is 1. If
the distance between an object with size R and the camera lens is d, then the size of the
projection of the object is RD/d ∝ 1/d. Letting r be the size of the projection, we have

r ∝ 1

d
.

Now we derive the probability density function f(r). As in section 7.3.1, fix a finite square
on the image plane. Images in the square are projections of an infinite cone in the space,
illustrated as the shaded area in Figure 7.6. All objects in the cone with distance d from
the camera are on a planar region with area proportional to d2. Assume the distribution
of objects is homogeneous 3D Poisson, then the density g(d) of objects in the cone with
distance d is also proportional to d2. From r ∝ 1/d and g(d) ∝ d2, we get the law of size
of object f(r) ∝ 1/r4. This is inconsistent with the result in section 7.3, where f(r) ∝ r−3.
The heuristic argument suggests that the support of the Poisson law be assumed other than
the whole 3D space. In other words, objects should be modeled as being distributed in a
sub-region in the 3D space by a homogeneous Poisson law.

We have to look at the nature more closely. Natural images are taken on the earth. The
surface of the earth, within our visible distance, is flat. Although objects can be any where
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Figure 7.6: Perspective view of an object

above the ground, they are overwhelmingly distributed below a certain altitude. Therefore,
we modify our previous assumption to the following.

Assumption 2. There is a constant H > 0, such that objects are distributed by a homo-
geneous Poisson law in the region between the earth and the height H.

Let the plane z = 0 represent the earth. Let {(xi, yi, zi)} be the positions of objects. Then
the assumption means that {(xi, yi, zi)} is a sample from a homogeneous Poisson process
in the region R2 × [0, H] = {(x, y, z) : x, y ∈ R, 0 ≤ z ≤ H}.

To see this assumption is consistent with the r−3 law of size of object, refer to Figure 7.6
again. When d is large enough, any object in the shaded area with distance d is on a
rectangular planar region with width proportional to d and with fixed altitude H. Thus
g(d) ∝ d and this together with r ∝ 1/d leads to f(r) ∝ 1/r3.

7.4.3 Surface Processes of Objects

At different distances, the 2D view of an object not only has different sizes, but also shows
different surface colors, textures, etc. The distribution of intensity values inside the 2D
view of an object, which we want to call “surface process”, can be very complicated. It
can be not only a smooth function, but also an “irregular” function, e.g., a sample from a
random process like white noise. Such irregular functions are called generalized functions
in mathematical terms. In any case, the surface process inside the projection of an object
is a function of u = (u, v) on the image plane, with support inside the projection. We use
ψ(u;x, T ) to represent the surface process inside the projection of a template T which is
located at x.

104



Given a template T , suppose P is a point on T with location relative to the reference point
of T being v = (a, b). If T is located at x = (x, y, z), then the spatial location of P is
y = (x, y + a, z + b) and its projection on the image plane is

u =

(

y + a

x
,
z + b

x

)

.

Under ideal conditions, where the effects of decay, scattering, interference, diffraction, etc.,
as light travels in the space, are absent, and where the camera is ideal, if there are no other
objects between P and u, the intensity at u equals the intensity of the light setting off from
P to u. The intensity of the light depends not only on P ’s own physical condition, which
we assume to be unchanged no matter where T is, but also on the lighting condition around
the spatial location of P as well as the direction the light goes. We assume that the lighting
condition is uniform all over the space. We also assume that the intensity of light from P is
constant on all directions. Then the light that goes from P to u has intensity depending only
on P but not on its location in the space. This implies that the light intensity is a function
only on the relative location of P on T , and therefore the intensity at u is determined by
v. By our notations, this can be written as

ψ(u;x, T ) = I(v;T ).

Write p = (y, z). Then x = (x,p) and u = x−1(p+ v). Therefore,

ψ(u; (x,p), T ) = I(xu− p;T ).

From the equation it is seen that the surface process of a template object T located at (x,p)
in space is a scaled and translated version of I. We call this change of surface process by
location “color rendering”.

We now consider the whole picture. Because the distribution of objects is homogeneous
Poisson in R2 × [0, H], with probability one, there are countably many objects in the
region R+ ×R × [0, H]. Let the positions of these objects be {(xi,pi)}, pi = (yi, zi). At
each location (xi,pi), a template Ti is independently selected from a certain distribution.
Writing Ii(u) = I(u;Ti), then Ii are i.i.d. If we ignore occlusion, then the whole image I is

the arithmetic sum of the projections of all the objects and can be written as

I(u) =
∑

i

Ii(xiu− pi), Ii i.i.d. (7.3)

7.4.4 Discussion

The first consequence of the above results is as follows. Fix a large enough rectangular
image I. For 0 < a < b, define

Ab
a = Expected total area of regions in I which are covered by projections

of objects with distance from the camera between a and b.

If we ignore occlusion, then for any λ > 0, Aλb
λa = Ab

a.

Call an object a T -object if the object is a template T . If a T -object is x away from the lens,
then its projection has area proportional to x−2. By the Poisson distribution, the density
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of T -objects showing up in I with distance from the camera being x is proportional to x.
Without occlusion, the total area of the projections of T -objects with distance between a
and b is proportional to

∫ b

a

1

x2
xdx = log

b

a
.

Integrating over all possible templates, we get, without occlusion,

Ab
a ∝ log

b

a
⇒ for all λ > 0, Aλb

λa = Ab
a.

The same argument also applies to explain the scale invariance of marginal distribution of
derivatives. Without loss of generality, consider ∇u. Given a template T , let

Db
a(x;T ) = Total area of regions in the projection of T where values of ∇u are

between a and b when the distance between T and the camera is x.

Since the surface process inside the projection of a T -object with location x = (x,p) is
ψ(u;x, T ) = I(xu− p;T ), the derivative at u is x∇uI(xu− p;T ), therefore

∇uψ(u; (x,p), T ) ∈ [a, b]⇔ ∇uI(xu− p;T ) ∈ [ax−1, bx−1].

By the fact that the area of the projection of the T -object is proportional to 1/x2,

Db
a(x;T ) =

1

x2
D
b/x
a/x(1;T ).

Let Db
a be the expected total area of regions in I where ∇uI is between a and b. Neglecting

occlusion and integrating the above equation over all x ∈ (0,∞) and all T ,Db
a is proportional

to
∫

dµ(T )

∫ ∞

0
Db
a(x;T )gT (x)dx =

∫

dµ(T )

∫ ∞

0

1

x2
D
b/x
a/x(1;T )cTxdx

=

∫ ∞

0

1

x
K

(

a

x
,
b

x

)

dx,

where dµ is the distribution of T and gT (x) is the density of T -objects with distance x. By
section 7.4.2, gT (x) = cTx, where cT is a constant depending only on T . For any λ > 0,

∫ ∞

0

1

x
K

(

a

λx
,
b

λx

)

dx =

∫ ∞

0

1

x
K

(

a

x
,
b

x

)

dx⇒ D
b/λ
a/λ = Db

a.

If I is scaled by factor λ, then in the scaled image I (λ), the derivative at u equals λ times
the derivative at λ−1u in I. Thus the area of regions in I (λ) where derivatives are between

a and b, denoted D̄b
a, is proportional to D

b/λ
a/λ = Db

a. Therefore, for any a < b,

D̄a
b

Area(I(λ))
=

Da
b

Area(I)
.
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Under the assumption of ergodicity of images,

Da
b

Area(I)
= marginal propability that ∇uI ∈ [a, b],

and

D̄a
b

Area(I(λ))
= marginal propability that ∇uI

(λ) ∈ [a, b].

Then it is seen the marginal distribution of derivatives of I (λ) is the same as I.

The expression (7.3) strongly suggests using randomly scaled and translated “template
functions” to represent images. These template functions, as called in [4], are random
wavelets. There random wavelets are explained as random patches superimposed on a planar
region. Here we find a natural explanation for random wavelets: they are the projections of
objects randomly distributed in the 3D world. It is interesting that by modeling images in
different ways, the same form of random wavelet representation is obtained. Further study
of using random wavelet expansion to construct scale and translation invariant distributions
on images is given in next chapter.

7.5 Numerical Experiment

For real images, occlusion can not be ignored. Unfortunately, there are few methods to
analyze the effects of occlusion on our model. We resort to numerical experiments to check
how well the Poisson model approximates scale invariance.

We simulate putting objects in the spatial region R ×R × [0, H] and projecting them on
a finite rectangle camera film. To prevent images from being covered by the projections of
only a few objects which are very close to the camera, the simulation only allows objects
with distance from the camera larger than a lower bound. An upper bound is also selected
for the distance, so that if an object has distance larger than the maximum value, its 2D
view is smaller than a pixel. Only objects with distance between the lower and upper
bounds are generated.

Figure 7.7 illustrates the side view of the camera as well as the “world” in the simulation.
The lens is located on the earth, i.e., with z-coordinate equal to 0. Note that to project
objects, which are distributed above the earch, onto the film, the film has to be put “under”
the earth, as show in the picture.

The actual implementation does not involve sampling objects in space. When plotting 2D
views of objects, we need first know their positions on the image as well as their scaling
factors. The positions and scaling factors can be sampled based on the following observation.
Let the film be the rectangle [−1, 1]× [0, 1]. Given the distance x of an object, the scaling
factor of its 2D view is x and the positions {(ui, vi)} of all the 2D views with scaling factor
x that occur on the image film compose a sample from a Poisson point process with density
λx on the region [−1, 1]× [0, H/x].

A pseudo-code for sampling positions and scaling factors of 2D views is as follows. Note
that the scaling factors are discretized.

Position-Scaling
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Figure 7.7: Side View of the “World” and the Camera

fix the film as the plane region [−1, 1]× [0, 1]
fix Dmin, Dmax and H
fix density λ and step size ε
P ← ∅
D ← Dmin

while D ≤ Dmax do

sample N from the Poisson distribution Prob(N = n) =
e−Dλ

n!
(Dλ)n

sample N (u, v)’s independently from [−1, 1]× [0, H/D]

P ← P ∪ {(D,ui, vi)}Ni=1

D ← d+ ε
return P

Given their positions and scaling factors, the second step is to plot the 2D views of the
objects. To simulate occlusion, we start from those with the largest scaling factor, which
corresponds to the largest distance from the camera. When two 2D views overlap, the
one with larger scaling factor is overwritten by the other one. The input of the following
subroutine is P = {(Di, yi, zi)}ni=1 with D1 ≥ D2 ≥ . . .Dn > 0.

Draw(P )
for i← 1 to n do

Supper-Impose(Di, yi, zi)

To display the image, we digitize the film [−1, 1]× [0, 1] by dividing it into 2N ×N squares
indexed by (i, j), i = −N,−N + 1, . . . , N − 1, j = 0, . . . , N − 1. The value at pixel (i, j) is
the average intensity value of the image over the square Sij = [id, (i+ 1)d]× [jd, (j + 1)d],
where d = 1/N .

The templates we use are rectangles and circles with random sizes. The surface processes
are smooth functions plus white noise. Suppose we want to plot the 2D view of a T -
object located in the space at (x,p) with surface process I(xu − p;T ). Then I(u;T ) =
Is(u;T )+W (u;T ), where Is is a smooth function and W is a white noise with variance σ2.
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Therefore

1

d2

∫

[0,d]×[0,d]
W (u)d2u

is Gaussian random variable with distribution N(0, σ2/d2). Then for a pixel (i, j) with the
square Sij being inside the 2D view of the T -object, its intensity value is

1

d2

∫

Sij

Is(xu− p;T )d2u+
1

d2

∫

Sij

W (xu− p;T )d2u

=
1

d2

∫

Sij

Is(xu− p;T )d2u+
1

x
ξ(i, j),

where ξ(i, j) are i.i.d. ∼ N(0, σ2/d2).

A pseudo-code for the above procedure is as follows. For simplicity, we only show how to
plot a scaled disc with a random surface process. In addition, the constant d is assumed to
be 1 in the code and therefore σ2/d2 = σ2.

Supper-Impose(x, y, z)
pick s randomly from {“disc”, “rectangle”, ...}
if s =“disc” then

sample a random radius r, a smooth function Is and a variance σ from certain
distributions
for i← −N to N − 1
for j ← 0 to N − 1

if |(id, jd)− (y, z)| ≤ r

x
then

sample a ξ from N(0, σ2)

I(i, j)← 1

d2

∫

Sij

Is(xu− p)d2u+
1

x
ξ

else if s =“rectangle” then

...

Figure 7.8 plots logarithms of marginal distributions of ∇xI for images generated by the
simulation. It shows good scale invariance. In Figure 7.9, we present a sampled scene.
From the picture we see that the “color rendering” makes 2D views of closer objects look
like having more details and 2D views of farther objects look smoother.
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Figure 7.9: A sample scene.
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