
Chapter 6

Probabilistic Feature Based

Grammars

6.1 Introduction

Statistical language models are becoming increasingly important in linguistics. The devel-
opment of such models aims to solve problems that traditional categorical grammars face.
Sometimes called non-probabilistic grammars, categorical grammars provide extremely de-
tailed syntactic and semantic analyses of a range of sentences. They also have the merit of
being sensitive to a wide variety of linguistic interactions. However, categorical grammars
have several drawbacks which hinder their utility. First of all, because the grammars fail to
address the ranking of grammatical analyses, they suffer serious inefficiency problem when
dealing with sentences which have tremendous amount of different analyses. For the same
reason, they also lack robustness when coming across unexpected or ill-formed input. Fur-
thermore, with no practical automatic learning mechanism to categorical grammars, such
grammars have to be hand-crafted and usually become so complex that they are difficult
or impossible to understand and maintain.

Statistical language models are probabilistic versions of categorical grammars, with all anal-
yses allowed by the grammars being equipped with probabilities. The assignment of prob-
ability measures automatically enables statistical language models to systematically treat
grammatical analyses differently. When good statistical models are established for lan-
guages, analyses empirically more likely to be chosen are allocated higher probabilities,
hence more likely to be selected by parsing algorithms. Good statistical models also make
it possible that analyses of ill-formed input have very low probabilities, making them easily
detected by the parsing algorithms. Because of the discriminating power of probabilities,
the rules by statistical models need not be as detailed and complex as categorical grammars
when modeling the same languages. In addition, statistical models can be adjusted by tun-
ing their parameters and can be learned from the training corpus because the parameters
can be estimated.

The simplest statistical language models are probabilistic regular grammars (PRGs) and
probabilistic context-free grammars (PCFGs). They are actually the same things as Markov
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chains and stochastic branching processes, respectively. Both models have had remarkable
applications to simple tasks in speech recognition and computer vision (Chou [4]). However,
these grammars’ non-probabilistic prototypes, i.e., regular grammars (RGs) and context-
free grammars (CFGs), are widely deemed linguistically inadequate, because they lack the
context sensitivity that is ubiquitous in natural languages. In order to apply statistical
methods more effectively to linguistics, it is necessary to develop probabilistic versions of
more expressive grammars.

Standard grammars in computational linguistics are attribute-value grammars of some va-
riety. In this article, we will call attribute-value grammars feature based grammars. RGs
and CFGs are two types of feature based grammars, but among the least expressive ones.
The more expressive feature based grammars cope with context sensitivity by addressing
features that contain non-local information of languages. Efforts have been made to develop
general probabilistic feature based grammars (Mark et al. [7], Abney [1]). Invariably, all the
probabilities proposed for feature based grammars take the form of Gibbs distribution. The
argument for the Gibbs form is based on the “maximum entropy” principle (Jaynes [6]). In
Mark et al. [7], a Gibbs distribution was derived for a simple case, where the probabilistic
models are combinations of a PCFG and n-gram language models, by invoking maximum
entropy estimation. Similar argument can be applied to more general cases to get the Gibbs
distributions as discussed in Abney [1]. However, this was not pursued in either of the two
articles. In §6.2, we will derive the Gibbs form of distributions on features based grammars
and some of its variants.

The emphasis of this article is on the technical issues of parameter estimation. In §6.3 and
§6.4, we will propose two schemes for estimation. Both schemes are easy to prove to be
consistent. We will argue that the second scheme, which is a pseudo-likelihood type scheme
for estimation, is efficient, if the goal of parameter estimation is to analyze sentences rather
than sample sentences.

6.2 Gibbs Distributions for Feature Based Grammars

Given a grammar G, let Ω be the set of all parse trees allowed by G. Elements in Ω are
denoted as ω. Because a natural language has only countably many sentences, and each sen-
tence has only finitely many parse trees allowed by G, Ω is countable. Let f1(ω), . . . , fN (ω)
be N real functions, or “features”, on Ω. Suppose under certain unknown distribution on
Ω, the expectation of f1(ω), . . . , fN (ω) are f̄1, . . . , f̄N , respectively. With only f̄1, . . . , f̄N

being known, we want to make a reasonable guess about the unknown distribution.

For this end, the maximum entropy principle suggests using the solution of the following
constrained maximization problem,

p = arg max
p̃ prop on Ω

{

−
∑

ω∈Ω

p̃(ω) log p̃(ω)

}

,

subject to

Ep(fi(ω)) =
∑

ω∈Ω

fi(ω)p(ω) = f̄i, i = 1, . . . , N (6.1)
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and
∑

ω∈Ω

p(ω) = 1. (6.2)

The philosophy for the above approximation is that while p(ω) satisfies the given constraints
on fi, it should be made as random (or un-informative) as possible in other unconstrained
dimensions, i.e., p(ω) should represent information no more than what is available and in
this sense, the maximum entropy principle is often called the minimum prejudice principle
(Zhu et al. [5]).

By introducing the Lagrange multipliers λi, i = 1, . . . , N , and β, the constrained maximiza-
tion problem is changed to

∂

∂p(ω)

{

−
∑

ω∈Ω

p(ω) log p(ω) +
N∑

i=1

λi

∑

ω∈Ω

fi(ω)p(ω) + β
∑

ω∈Ω

p(ω)

}

= 0.

Solving this equation gives

p(ω) =
1

Z(λ)
eλ·f(ω), (6.3)

where λ = (λ1, . . . , λN ) and f(ω) = (f1, . . . , fN ), and Z(λ) =
∑

eλ·f(ω).

The maximum entropy principle can be generalized to the “minimum discriminant principle”
(Mark et al. [7]). Suppose we have a distribution π(ω) on Ω, then the minimum discriminant
principle requires the guess of the unknown distribution minimize the following quantity,

∑

ω∈Ω

p(ω) log
p(ω)

π(ω)
,

subject to (6.1) and (6.2). Then we get the solution with the form

p(ω) =
1

Z(λ)
π(ω)eλ·f(ω) =

1

Z(λ)
eλ·f(ω)+log π(ω), (6.4)

which is still a Gibbs form.

If π is finite, an explanation for the constrained minimization is as follows. Write

∑

ω∈Ω

p(ω) log
p(ω)

π(ω)
= − log π(Ω) +

∑

ω∈Ω

p(ω) log
p(ω)

κ(ω)
,

where κ(ω) = π(ω)/π(Ω) is a probability distribution on Ω. The minimization then finds
the distribution which satisfies the constraints and is closest to the distribution κ in terms
of Kullback-Leiber distance. However, this explanation does not apply to the case where
π(Ω) = ∞.

Because the set of all parses is infinite, both (6.3) and (6.4) have the possible problem that
the partition number Z(λ) might be infinity, which makes the distribution not well-defined.
An alternative to the Gibbs forms (6.3) and (6.4) is the following distribution,

p(ω) = π(Y (ω))
eλ·f(ω)

∑

Y (ω′)=Y (ω)

eλ·f(ω′)
, (6.5)
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where Y (ω) is the “yield” of ω, which is the terminal string associated with the parse tree
ω, and π is a probability distribution on the language.

From the information point of view, we can think of π as a description of the mechanism
to generate sentences. It can be different from the Gibbs distribution with the potential
function λ · f(ω). On the other hand, the rules to analyze individual sentences, which are
given by λ and f , with λ being the parameter, are uniform across all sentences.

The potential function λ · f(ω) can be looked on as the first order expansion of a function
ϕ(f(ω)). Even when f gives all the information about Ω, i.e., the σ-algebra F(f) contains
all the singleton sets {ω}, the Gibbs distribution (6.3) can still be very far from the true
distribution. As an example, suppose Ω = N and f(ω) for ω ∈ Ω is the numerical value of
the element. If p is a distribution on Ω with p(2) À p(Ω\{2}), then the Gibbs distribution
(6.3) can never get close to p.

A solution to this problem is to learn the function ϕ, on the set of all possible values of
f(ω). To do this, one can approximate ϕ(f(ω)) by a higher order expansion and estimate
λ’s in the expansion,

∑

i≤k

λi(f(ω))i,

where i = (i1 . . . in) is a multiple index composed of non-negative integers. i ≤ k means
i1 + · · ·+ in ≤ k, and f i means f i1

1 · · · f iN
N . For the example given just now, a second order

expansion can do well enough in the sense that

∑

ω

∣
∣
∣
∣

√

p(ω) −
√

pλ(ω)

∣
∣
∣
∣

is small, where pλ(ω) is a Gibbs distribution with the potential function λ1f(ω)+λ2(f(ω))2.
It turns out that λ1 and λ2 should satisfy λ1 ≈ −4λ2 and λ1 À 0.

One can also learn ϕ(f(ω)) by dividing the range of f into several bins B1, . . . , Bk, and
approximating ϕ(f) by a function which is constant in each bin (Zhu et al. [5]). The
potential function is then changed to

k∑

i=1

λi1i(f(ω)),

where 1i is the indicator function of the bin Bi.

Next we will consider how to estimate parameter λ of the Gibbs forms. From now on, we
will always use N as the notation for the dimension of f .

6.3 Maximum-Likelihood (ML) Type Estimation of Param-
eters

Suppose we are given n i.i.d. samples. Let us consider two cases about the data.
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Case One:

In this case, the n samples are fully observed parse trees ω1, . . . , ωn. Under the assumption
that the distribution of ω is given by (6.3) with parameter λ0, if |f | has finite mean and if
n is large, then by the law of large numbers,

1

n

n∑

i=1

f(ωi) ≈ Eλ0(f),

where Eλ0(f) is the expectation of f(ω) under the distribution eλ0·f(ω)/Z(λ0).

Therefore, we take any solution to the following equation in λ as an estimate of λ0,

Eλ(f) =
1

n

n∑

i=1

f(ωi). (6.6)

The estimation formulated by (6.6) is a maximum-likelihood type estimation. Indeed, if
there is a solution to the following maximization problem,

λ̂ = arg max
λ

n∏

i=1

eλ·f(ωi)

Z(λ)
,

then the solution, λ̂, is a solution to (6.6). However, because the set of all parse trees is
infinite, we can not compute Z(λ), therefore Eλ(f) in (6.6) is unknown.

In order to get around this problem, we modify the estimation as follows. Let Yn =
{Y (ω1), . . . Y (ωn)}. Then we replace (6.6) by

1

n

n∑

i=1

f(ωi) =

∑

Y (ω)∈Yn

f(ω)eλ·f(ω)

∑

Y (ω)∈Yn

eλ·f(ω)
= Eλ[f(ω)|Y (ω) ∈ Yn],

or

f̄ − Eλ[f(ω)|Y (ω) ∈ Yn] = 0, (6.7)

where f̄ is the average of f(ω1), . . . f(ωn). It can be shown the left hand side of (6.7) is the
gradient of the function

Ln(λ, ω1, . . . , ωn) = λ · f̄ − log




∑

Y (ω)∈Yn

eλ·f(ω)



 ,

which is convex in λ. Note that since there can be multiple parse trees with the same yield,
the set {ω : Y (ω) ∈ Yn} might be strictly larger than {ω1, . . . , ωn}. Since Ln(λ, ω1, . . . , ωn)
is convex in λ, any solution to the following maximization problem is a solution to (6.7),
and vice versa,

λ̂n = arg max
λ

{Ln(λ, ω1, . . . , ωn)} . (6.8)
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In the remaining part of this section, we will use L(λ) as short for Ln(λ, ω1, . . . , ωn). That
the maximization problem (6.8) has a solution is not guaranteed. For example, suppose we
have 3 ω’s, ω1, ω2 and ω3, and f(ω1) = (0, 0), f(ω2) = (0, 1), and f(ω3) = (1, 0). Suppose
only ω2 and ω3 are observed, with each being observed once, and Y (ωi), i = 1, 2, 3 are the
same. Then f̄ is the average of f(ω2) and f(ω3), i.e., (1/2, 1/2), and

L(λ) = λ · f̄ − log

(
3∑

i=1

eλ·f(ωi)

)

=
λ1 + λ2

2
− log

(

1 + eλ1 + eλ2

)

.

The above function can not achieve its maximum. Indeed,

∇L(λ) =

(

1

2
− eλ1

1 + eλ1 + eλ2
,

1

2
− eλ2

1 + eλ1 + eλ2

)

.

Since ∇L can never be 0, there are no extreme points for L.

In order to get the condition for the existence of solution to (6.8), let Ωn = {ω : Y (ω) ∈ Yn}
and C be the convex closure of the set {f(ω) : ω ∈ Ωn}. The boundary of C is the union
of all the facets of C and denoted as ∂C. The inner part of C is defined as C\∂C. Because
f̄ is the average of some of the f(ω)’s with ω ∈ Ωn, f̄ ∈ C.

Proposition 16. Suppose f(ω) are not all the same for ω ∈ Ωn. Then the maximization
problem (6.8) has a solution if and only if f̄ ∈ C\∂C.

Remark. If f(ω) are the same for all ω ∈ Ωn, then L(λ) is a constant.

Proof. What we need to show is that the function

L(λ) = λ · f̄ − log




∑

ω∈Ωn

eλ·f(ω)





can achieve its maximum if and only if f̄ ∈ C\∂C.

Let k be the dimension of convex set C. Recall that N is the dimension of λ. Clearly,
k ≤ N . If k < N , then there is an N -dimensional vector β 6= 0 and a constant c, such that
β · f(ω) = c for all ω ∈ Ωn. Without loss of generality, suppose the last component of β,
βN 6= 0. Then for all ω ∈ Ωn,

fN (ω) =
c

βN
− β1

βN
f1(ω) − · · · βN−1

βN
fN−1(ω).

Then

L(λ) = λ′ · ḡ − log




∑

ω∈Ωn

eλ′·g(ω)




4
= L′(λ′),

where

λ′ =

(

λ1 −
β1λN

βN
, . . . , λN−1 −

βN−1λN

βN

)

,
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is an N − 1 dimensional vector, and

g(ω) = (f1(ω), . . . , fN−1(ω)) .

Let C ′ be the convex closure of {g(ω) : ω ∈ Ωn}. Then C ′ is still a k dimensional convex
polygon but embedded in an N − 1 dimensional space and ḡ ∈ C ′\∂C ′ if and only if
f̄ ∈ C\∂C. Obviously, L(λ) can get to its maximum if and only if L′(λ′) can. From the
above procedure we see that we can reduce the dimension of λ until it equals k, without
affecting the final conclusion.

In the remaining part of the proof we only consider the case where k = N . Let S be the
N − 1 dimensional unit sphere, which consists of all N dimensional vectors with |v| = 1. If
f̄ ∈ C\∂C, then for any v ∈ S,

M(v) > v · f̄ ,

where

M(v) = max
ω∈Ωn

{v · f(ω)} .

The function M(v)− v · f̄ is continuous, therefore, by compactness of S, there is a constant
A > 0 such that M(v) − v · f̄ > A for all v ∈ S.

For each v ∈ S, taking L(tv) as a function in t, we have

L′(tv) = v · f̄ −

∑

ω∈Ωn

v · f(ω)etv·f(ω)

∑

ω∈Ωn

etv·f(ω)
→ v · f̄ − M(v) < −A, t → ∞,

and L′′(tv) < 0. For each t > 0, let Bt = {v ∈ S : L′(tv) < 0}. From the above result we
see S ⊂ ∪t>0Bt. Because of the continuity of L′(tv) in v, Bt is open. Because S is compact,
S ⊂ ∪Bti for some t1 < t2 < . . . < tm. For each v ∈ S, because L(tv), when taken as a
function in t, is concave, therefore, if L′(t0v) < 0, then for any t > t0, L′(tv) < 0, which
means Bti ⊂ Btm . This implies that for all v ∈ S and t > tm, L′(tv) < 0. Thus if |λ| > tm,
then L(λ) < L(tmv), where v = λ/|λ|. Therefore L(λ) must get its maximum in the region
{λ : |λ| ≤ tm}.

Conversely, assume L(λ) achieves its maximum at some λ0, then ∇L(λ0) = 0, and therefore

f̄ =

∑

ω∈Ωn

f(ω)eλ0·f(ω)

∑

ω∈Ωn

eλ0·f(ω)
.

If the vertices of C are v1, . . . , vp, then every f(ω) can be written as a1v1 + . . . apvp, where
ai ≥ 0 and a1 + . . . ap = 1. Because each eλ0·f(ω) > 0, from the above equality, f̄ =
b1v1 + . . . bpvp with each bi being positive. Hence f̄ ∈ C\∂C. 2

As mentioned earlier, (6.8) may not have a solution. One way to handle this problem is to
modify the maximum-likelihood estimation (6.8) to the following form,

λ̂n = arg max
|λ|≤n

{Ln(λ, ω1, . . . , ωn)} . (6.9)
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Case Two:

In this case, only the yields of the parse trees are observed. Let y1, . . . , yn be the n sentences
and let Yn = {y1, . . . , yn}. Under the assumption that the distribution of ω is given by (6.3)
with parameter λ0, if |f | has finite mean and if n is large, then by the law of large numbers,

1

n

n∑

i=1

Eλ0 [f(ω)|Y (ω) = yi] ≈
∑

y∈Y

Eλ0 [f(ω)|Y (ω) = y]Pλ0(y) =
∑

ω∈Ω

Eλ0(f(ω)),

where Pλ0(y) is the sum of all Pλ0(ω) with Y (ω) = y, and Y = {Y (ω) : ω ∈ Ω}. On the
other hand, as n is large enough,

∑

y∈Yn

Eλ0 [f(ω)|Y (ω) = y]Pλ0(y|Yn) ≈
∑

y∈Y

Eλ0 [f(ω)|Y (ω) = y]Pλ0(y),

hence

1

n

n∑

i=1

Eλ0 [f(ω)|Y (ω) = yi] ≈
∑

y∈Yn

Eλ0 [f(ω)|Y (ω) = y]Pλ0(y|Yn).

With a similar argument as in the first case, we take any solution to the following equation
as an estimate of λ0,

1

n

n∑

i=1

Eλ[f(ω)|Y (ω) = yi] −
∑

y∈Y

Eλ[f(ω)|Y (ω) = y]Pλ(y|Yn) = 0. (6.10)

To transform (6.10) into an optimization problem, define the log-likelihood function in λ,

Ln(λ, y1, . . . , yn) =
1

n

n∑

i=1

log Pλ(yi|Yn).

Then

∇λLn(λ, y1, . . . , yn) =
1

n

n∑

i=1

Eλ[f(ω)|Y (ω) = yi] −
∑

y∈Y

Eλ[f(ω)|Y (ω) = y]Pλ(y|Yn).

Therefore, any maximizer of Ln(λ, y1, . . . , yn) is a solution to (6.10).

A condition that Ln(λ, y1, . . . , yn) can reach its maximum is as follows. As in the first case,
suppose the dimension of λ is N .

Proposition 17. Given a convex set C in RN , a plane P is called a support of C
if ∅ 6= P ∩ C ⊂ ∂C. For each sentence y, let C(y) be the convex closure of the set
{f(ω) : y(ω) = y}.

If there is no such a plane P that it is a common support of C(y1), . . . , C(yn) and all C(y)’s
are on the same side of P , then Ln achieves its maximum.
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Proof. As in the proof of Proposition 16, let S be the unit sphere in RN . By the assump-
tion, for any v ∈ S,

max
y∈Yn

max
y(ω)=y

{v · f(ω)} > min
y∈Yn

max
y(ω)=y

{v · f(ω)} .

The functions on both sides of the above inequality are continuous in v. Because S is
compact, there is a constant δ > 0, such that for any v ∈ S,

max
y∈Yn

max
y(ω)=y

{v · f(ω)} − min
y∈Yn

max
y(ω)=y

{v · f(ω)} > δ

Based on this, using the same argument as Proposition 16, we can show that Ln achieves
its maximum. 2

If Ln(λ, y1, . . . , yn) can achieve its maximum, then the maximizers of the function are solu-
tions to (6.10). However, unlike Ln(λ, ω1, . . . , ωn) in case one, Ln(λ, y1, . . . , yn) is not nec-
essarily convex. Unless y1, . . . yn satisfy the condition of Proposition 17, Ln(λ, y1, . . . , yn)
might not be able to achieve its maximum. As an alternative, we take

λ̂n = arg max
|λ|<n

Ln(λ, y1, . . . , yn), (6.11)

as the estimate of λ0.

For the estimation given by (6.11), we have the following consistency result.

Proposition 18. Assume the distribution on Ω is given by

Pλ0(ω) =
eλ0·f(ω)

Zλ0

.

Suppose ω1, . . . , ωn are i.i.d. samples from Pλ0 . Let yi = Y (ωi), i = 1, . . . , n, and Yn =
{y1, . . . , yn}. Define Ωn = {ω ∈ Ω : Y (ω) ∈ Yn}. Let λ̂n be the estimates given by (6.9) or
(6.11). Define the distribution Pn on Ω such that

Pn(ω) =







eλ̂n·f(ω)
∑

ω′∈Ωn

eλ̂n·f(ω′)
if ω ∈ Ωn

0 otherwise

(1) If λ̂n are given by (6.9) and if H = −
∑

ω∈Ω

Pλ0(ω) log Pλ0(ω) < ∞, then with probability

1, as n → ∞, Pn weakly converges to Pλ0 on Ω, i.e.,

Pn(ω) → Pλ0(ω), for any ω ∈ Ω.

(2) If λ̂n are given by (6.11) and if H = −
∑

y∈Y

Pλ0(y) log Pλ0(y) < ∞, then with probability

1, as n → ∞, Pn weakly converge to Pλ0 on Y , i.e.,

Pn(y) → Pλ0(y), for any y ∈ Y.
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Proof. We only prove (2). The proof of (1) is very similar to the proof of (2).

Write Ln(λ) for Ln(λ, y1, . . . , yn). For any integer n > |λ0|, by (6.11), Ln(λn) ≥ Ln(λ0).
But

Ln(λ0) =
1

n

n∑

i=1

log Pλ0(yi) + log Z(λ0) − log




∑

ω∈Ωn

eλ0·f(ω)



 .

With probability 1, Ln(λ0) → H, hence

lim inf
1

n

n∑

i=1

log Pn(yi) ≥ H.

Let In(y) denote the empirical probability of y, i.e.,

In(y) =
|{i : yi = y}|

n
.

Then

Ln(λn) =
1

n

n∑

i=1

log Pn(yi)

=
∑

y∈Yn

In(y) log Pn(y)

≤
∑

y∈Yn

In(y) log In(y). (6.12)

Fix ε > 0, there is a finite Y ′ ⊂ Y , such that

∑

y∈Y ′

Pλ0(y) log Pλ0(y) ≤
∑

y∈Y

Pλ0(y) log Pλ0(y) + ε. (6.13)

With probability 1, when n is large enough, Yn ⊃ Y ′, then

∑

y∈Yn

In(y) log In(y) ≤
∑

y∈Y ′

In(y) log In(y). (6.14)

Letting n → ∞, with probability 1,

∑

y∈Y ′

In(y) log In(y) →
∑

y∈Y ′

Pλ0(y) log Pλ0(y). (6.15)

By (6.12)-(6.15),

lim sup
1

n

n∑

i=1

log Pn(yi) ≤ H.

Therefore,

lim
1

n

n∑

i=1

log Pn(yi) = H.
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The above arguments also show that

lim
1

n

n∑

i=1

log In(yi) = H.

Then for large n,

∑

y∈Yn

In(y) log Pn(y) ≥
∑

y∈Yn

In(y) log In(y) − ε.

Since {Pn} is a sequence of probability measures on the countable set Y , it contains con-
vergent subsequences. Let P̃ be the limit of a convergent subsequence {Pni

}. Then P̃ is a
measure on Y with

∑
P̃ (y) ≤ 1. From

∑

y∈Yni

Ini
(y) log Pni

(y) ≥
∑

y∈Yni

Ini
(y) log Ini

(y) − ε,

we get

∑

y∈Y

Pλ0(y) log P̃ (y) ≥
∑

y∈Y

Pλ0(y) log Pλ0(y),

which can happen only if P̃ = Pλ0 . Therefore any convergent subsequence of {Pn} converges
to Pλ0 . Therefore Pn → Pλ0 . 2

Corollary 5. If λ0 is identifiable, i.e., for any λ 6= λ0, Pλ 6= Pλ0 , then the estimation (6.9)
is consistent, which means with probability 1, λ̂n → λ0 as n → ∞. 2

6.4 Pseudo-Likelihood (PL) Type Estimation of Parameters

The estimation procedures given in §6.3 are basically of maximum-likelihood type. They
estimate the “global” distribution, i.e., the distribution on the set of all parse trees or
the distribution on the set of all sentences. In the context of parsing, however, global
distributions are irrelevant. What is really relevant for efficient parsing is that, given a
sentence, all the possible parses of the sentence are properly assigned conditional probabilities
so that the correct parses to the sentence are preferred in the sense that they have higher
conditional probabilities. This observation suggests using the pseudo-likelihood (PL) type
procedure for parameter estimation (Besag [2], [3]).

The idea for the PL estimation is as follows. Let (Ω, P ) be a space. Suppose Ω is partitioned
into disjoint subsets Ωα. Then for each ω ∈ Ω, there is a unique Ωα, denoted as Ω(ω) such
that ω ∈ Ω(ω). If we are given a parametric family of probability distributions {Pθ}θ∈Θ

and P = Pθ0 , then for i.i.d. samples ω1, . . . , ωN from P , the PL estimate for θ0 is

θ̂ = arg max
θ∈Θ

N∏

i=1

{Pθ(ωi|Ω(ωi))} .
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Now let Ω be the set of all parses. In the context of parsing, we are interested in the
comparison of all the parses for each single sentence, but not the comparison of parses for
different sentences. Therefore, the partition we choose is such that, for ω ∈ Ω,

Ω(ω) = {ω′ ∈ Ω : Y (ω′) = Y (ω)}.

If Y (ω) = y, then clearly, for any distribution P on Ω,

P (ω|Ω(ω)) = P (ω|Y (ω) = y) =
P (ω)

∑

Y (ω′)=y

P (ω′)

The global distribution of sentences is irrelevant for parsing, and we assume it to be π(y),
which might be unknown. The conditional probability distribution of parses, given a sen-
tence y, is assumed to be a Gibbs distribution. In certain sense, the Gibbs distribution of
parses, given y, should depend on y, i.e.,

P (ω|Y (ω) = y) =
eλy ·fy(ω)

∑

Y (ω′)=y

eλy ·fy(ω′)
,

where λy are parameters depending on y and fy are features depending on y. However,
it is reasonable to assume that across all the sentences, the parsing rules are the same.
Therefore, we suppose the conditional distributions have the same λ and the same f , for
all y.

The distribution of all the parses then takes the form given by (6.5). Given i.i.d. samples
ω1, . . . , ωn, let yi = Y (ωi). The PL estimate is

λ̂n = arg max
λ

{
n∏

i=1

Pλ(ωi|Ω(ωi))

}

= arg max
λ







n∏

i=1

eλ·f(ω)

∑

Y (ω)=yi

eλ·f(ω)







,

or, using the notion of log-likelihood,

λ̂n = arg max
λ






λ · f̄ − 1

n

n∑

i=1

log




∑

Y (ω)=yi

eλ·f(ω)










. (6.16)

Let PL(λ, ω1, . . . , ωn) be the function being maximized on the right hand side of (6.16). If
the maximization has a solution λ̂n, then ∇PL(λ0, ω1, . . . , ωn) = 0, i.e.,

f̄ =
1

n

n∑

i=1

Eλ [f(ω)|Y (ω) = yi] . (6.17)

The formula (6.17) has an explanation which has nothing to do with the Gibbs form. If
|f(ω)| has finite mean, then by the law of large numbers, as n → ∞, with probability one,
f̄ → E(f). On the other hand, for any sentence y,

|{i : yi = y}|
n

→ π(y),
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and therefore,

1

n

n∑

i=1

E [f(ω)|Y (ω) = yi] =
∑

y∈Y

|{i : yi = y}|
n

E [f(ω)|Y (ω) = yi] → E(f).

In the above formula we omit the subscript of Eλ to make it clear that the distribution
considered here is not necessarily given by (6.5).

If the true distribution belongs to a parametric family {Pθ} and its parameter is θ0, then
as n is large,

f̄ ≈ 1

n

n∑

i=1

Eθ0 [f(ω)|Y (ω) = yi] ,

and it is reasonable to let (any) solution of

f̄ =
1

n

n∑

i=1

Eθ [f(ω)|Y (ω) = yi]

be an estimate of θ0.

The estimation given by (6.16) is consistent in the following sense.

Proposition 19. Let {Pλ} be a parametric family of probability distributions on Ω, such
that for each λ,

Pλ(ω) = π(Y (ω))
eλ·f(ω)

∑

ω′∈Ω(ω)

eλ·f(ω′)
.

Assume ω1, . . . , ωn are i.i.d. samples from Pλ0 . Let λ̂n be the estimates given by (6.16). For
each n, let Pn = Pλ̂n

. If

−
∑

y∈Y

π(y)
∑

Y (ω)=y

Pλ0(ω|Y (ω) = y) log Pλ0(ω|Y (ω) = y) < ∞,

then with probability 1, for each sentence y, and for each ω with Y (ω) = y,

Pn(ω|Y (ω) = y) → Pλ0(ω|Y (ω) = y),

Proof. With the similar arguments as in Proposition 18, it can be shown that with prob-
ability 1,

1

n

n∑

i=1

log Pn(ωi|Ω(ωi)) →
∑

y∈Y

π(y)
∑

Y (ω)=y

Pλ0(ω|Ω(ω)) log Pλ0(ω|Ω(ω))

and

1

n

n∑

i=1

log In(ωi|Ω(ωi)) →
∑

y∈Y

π(y)
∑

Y (ω)=y

Pλ0(ω|Ω(ω)) log Pλ0(ω|Ω(ω)).
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But

1

n

n∑

i=1

log Pn(ωi|Ω(ωi)) =
∑

y∈Y

In(y)
∑

Y (ω)=y

In(ω|Ω(ω)) log Pn(ω|Ω(ω)),

and

1

n

n∑

i=1

log In(ωi|Ω(ωi)) =
∑

y∈Y

In(y)
∑

Y (ω)=y

In(ω|Ω(ω)) log In(ω|Ω(ω)).

For each y, since In(y) → π(y) and

∑

Y (ω)=y

In(ω|Ω(ω)) log Pn(ω|Ω(ω)) ≤
∑

Y (ω)=y

In(ω|Ω(ω)) log In(ω|Ω(ω)),

we conclude that

∑

Y (ω)=y

In(ω|Ω(ω)) log Pn(ω|Ω(ω)) −
∑

Y (ω)=y

In(ω|Ω(ω)) log In(ω|Ω(ω)) → 0.

Now since the set {ω : y(ω) = y} is finite, we get

Pn(ω|Ω(ω)) → Pλ0(ω|Ω(ω)).

The proof is complete. 2

Corollary 6. If for each λ 6= λ0, there is a y and an ω with Y (ω) = y, such that
Pλ(ω|Y (ω) = y) 6= Pλ0(ω|Y (ω) = y), then with probability one, λ̂n → λ0. 2
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